Technical Bulletins: Sand for Wastewater Drying Beds

Brett Ward
Municipal Technical Advisory Service, brett.ward@tennessee.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_mtastech

Part of the Public Administration Commons

The MTAS publications provided on this website are archival documents intended for informational purposes only and should not be considered as authoritative. The content contained in these publications may be outdated, and the laws referenced therein may have changed or may not be applicable to your city or circumstances.

For current information, please visit the MTAS website at: mtas.tennessee.edu.

Recommended Citation
https://trace.tennessee.edu/utk_mtastech/376

This Bulletin is brought to you for free and open access by the Municipal Technical Advisory Service (MTAS) at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in MTAS Publications: Technical Bulletins by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
Sand For Wastewater Drying Beds

By Brett Ward

MTAS Utility Operations Consultant

Drying beds for wastewater sludge require a specific type of sand in order to dewater the sludge quickly. Many wastewater plants use whatever is available through the local building supply or concrete retailer, which is often a poor choice. Masonry sand is very fine and will not drain the water away from the sludge. For faster drying, choose a coarse sand that will hold the solids but allow the water to drain.

Design Criteria

Sand is classified according to two criteria. The first is the size or diameter of the sand particles called the effective size. The second is the uniformity of the particles, called the coefficient of uniformity.

The coefficient of uniformity tells the purchaser if the sand particles are uniform. A coefficient of uniformity of 1.0 means that all the sand particles are exactly the same size. This is never the case, particles will always have some variation in size.

The effective size tells the purchaser that 90 percent of the particles are larger than the effective size and 10 percent of the particles are smaller than the effective size. This smallest 10 percent determines the speed of draining from a drying bed. The greater the amount of small particles and dust in the sand, the longer it takes for the solids to dry.

The state design criteria specifies that:

- the top course (in the drying bed) shall consist of at least nine inches of sand with a uniformity coefficient of less than 3.5;
- for trickling filter sludge, the effective size of the sand shall be between 0.8 to 3.0 mm; and
- for waste activated sludge, the effective size of the sand shall be between 0.5 to 0.8 mm.

Sands of these sizes will provide excellent dewatering. However, they are expensive and hard to find. Because of these problems, many facilities use whatever is easily available, which in most cases is construction sand that is too fine to dewater bio-solids quickly.

General Size Classifications

Sand sizes are determined by the amounts that will pass through each of a series of sieves. Coarse sand will pass through a No. 4 sieve with an opening size of 4.76 mm, but not pass through a No. 10 sieve with openings of 2.0 mm. Medium sand will pass through a No. 10 sieve but not through a No. 40 with openings of 0.42 mm.

Fine sand will pass through a No. 40 sieve, but not a No. 200 sieve with openings of 0.074 mm. Coarse sand is used for trickling filter plants, whereas medium sand will work best for activated sludge plants. NEVER use fine sand on the drying bed. Fine sand is used for
mixing mortar and cement and also in golf course sand traps. If you use this type of sand in a drying bed, expect the sludge dewatering to be very slow. In addition, a fine sand has contaminated the coarse sand and gravel media of the bed, water movement through the media will be slowed from that point on or until the entire media bed is replaced. The reason is that the fine particles and dust in the fine sand move down into the coarser media clogging the media and slowing water movement.

Many parts of the state have river sand available. Natural sands often do not meet state specifications for drying beds. However, they are far superior to construction sand and are economical to purchase. There are also some manufactured sands and other similar products that will function in the drying bed. Use of these "junk sands" are more economical than sand that meets the state's exact specifications. After careful selection, they can dewater sludge just as well.

Sieve Test Results

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>No. 1 Percentage Passing</th>
<th>No. 2 Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>99.9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>97.8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>96.4</td>
</tr>
<tr>
<td>14</td>
<td>85.7</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>58.9</td>
<td>80.5</td>
</tr>
<tr>
<td>20</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>28.2</td>
</tr>
<tr>
<td>40</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.6</td>
<td>5.5</td>
</tr>
<tr>
<td>100</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

Table No. 1

Examples

Table 1 shows the results of sieve tests done on two types of sand. Sand No. 1 is an AWWA (American Water Works Association) approved filter sand that has been washed and graded to specifications of 0.75-0.85 mm. This is excellent sand for drying beds, but it is also expensive. The cost is more than $20 per ton in Junction City, Georgia. The No. 2 sand is from the Nolichucky River and costs less than $5 per ton in Greeneville, TN.

