May 2013

Attitude of Tennessee Farmers toward Credit

University of Tennessee Agricultural Experiment Station

James G. Snell

Robert J. Hopkins

Ralph Barnett

Follow this and additional works at: http://trace.tennessee.edu/utk_agbulletin

Part of the Agriculture Commons

Recommended Citation

University of Tennessee Agricultural Experiment Station; Snell, James G.; Hopkins, Robert J.; and Barnett, Ralph, "Attitude of Tennessee Farmers toward Credit" (2013). Bulletins. http://trace.tennessee.edu/utk_agbulletin/334

The publications in this collection represent the historical publishing record of the UT Agricultural Experiment Station and do not necessarily reflect current scientific knowledge or recommendations. Current information about UT Ag Research can be found at the UT Ag Research website. This Bulletin is brought to you for free and open access by the AgResearch at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Bulletins by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
Attitude of Tennessee Farmers Toward Credit

by
James G. Snell
Robert J. Hopkins
Ralph Barnett

The University of Tennessee / Agricultural Experiment Station
John A. Ewing, Dean / Knoxville
SUMMARY

The specific objectives were: 1) to determine the attitude of East, Middle, and West Tennessee farmers toward credit, and 2) to determine the relationship between selected variables and the attitude of East, Middle, and West Tennessee farmers toward credit.

The study was based on a 1968-69 survey of 535 Tennessee farm operators whose total gross farm income for the preceding year was $1,500 or more. The sample was stratified into East, Middle, and West Tennessee with 200 farmers each in East and Middle and 135 in West Tennessee. In general, Tennessee farmers had a positive attitude toward credit though the attitude cannot be considered to be highly favorable. East Tennessee farmers were less favorable than were Middle and West Tennessee farmers. While variation in attitude existed, the range of attitude scores within a region was not large—indicating Tennessee farmers within a region do not differ widely in their attitude toward credit.

The relationship between selected variables and attitude toward credit in the three regions differ sufficiently so that each area should be and was analyzed separately.

The general conclusion reached was that Tennessee farmers may tend to be conservative in the use of credit and hence Tennessee agriculture may grow at a slower rate than national agriculture. Certainly farmers' attitudes toward credit is not the only limiting factor for agricultural growth in East Tennessee, but this study tends to indicate that East Tennessee farmers will probably use credit to a somewhat lesser extent than Middle and West Tennessee farmers. Hence East Tennessee agriculture may tend to lag behind the growth of agriculture in the other two regions of Tennessee.

The implications of the regional difference between attitude toward credit and the selected variables were that educational programs to promote the use of credit may need to be tailored on a regional basis rather than on a state basis. Credit agencies may need to institute different regional approaches for attracting and servicing clients.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>5</td>
</tr>
<tr>
<td>PROCEDURE</td>
<td>5</td>
</tr>
<tr>
<td>Source of Data</td>
<td>5</td>
</tr>
<tr>
<td>Statistical Analyses</td>
<td>6</td>
</tr>
<tr>
<td>RESULTS</td>
<td>7</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>9</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>11</td>
</tr>
</tbody>
</table>

The Soils of the Nashville Basin
Attitude of Tennessee Farmers Toward Credit

by

James G. Snell, Robert J. Hopkins, and Ralph Barnett

INTRODUCTION

A major problem that confronts a farm operator is obtaining control of land and productive assets. There are several ways of obtaining these assets, but the most prevalent way in recent years has been through the employment of borrowed capital.

Borrowed capital has played a major role in farm expansion over the years, and in recent years its use has increased. Farm debt, as a percentage of farm assets, in the United States has increased from 9.4% in 1950 to 19.2% in 1971.¹ There was an increase in total farm debt from $12.4 billion in 1950 to $61.2 billion in 1971. Figure 1 shows the changes in farm debt during the period 1950-1972. Continued expansion of farm size and increased requirements for purchased inputs have played a major role in the continued increase in farm debt. In Tennessee, average farm size, in acres, increased 55% from 1950 to 1969. The number of farms having less than 200 acres decreased 54% while farms with more than 200 acres increased 156%.² Farm real estate prices have continually increased during this same time period. Expansion and consolidation of farms and the adoption of new technologies have required increased amounts of borrowed capital.

