Elucidating Growth Coupling of Metabolites in *E. coli* and Characterizing Modularity

Preston Nicely, Hyeongmin Seo, Dr. Cong Trinh

a The University of Tennessee, Knoxville

Objective

Project Goal
- The goal of this project is to design a modular (chassis) cell that will increase efficiency of rapid engineering strain design.
- This can be accomplished in a design, build, test, & validation process.

Background Knowledge
- Metabolism is a systematic network of chemical reactions that drive the transformation of chemical energy to fuel cellular activity.

- This would result in optimal economic and sustainable practices of chemical production and synthesis.

Current Limitations
- The current limitation in industrializing biology is the amount of time needed to optimize the production pathways within cells for bulk chemical production.
- Altering DNA elements in a piecewise fashion is a laborious process that the modular cell theory would resolve.

Modularity & Chassis Cell Concept
- Modularity focuses on designing a cellular framework that is auxotrophic, meaning the cell cannot support cellular growth and long term function.
- In theory, the modular cell can be coupled with an engineered production module.

Methodology

Introduction

Methodology
- Step 1: Design
 - ModCell2 & Multiobjective Strain Design
 - Metabolic flux calculations predict production module products
 - PLacO1 promoter has universal properties in *E. coli*
- Step 2: Build
 - Lactate Construct
- Step 3: Validate
 - Hypothesis: Optimal modular cells will grow the fastest
 - The growth of cells will be measured using a spectrophotometer to record the turbidity of the culture
 - HPLC will be used to measure the yield, productivity and titer of the product.
- Step 4: Test
 - Isolate optimal cell strain via serial inoculation

Results

Discussion

Implications of Experiment Design
- K12: Growth possible without Product Synthesis
- EcoHSCT0401 + pHS0238: Growth coupled with product synthesis

Future Directions
- Focus on growth coupling of higher order alcohols like isobutanol and butanol
- Investigate other competent cells like BL21 which are engineered for better expression levels.

Conclusion
- Demonstrating modularity insinuates that there exists a baseline cellular framework from which all types of cellular processes and chemicals can be produced.
- This would make chemical synthesis more universal and robust.

References

Acknowledgements

Dr. Cong Trinh (Associate Professor, Ferguson Faculty Fellow, Department of Chemical and Biomolecular Engineering)

Hyeongmin Seo (3rd Year Graduate Student and Project Mentor)