Elucidating Growth Coupling of Metabolites in E. coli and Characterizing Mo

Objective

<u>Project Goal</u>

- The goal of this project is to design a modular (chassis) cell that will increase efficiency of rapid engineering strain design.
- This can be accomplished in a design, build, test, & validation process

Introduction

Background Knowledge

•Metabolism is a systematic network of chemical reactions that drive the transformation of chemical energy to fuel cellular activity³

Figure 1: Metabolic Engineering⁶

Figure 2: Increased titer, yield, and productivity of desired metabolites

•This would result in optimal economic and sustainable practices of chemical production and synthesis.

Current Limitations

•The current limitation in industrializing biology is the amount of time needed to optimize the production pathways within cells for bulk chemical production.⁴

•Altering DNA elements in a piecewise fashion is a laborious process that the modular cell theory would resolve.²

- 1. The promoter
- 2. The terminator
- 3. The copy number
- 4. The origin of replication

Modularity & Chassis Cell Concept

•Modularity focuses on designing a cellular framework that is auxotrophic, meaning the cell cannot support cellular growth and long term function.³

•In theory, the modular cell can be coupled with an engineered production module

•This would enhance the production of a target compound and balance redox reactions and metabolic byproducts during the growth of the cell.³

Preston Nicely^a, Hyeongmin Seo^a, Dr. Cong Trinh^a ^a The University of Tennessee, Knoxville

odularity
1 + pHS0238: Growth product synthesis
Growth (Biomass) Products
er alcohols L21 which /els.
Isolate Optimal odular Cell
ere exists a baseline ellular processes and
universal and robust.
osta, M., Camattari, A., tivity of Pichia pastoris: A
Construction of a minimal <i>hemistry</i> , <i>60</i> (4), 337–346.
for rapid, efficient strain <i>pinion in Chemical</i> 016.07.005 2018). A Prototype for Modular
//doi.org/10.1021/acssyn
rproduction is feasible for <i>Nature Communications</i> , 8,
gh Metabolic Engineering. cience.1193990
ts
Fellow, Department of Mentor)