Larger farms need larger amounts of credit in the form of long-term loans. Intermediate and short-term credit demands have also risen due to the need for more equipment, livestock, and operating funds for each farm unit and all farm units together.

A farm operator with a positive attitude toward credit will more readily accept the idea that credit is vital to his operation. Hence, the attitude that a farmer has toward credit may well determine his ability to compete in modern farming. The willingness of Tennessee farmers to use credit will have a strong influence upon the relative position and vitality of Tennessee agriculture in the U.S. economy.

OBJECTIVES

The objectives were: 1) to determine the general attitude of East, Middle, and West Tennessee farmers toward credit; and 2) to determine the relationship between selected variables and attitude of East, Middle, and West Tennessee farmers toward credit.

PROCEDURE

Source of Data

This study was based on a 1968-69 survey of 535 Tennessee farm operators whose total gross farm income for the preceding year.
was $1,500 or more. The sample was stratified into East, Middle, and West Tennessee. A random sample of 200 farmers was selected for both East and Middle Tennessee and 135 farmers were selected in West Tennessee.

A structured questionnaire with a personal interview was used to obtain the data. The general characteristics of the farm and farm operator were collected in order that a comparison could be made of the holders of different attitudes. Also, the farmer was asked whether he strongly agreed, merely agreed, was uncertain, disagreed, or strongly disagreed with a series of statements about credit and its relevance to the farm. A scale of 1 to 5 was used to record the farmers' responses which enabled the quantification of each farmer's attitude toward credit. The general characteristics of the farmers sampled and the farm types are presented in Appendix A Tables 2, 3, and 4.

Statistical Analyses
In the first phase of the statistical analysis, attitude scores were computed for East, Middle, and West Tennessee. Standard statistical tests between means were applied to determine if the attitude scores showed a favorable or unfavorable attitude toward credit on the part of the farmers sampled, and if the East, Middle, or West Tennessee farmers sampled had different attitudes toward credit.

In the second phase separate regression equations were fitted for East, Middle, West Tennessee, and the aggregated data.

The dependent variables for the separate equations were:
\[Y_e = \text{attitude score on East Tennessee farmers} \]
\[Y_m = \text{attitude score on Middle Tennessee farmers} \]
\[Y_w = \text{attitude score on West Tennessee farmers} \]
\[Y_s = \text{attitude score for aggregated data} \]

The explanatory variables were:
\[X_1 = \text{total tillable acres in acres} \]
\[X_2 = \text{farmer's age in years} \]

This dollar value was arbitrarily selected in an attempt to limit the sample to the more viable farms.

A copy of the schedule is available upon request from the Department of Agricultural Economics and Rural Sociology, University of Tennessee, Knoxville, Tennessee 37901.
The Soils of Nashville

X1 = actual number of years engaged in farming
X2 = husband works off the farm (0, 1 dummy variable)
X3 = wife works off the farm (0, 1 dummy variable)
X4 = son over 14 (0, 1 dummy variable)
X5 = educational level. X5 is defined as 0 for no school, 1 for 1-4 years, 2 for 5-7 years, 3 for 8 years, 4 for 9-11 years, 5 for 12 years, 6 for 13-15 years, 7 for 16 years and 8 for graduate study
X6 = has a long-term loan (0, 1 dummy variable)
X7 = has a short-term loan (0, 1 dummy variable)
X8 = is or has been a PCA borrower (0, 1 dummy variable)
X9 = livestock farmer (0, 1 dummy variable)
X10 = livestock products farmer (0, 1 dummy variable)

A statistical test was made utilizing the results from the four equations (East, Middle, West, and State) to test the hypothesis that there was no significant difference between regions in the relationship between attitude score and the explanatory variables.

RESULTS

On the average, the farmers sampled had a favorable attitude toward credit, although the attitude scores were not high enough to say the farmers were strongly favorable toward credit (Table 1). East Tennessee farmers, however, were less favorable in their attitude toward credit than were Middle and West Tennessee farmers (Appendix B).

Zero-one dummy variables were used to quantify the qualitative variables such as husband works off the farm, PCA borrower, etc. The mathematics requires one variable in a class to be omitted from the regression equation. That omitted variable becomes the base to which the other variables in that class are compared. For example, there is an omitted variable, call it XGa, which is defined as 1 if the farmer has no son 14 years or older, 0 otherwise. If the regression coefficient for XGa is positive, it means that farmers with sons 14 years or older have a more favorable attitude toward credit than farmers who do not have sons 14 years or older.

