What's for dinner? Different Carbon Compounds Influence Host Metabolism in a Model Roseobacter-Roseophage System Kaylee Jacobs¹, Jonelle Basso¹, Katerina Jones², Shawn Campagna², Alison Buchan¹ THE UNIVERSITY OF Tennessee 🥑

Introduction

KNOXVILLE

- Bacteria get sick too!
- Viruses that infect bacteria (phage) engage in complex interactions with their hosts where they can have two life cycles: lytic or lysogenic (1).

- Lysogeny is widespread, with > 50% of bacterial genomes showing evidence of prophage integration. However, mechanistic study of bacteria-phage interactions are limited to a few well-studied model systems (1-3).
- The paradigm is that host cell stress prompts prophage induction (i.e. switch from lysogeny to lytic state). stress. This phenomenon is known as spontaneous prophage induction (SPI) (3).
- We have developed roseobacter-roseophage system to better understand SPI in an environmentally relevant context.

Project Objective

Characterize the general growth dynamics, cellular features and metabolic response of two genetically similar bacterialphage systems with different rates of SPI.

Department of Microbiology¹, Department of Chemistry², University of Tennessee Knoxville, Knoxville, TN

Work Flow

Conclusion

- The metabolite profiles of CB-D and CB-A differ throughout growth curve.
- CB-D cells are larger than CB-A cells.
- Evidence suggests CB-A has a higher rate of spontaneous prophage induction than CB-D at different stages of growth.

Future Directions

- Future research will include repeated procedures for the two strains in cultures supplemented with 10mM acetate to further identify any differences in physiology depending upon culture conditions.
- Further studies will also look to determine viral burst size for both phages under basal media conditions as well as complex media conditions through a one-step growth curve. Acknowledgments

This research was supported by NSF grant award #OCE-1736237. We thank Benjamin Calfee for flow cytometry expertise.

Citations

- Ankrah, Nana Yaw D et al. "Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition." The ISME journal vol. 8,5 (2013): 1089-100. doi:10.1038/ismej.2013.216
- 2. Wilson, William H., and Nicholas H. Mann. "Lysogenic and lytic viral production in marine
- microbial communities." Aquatic Microbial Ecology 13.1 (1997): 95-100. 3. Nanda, Arun M., Kai Thormann, and Julia Frunzke. "Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions." Journal of bacteriology 197.3 (2015): 410-419.