The results of these analyses are plotted on semi-logarithmic graph paper and show a graduation curve for each product. (See Figure No. 1 on page 3.) The No. 1 sand has an effective size of 0.82 mm. This is the point where the graphed line crosses the ten percent horizontal line. This tells an operator that ten percent of the sand will be smaller than 0.82 mm. The smaller the effective size, the finer the sand, which means that dewatering will be slower.

Another important requirement for the sand is the coefficient of uniformity. This is found by dividing the size at the 60 percent line by the effective size at the 10 percent line. Sand No.1 is 1.18 mm/.82mm = 1.44, proving that this is a very uniform sand. Sand No. 2 has a coefficient of .95 mm/.35 mm = 2.7. Both of these sands meet the state specification that the sand must have a uniformity coefficient of less than 3.5.

The most important part of choosing sand for a wastewater sludge drying bed is to use a coarse sand. When purchasing sand, request that the supplier provide you with the effective size and coefficient of uniformity. If they cannot, request a sieve analysis and use the enclosed graph on page 5 to construct your own gradation curve. This can be used to calculate the needed specifications. Choose the sand to use in your drying beds by comparing the effective size and coefficient of uniformity of the available sands with the state specifications for your type of plant.

The closer you can get to this ideal effective size and coefficient of uniformity, the quicker your sludge will dewater. If you have a sand available that is very close to state specifications and is economical to purchase, use it. If your available sands are not close to state specifications, continue to search for a better source of sand. The effort put forth to find a coarse, uniform sand will be rewarded many times over through faster dewatering of bio-solids and more efficient use of the plant facilities.
mixing mortar and cement and also in golf course sand traps. If you use this type of sand in a drying bed, expect the sludge dewatering to be very slow. In addition, after a fine sand has contaminated the coarse sand and gravel media of the bed, water movement through the media will be slowed from that point on or until the entire media bed is replaced. The reason is that the fine particles and dust in the fine sand move down into the coarser media clogging the media and slowing water movement.

Many parts of the state have river sand available. Natural sands often do not meet state specifications for drying beds. However, they are far superior to construction sand and are economical to purchase. There are also some manufactured sands and other similar products that will function in the drying bed. Use of these “junk sands” are more economical than sand that meets the state’s exact specifications. With careful selection, they can dewater sludge just as well.

Sieve Test Results

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>No. 1 Percentage Passing</th>
<th>No. 2 Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>99.9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>97.8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>96.4</td>
</tr>
<tr>
<td>16</td>
<td>85.7</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>58.9</td>
<td>80.5</td>
</tr>
<tr>
<td>20</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.6</td>
<td>5.5</td>
</tr>
<tr>
<td>100</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

Examples

Table 1 shows the results of sieve tests done on two types of sand. Sand No. 1 is an AWWA (America Water Works Association) approved filter sand that has been washed and graded to specifications of 0.75-0.85 mm. This is excellent sand for drying beds, but it is also expensive. The cost is more than $20 per ton in Junction City, Georgia. The No. 2 sand is from the Nolichucky River and costs less than $5 per ton in Greeneville, TN.

The results of these analyses are plotted on semilogarithmic graph and show a graduation curve for each product. (See Figure No. 1 on page 3.) The No. 1 sand has an effective size of 0.82 mm. This is the point where the graphed line crosses the ten percent horizontal line. This tells an operator that ten percent of the sand will be smaller than 0.82 mm. The smaller the effective size, the finer the sand, which means that dewatering will be slower.