See Appendix B for the statistical tests on which the statements in this section are based.
Table 1. Attitude scores and standard errors of attitude scores for 535 East, Middle and West Tennessee farmers, 1968-69

<table>
<thead>
<tr>
<th>Region</th>
<th>Attitude score</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Tennessee</td>
<td>3.35</td>
<td>.335</td>
</tr>
<tr>
<td>Middle Tennessee</td>
<td>3.46</td>
<td>.306</td>
</tr>
<tr>
<td>West Tennessee</td>
<td>3.43</td>
<td>.314</td>
</tr>
</tbody>
</table>

*An attitude score of "3" indicates an indifferent or uncertain attitude toward credit.

The attitude scores of the farmers sampled were regressed on the 13 selected variables by region and for the three regions combined. The results reinforce the implied assumptions of previous studies that the three regions in Tennessee differ sufficiently so that data from each region should be analyzed separately (Appendix B.2).

The regression equations for the three regions showed that the 13 variables chosen explained little of the variation in attitude scores though the overall relationship for each region was significant at the .01 probability level. The standard error of estimate for each regression equation indicated that while there was variation in attitude toward credit, the range in variation was not large. This indicates that farmers in a given region did not differ widely in their attitude toward credit.

Few of the variables in the three equations were significantly related to attitude scores and only two variables were significantly related to attitude score in all three regions; these significant variables were: "have a long-term loan" (X1) and "PCA borrower" (X10). "Total tillable acres" (X4), "wife works off the farm" (X5), and "farmer's education level" (X1) were related to attitude toward credit for Middle and West Tennessee but not for East Tennessee.

The attitude scores of East Tennessee farmers increased as the number of tillable acres farmed increased. Farmers whose wives worked off the farm also had higher attitude scores than those farmers whose wives did not work off the farm. These two variables had no relationship with the attitude scores of Middle and West Tennessee.

Farmers with higher educational levels had a more positive attitude toward credit in Middle and West Tennessee, but educational level was not related to the attitude score of East Tennessee farmers.

The two variables, "have a long-term loan" and "PCA borrower," had practically the same positive relationship in all three regions.

*See Appendix A for the estimated regression equations for East, Middle, and West Tennessee.
Several of the other variables appeared to have opposite effects in different regions. For example, the coefficient for the variable, "years in farming," had a negative sign in East and West Tennessee but a positive sign for Middle Tennessee. Statistical tests were made and none of these differences among the coefficients was large enough to be significant (Appendix Table B.1).

APPENDIX A

Appendix A. Table 1. Estimated regression coefficients, standard errors of regression coefficients, R^2, standard error of estimate, and residual sums of squares for the regression equation for East Tennessee, Middle Tennessee, and West Tennessee

<table>
<thead>
<tr>
<th></th>
<th>East Tennessee</th>
<th>Middle Tennessee</th>
<th>West Tennessee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3.14</td>
<td>2.992</td>
<td>3.193</td>
</tr>
<tr>
<td>Total tillable acres</td>
<td>.00008</td>
<td>.00001</td>
<td>.00005</td>
</tr>
<tr>
<td>(X,)</td>
<td>(.00002)</td>
<td>(.00015)</td>
<td>(.00006)</td>
</tr>
<tr>
<td>Farmer age (X,)</td>
<td>1.0030</td>
<td>1.0029</td>
<td>1.0041</td>
</tr>
<tr>
<td>(X,)</td>
<td>.0009</td>
<td>.0012</td>
<td>.0009</td>
</tr>
<tr>
<td>Husband works off farm (X,)</td>
<td>-.0271</td>
<td>-.0759</td>
<td>.0173</td>
</tr>
<tr>
<td>(X,)</td>
<td>.0580</td>
<td>.0603</td>
<td>.0869</td>
</tr>
<tr>
<td>Wife works off farm (X,)</td>
<td>.0053</td>
<td>.0534</td>
<td>.0298</td>
</tr>
<tr>
<td>(X,)</td>
<td>.0564</td>
<td>.0576</td>
<td>.0607</td>
</tr>
<tr>
<td>Son over 14 (X,)</td>
<td>.0092</td>
<td>.0540</td>
<td>.0179</td>
</tr>
<tr>
<td>(X,)</td>
<td>.0499</td>
<td>.1070</td>
<td>.0660</td>
</tr>
<tr>
<td>Farmers education (X,)</td>
<td>.0013</td>
<td>.0425</td>
<td>.0439</td>
</tr>
<tr>
<td>(X,)</td>
<td>.0165</td>
<td>.0169</td>
<td>.0176</td>
</tr>
<tr>
<td>Have short term loan (X,)</td>
<td>.0762</td>
<td>-.0668</td>
<td>-.0448</td>
</tr>
<tr>
<td>(X,)</td>
<td>.0521</td>
<td>.0909</td>
<td>.0617</td>
</tr>
<tr>
<td>Have long term loan (X,)</td>
<td>.1438</td>
<td>.1179</td>
<td>.1454</td>
</tr>
<tr>
<td>(X,)</td>
<td>.0590</td>
<td>.10473</td>
<td>.10680</td>
</tr>
<tr>
<td>PCA borrower (X,)</td>
<td>.1223</td>
<td>.0935</td>
<td>.1216</td>
</tr>
<tr>
<td>(X,)</td>
<td>.0540</td>
<td>.10480</td>
<td>.10600</td>
</tr>
<tr>
<td>(X,)</td>
<td>.1347</td>
<td>.1025</td>
<td>.10812</td>
</tr>
<tr>
<td>Livestock (X,)</td>
<td>.0064</td>
<td>.0530</td>
<td>-.0104</td>
</tr>
<tr>
<td>(X,)</td>
<td>.0094</td>
<td>(.0589)</td>
<td>(.1022)</td>
</tr>
<tr>
<td>Livestock Product (X,)</td>
<td>.0012</td>
<td>.0593</td>
<td>.0542</td>
</tr>
<tr>
<td>(X,)</td>
<td>.0570</td>
<td>(.0252)</td>
<td>(.1547)</td>
</tr>
<tr>
<td>R²</td>
<td>.30</td>
<td>.29</td>
<td>.29</td>
</tr>
<tr>
<td>Standard error of estimate</td>
<td>16.385</td>
<td>16.027</td>
<td>10.438</td>
</tr>
<tr>
<td>Residual sum of square</td>
<td>16.027</td>
<td>16.027</td>
<td>10.438</td>
</tr>
</tbody>
</table>
Appendix A. Table 2. Average farm size of the farms sampled by regions and state, 1968-69

<table>
<thead>
<tr>
<th>Region</th>
<th>East</th>
<th>Middle</th>
<th>West</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Tennessee</td>
<td>Tennessee</td>
<td>Tennessee</td>
<td>State</td>
</tr>
<tr>
<td>Acers</td>
<td>223</td>
<td>292</td>
<td>368</td>
<td>285</td>
</tr>
<tr>
<td>Total tillable acres</td>
<td>166</td>
<td>208</td>
<td>331</td>
<td>224</td>
</tr>
<tr>
<td>Owned</td>
<td>136</td>
<td>147</td>
<td>159</td>
<td>146</td>
</tr>
<tr>
<td>Rented</td>
<td>32</td>
<td>61</td>
<td>172</td>
<td>78</td>
</tr>
</tbody>
</table>

Appendix A. Table 3. Mean values for selected variables by regions and state, 1968-69

<table>
<thead>
<tr>
<th>Region</th>
<th>East</th>
<th>Middle</th>
<th>West</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Tennessee</td>
<td>Tennessee</td>
<td>Tennessee</td>
<td>State</td>
</tr>
<tr>
<td>Number of years in farming</td>
<td>24</td>
<td>25</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>Years of age</td>
<td>51</td>
<td>50</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>Percent with sons 14 years or over at home</td>
<td>27</td>
<td>34</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>Percent of husbands working off farm</td>
<td>25</td>
<td>18</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>Years of schooling</td>
<td>11</td>
<td>10.5</td>
<td>10</td>
<td>10.5</td>
</tr>
<tr>
<td>Percent using PCA</td>
<td>50</td>
<td>57</td>
<td>37</td>
<td>50</td>
</tr>
</tbody>
</table>

Appendix A. Table 4. Percent of farm types in the sample by regions and state, 1968-69