Another important requirement for the sand is the coefficient of uniformity. This is found by dividing the size at the 60 percent line by the effective size at the 10 percent line. Sand No.1 is 1.18 mm/.82 mm = 1.44, proving that this is a very uniform sand. Sand No. 2 has a coefficient of .95 mm/.35 mm = 2.7. Both of these sands meet the state specification that the sand must have a uniformity coefficient of less than 3.5.

The most important part of choosing sand for a wastewater sludge drying bed is to use a coarse sand. When purchasing sand, request that the supplier provide you with the effective size and coefficient of uniformity. If they cannot, request a sieve analysis and use the enclosed graph on page 5 to construct your own graduation curve. This can be used to calculate the needed specifications. Choose the sand to use in your drying beds by comparing the effective size and coefficient of uniformity of the available sands with the state specifications for your type of plant.

The closer you can get to this ideal effective size and coefficient of uniformity, the quicker your sludge will dewater. If you have a sand available that is very close to state specifications and is economical to purchase, use it. If your available sands are not close to state specifications, continue to search for a better source of sand. The effort put forth to find a coarse, uniform sand will be rewarded many times over through faster dewatering of bio-solids and more efficient use of the plant facilities.
The following sand suppliers can be contacted for the availability of coarse sand.

- **American Sand Supply**
 Monterey
 (931) 839-2241

- **French Broad Sand and Gravel**
 Knoxville
 (423) 579-0051

- **Newport Sand and Gravel**
 Newport
 (423) 623-7321

- **Nolichucky Sand Company**
 Greeneville
 (423) 638-5269

- **Teague Brothers Sand and Gravel Company**
 Parsons
 (901) 847-0848

- **Porter Warner Industries**
 Chattanooga
 (423) 266-4735

For additional information about sand, contact Steve Fishel at TDEC in Nashville, (615) 532-0660.

Sand Bed Management Tips

- Clean bio-solids thoroughly from the sand. Rake sand to remove the small bio-solids.
- Prepare the surface by using a garden tiller to loosen the sand. Or loosen by stabbing the sand with fork and rocking it side to side.
- Leave the surface rough to allow the sand to dry.
- Level sand immediately before applying an application of bio-solids.
- To accelerate drying, consider covering partially dried bio-solids with a plastic sheet during wet weather. When the sun returns remove the plastic to allow drying to continue.

Information for this document was provided through the assistance of:

Eric C. Drumm, P.E., Ph.D.
Department of Civil Environmental Engineering
University of Tennessee

Steve Fishel
Environmental Protection Specialist
Tennessee Department of Environment and Conservation (TDEC)
The following sand suppliers can be contacted for the availability of coarse sand:

- American Sand Supply
 - Monterey, (931) 839-2241
- French Broad Sand and Gravel
 - Knoxville, (423) 579-0051
- Newport Sand and Gravel
 - Newport, (423) 623-7321
- Nolichucky Sand Company
 - Greeneville, (423) 638-5269
- Teague Brothers Sand and Gravel Company
 - Parsons, (901) 434-7084
- Porter Warner Industries
 - Chattanooga, (423) 266-4735

For additional information about sand, contact Steve Fishel at IDEC in Nashville, (615) 532-0660.
The Municipal Technical Advisory Service (MTAS) is a statewide agency of The University of Tennessee's Institute for Public Service. MTAS operates in cooperation with the Tennessee Municipal League in providing technical assistance services to officials of Tennessee's incorporated municipalities. Assistance is offered in areas such as accounting, administration, finance, public works, communications, ordinance codification, and wastewater management.

MTAS Technical Bulletins are information briefs that provide a timely review of topics of interest to Tennessee municipal officials. Bulletins are free to Tennessee local, state, and federal government officials and are available to others for $2 each. Contact MTAS for a list of recent bulletins.

The University of Tennessee
Municipal Technical Advisory Service
Conference Center Building, Suite 120
Knoxville, Tennessee 37996-4105
Knoxville: (423) 974-0411
Nashville: (615) 256-8141
Jackson: (901) 423-3710
Martin: (901) 587-7055
Johnson City (423) 854-9223

To learn more about MTAS, visit our web site at: www.mtas.utk.edu.

Printed on recycled paper.