<table>
<thead>
<tr>
<th>Region</th>
<th>East</th>
<th>Middle</th>
<th>West</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm type</td>
<td>Tennessee</td>
<td>Tennessee</td>
<td>Tennessee</td>
<td>State</td>
</tr>
<tr>
<td>Crop</td>
<td>3</td>
<td>7</td>
<td>70</td>
<td>21</td>
</tr>
<tr>
<td>Variable</td>
<td>18</td>
<td>24</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>Livestock products</td>
<td>56</td>
<td>35</td>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>Crops and livestock</td>
<td>23</td>
<td>34</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
APPENDIX B

Statistical Tests

1. Test for Positive Attitude

The hypothesis was that farmers in the East, Middle, and West Regions of Tennessee had a negative or an indifferent attitude toward credit. The statistical hypothesis was:

\[H_0: X_i < 3 \]
\[H_A: X_i > 3 \]

Where \(X_i \) is the attitude score of the farmers sampled in the \(i \)th region of Tennessee. An attitude score of "3" indicates an indifferent attitude and corresponds to the answer "uncertain" in the attitude questions. The regions were \(X_E = \text{East}, X_M = \text{Middle}, \) and \(X_W = \text{West}. \)

The statistical test was the large sample test,

\[Z = \frac{(X_i - 3)\sqrt{n}}{S} \]

where:
- \(X_i \) is the sample mean
- \(S \) is the sample standard deviation and
- \(n \) is the sample size

East Tennessee

\[14.80 = \frac{(3.46 - 3)\sqrt{200}}{.3345} \]

Middle Tennessee

\[21.28 = \frac{(3.45 - 3)\sqrt{200}}{.3057} \]

West Tennessee

\[15.90 = \frac{(3.43 - 3)\sqrt{135}}{.3145} \]

Tests were also made to test the hypothesis that

\[H_0: X_i < 4 \]
\[H_A: X_i > 4 \]

where \(X_i \) is the average attitude score of farmers sampled in the \(i \)th region in Tennessee and 4 is an attitude score corresponding to a favorable attitude.\(^{10}\) The test scores were:

Strictly speaking, the hypotheses as set up are not legitimate. The usual form of the test is \(t = \frac{X_i - \mu_0}{S} \) and hence the point is '4' is included in the null hypothesis which is incorrect. Practically, this was handled by using \(t = X_i - 3.9999 \) which in fact tests \(H_0: X_i < 3.9999 \) against \(H_A: X_i > 3.9999. \) This later hypothesis seemed to unduly complicate the concept to be tested; i.e., the attitude score was less than 4.
East Tennessee 29.42
Middle Tennessee 24.98
West Tennessee 21.00
The results of the tests show that while Tennessee farmers have a favorable attitude toward credit, it is only "weakly" favorable at the .001 probability level.11

2. Regional Differences—Attitude

The following pairwise hypotheses were tested to determine if there was a significant difference between the attitude scores of East, Middle, and West Tennessee farmers sampled.

(1) $H_0: \bar{X}_{\text{East}} = \bar{X}_{\text{Middle}}$

$H_A: \bar{X}_{\text{East}} \neq \bar{X}_{\text{Middle}}$

(2) $H_0: \bar{X}_{\text{East}} = \bar{X}_{\text{West}}$

$H_A: \bar{X}_{\text{East}} \neq \bar{X}_{\text{West}}$

(3) $H_0: \bar{X}_{\text{Middle}} = \bar{X}_{\text{West}}$

$H_A: \bar{X}_{\text{Middle}} \neq \bar{X}_{\text{West}}$

The specific statistical test was the large sample test for difference between means.12

$$Z = \frac{X_i - X_j - \delta}{\sqrt{\frac{S_i^2}{n_i} + \frac{S_j^2}{n_j}}}$$

where:

- X_i is the sample mean of the ith region
- X_j is the sample mean of the jth region
- δ is an arbitrarily small number (0 in actual use)
- S_i^2 is the sample variance of the ith region being tested
- S_j^2 is the sample variance of the jth region being tested
- n_i and n_j are the sample sizes

East—Middle

$$Z = \frac{3.35 - 3.46}{\sqrt{\frac{.11189}{200} + \frac{.09345}{200}}} = -3.433$$

East—West

$$Z = \frac{3.35 - 3.43}{\sqrt{\frac{.11189}{200} + \frac{.09878}{200}}} = 2.226$$

Middle—West

$$Z = \frac{3.46 - 3.43}{\sqrt{\frac{.09345}{200} + \frac{.09878}{200}}} = .866$$

11Tennessee farmers can be said to be "weakly" favorable in credit in that their average score fell between the uncertain (3) and the merely favorable (4) answers on the attitude questions.

12Ibid., p. 267.
The results show that the average attitude score of East Tennessee farmers sampled had statistically significant (.05 probability level) less favorable attitudes toward credit than did Middle and West Tennessee farmers; however, there was no significant difference between the attitude scores of the Middle and West Tennessee farmers sampled.

3. Regional Sample Population Differences
In many analysis, Tennessee is divided into three regions—East, Middle and West. The analysis proceeds on the generally untested assumption that the underlying population in the three areas differ.

The following test was used to determine if the samples taken in each region can be considered to have been generated from the sample population. The formal hypothesis was:

\[H_0: B_i = B_m = B_w \]
\[H_1: B_i \neq B_m \neq B_w \]

where \(B_i \) is the vector of regression coefficients with the subscripts denoting the area.

The specific test was:

\[F = \frac{Q_i - (Q_i + Q_m + Q_w)}{k} \]
\[\frac{Q_i}{n_i + n_m + n_w - 5} \]

where:
- \(Q \) denotes error sums of squares and
- \(k \) = the number of parameters estimated
- \(Q_i \) = pooled data
- \(Q_e \) = East
- \(Q_m \) = Middle
- \(Q_w \) = West

Obtain \(Q_i \) (error sum of squares from pooled data), \(Q_e \), \(Q_m \), and \(Q_w \) (error sum of squares from East, Middle, and West samples, respectively) from the four regression equations.

\[Q_i = 45.62241 \quad n = 135 \]
\[Q_e = 16.38501 \quad n_e = 200 \]
\[Q_m = 16.02713 \quad n_m = 200 \]
\[Q_w = 10.43765 \quad n_w = 135 \]

\[F = 2.77362 \]

The null hypothesis was rejected; therefore, the data sets from the four regression equations are significantly different.

\[F = 2.469 > F .01 (15,503) \]

The null hypothesis was rejected; therefore, the data sets from

the three regions can be considered to have been drawn from different populations.

4. Differences between Individual Regression Coefficients

Pairwise tests were made to determine which individual regression coefficients differed. The null hypotheses were:

\[H_0: B_{ij} = B_{il} \]
\[H_1: B_{ij} \neq B_{il} \]

where \(B_{ij} \) and \(B_{il} \) is the \(i \)th regression coefficient for \(j \)th and \(l \)th region, \(j \neq l \).

\[t = \frac{b_{ij} - b_{il}}{s_{i}^{-1}C_{ii}^{-1} + \varepsilon_{i}} \]

where:

\[s_{i}^{-2} = \text{ESS}_{j} + \text{ESS}_{l} \]
\[n_{j} + n_{l} - 2 \]

and \(C_{ii} \) is the appropriate diagonal element of the \((X'X)^{-1} \) matrix for the different regions.11, 12

The results for all possible pairwise tests are given in Appendix Table B.1.

11 Since \((X'X)^{-1} \) matrix is rarely printed out on a standard computer program, the \(C_{ii} \) were calculated from the fact that \(\text{Var} b_{i} = s_{i}^{-2}C_{ii} \) (where \(s_{i}^{-2} \) is the variance of the estimate), \(\text{Var} b_{i} = s_{i}^{-2}C_{ii} = C_{ii} \)

Appendix B. Table 1. t-test scores between estimated regression coefficients from the 3 regions*

<table>
<thead>
<tr>
<th>Variable</th>
<th>East Tennessee</th>
<th>East Tennessee</th>
<th>Middle Tennessee</th>
<th>Middle Tennessee</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁</td>
<td>1.46</td>
<td>1.59</td>
<td>.29</td>
<td></td>
</tr>
<tr>
<td>X₂</td>
<td>-.62</td>
<td>.06</td>
<td>.58</td>
<td></td>
</tr>
<tr>
<td>X₃</td>
<td>.60</td>
<td>.00</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>X₄</td>
<td>.59</td>
<td>-.42</td>
<td>-.89</td>
<td></td>
</tr>
<tr>
<td>X₅</td>
<td>.70</td>
<td>.36</td>
<td>.29</td>
<td></td>
</tr>
<tr>
<td>X₆</td>
<td>.27</td>
<td>.08</td>
<td>.51</td>
<td></td>
</tr>
<tr>
<td>X₇</td>
<td>-.72</td>
<td>1.75</td>
<td>-.05</td>
<td></td>
</tr>
<tr>
<td>X₈</td>
<td>1.27</td>
<td>1.46</td>
<td>.31</td>
<td></td>
</tr>
<tr>
<td>X₉</td>
<td>.37</td>
<td>-.02</td>
<td>-.33</td>
<td></td>
</tr>
<tr>
<td>X₁₀</td>
<td>.41</td>
<td>-.10</td>
<td>-.49</td>
<td></td>
</tr>
<tr>
<td>X₁₁</td>
<td>.40</td>
<td>.18</td>
<td>-.30</td>
<td></td>
</tr>
<tr>
<td>X₁₂</td>
<td>-.51</td>
<td>.14</td>
<td>.54</td>
<td></td>
</tr>
<tr>
<td>X₁₃</td>
<td>-.74</td>
<td>-.34</td>
<td>.03</td>
<td></td>
</tr>
</tbody>
</table>

*T-value for statistical significance at the .05 probability level is 1.96 (two tailed test) and 1.65 for the .10 probability level (two tailed test).
THE UNIVERSITY OF TENNESSEE
AGRICULTURAL EXPERIMENT STATION
KNOXVILLE, TENNESSEE

Agricultural Committee

Board of Trustees
Edward J. Boling, President of the University
Clyde M. York, Chairman; Ben Douglass, Vice Chairman;
Wayne Fisher; Harry W. Laughlin; Don O. Shadow
Guilford Thornton, Commissioner of Agriculture; Webster Pendergrass,
Vice President for Agriculture

STATION OFFICERS

Administration
Edward J. Boling, President
Webster Pendergrass, Vice President for Agriculture
E. J. Chapman, Assistant Vice President
J. A. Ewing, Dean
Eric Winters, Associate Dean
O. Clinton Shelby, Director of Business Affairs

Department Heads

S. E. Bennett, Agricultural Biology
R. L. Hamilton, Agricultural
Communication
T. J. Whatley, Agricultural Economics and Rural Sociology
J. J. McDow, Agricultural Engineering
S. L. Hansard (Acting), Animal Husbandry-Veterinary Science
A. E. Granott, Child Development and Family Relationships
J. T. Miles, Dairying
Grayce E. Goertz, Food Science and Technology Administration
M. R. Johnston, Food Technology
J. W. Barrett, Forestry
Mary R. Grau, Nutrition
D. H. Williams, Ornamental Horticulture and Landscape Design
L. F. Scott, Plant and Soil Science
R. L. Tugwell, (Acting), Poultry
Anna J. Treece, Textiles and Clothing

University of Tennessee Agricultural Research Units

Main Station, Knoxville, J. N. Odom, Superintendent of Farms
University of Tennessee—Atomic Energy Commission Agricultural Research Laboratory, Oak Ridge, N. S. Hall, Laboratory Director
The University of Tennessee at Martin, Martin, Harold J. Smith, Dean, School of Agriculture.

Branch Stations
Dairy Experiment Station, Lewisburg, J. R. Owen, Superintendent
Highland Rim Experiment Station, Springfield, L. M. Saibey, Superintendent
Middle Tennessee Experiment Station, Spring Hill, J. W. High, Jr., Superintendent
Plateau Experiment Station, Crossville, J. A. Odom, Superintendent
Tobacco Experiment Station, Greeneville, J. H. Potts, Superintendent
West Tennessee Experiment Station, Jackson, D. M. Gossett, Superintendent

Field Stations
Ames Plantation, Grand Junction, James M. Bryan, Manager
Cumberland Plateau Forestry Field Station, Wartrace, J. S. Kring, Manager
Friendship Forestry Field Station, Chattanooga
Highland Rim Forestry Field Station, Tallahoma, Morris T. Seay, Manager
Milan Field Station, Milan, T. C. McCutchen, Manager
Oak Ridge Forest and Arboretum, Oak Ridge
26127T