Acute social defeat-induced neuroinflammation in the vmPFC of Syrian hamsters via microglial activation

Thomas T. Clarity, J. Alex Grizzell, Matthew A. Cooper

Department of Psychology and NeuroNET Research Center, The University of Tennessee

Introduction

- Psychological stress is known to increase neuroinflammation.
- Neuroinflammatory pathways are contributing factors to various stress-related psychopathologies.
- Exposure to chronic stress in rodents results in elevated markers of immune activity, such as activation of microglia, as measured by ionized calcium binding adaptor protein-1 (Iba-1) expression.
- There has been little research investigating the effects of acute social defeat stress on central immune activity.
- Acute stress can prime microglia to exhibit an enhanced proinflammatory response to a subsequent immune challenge (i.e. Lipopolysaccharide).
- The prefrontal cortex (PFC) is a critical brain region for coping with stress-related psychopathologies.
- Neuroinflammatory pathways are contributing factors to various stress-related psychopathologies.

Methods

Animals: Adult Male Syrian hamsters (*Mesocricetus auratus*)

Experiment 1:
- Social Defeat/No Stress
- LPS/Saline Injection
- Social Defeat
- Euthanasia & Perfusion

1. **Acute Social Defeat:** Subjects were exposed to three, 5-minute aggressive encounters in the home cage of three, separate, larger, aggressive hamsters. Encounters occurred at 5-minute intervals. Control animals were exposed to an empty aggressor’s cage.
2. **LPS Injection:** 24-hours following social defeat, the effects of stress-induced priming of microglia was assessed by exposure to an endotoxin immune challenge via intraperitoneal (i.p.) injection of 0, 20, 100, and 500 µg/kg lipopolysaccharide (LPS).
3. **Euthanasia:** 4-hours following LPS injection (Exp. 1) or 7 days following defeat (Exp. 2), hamsters were euthanized and transcardially perfused and brains extracted.
4. **Immunolabeling:** Microglial activation was measured by immunolabeling of **ionized calcium binding adaptor protein-1** (Iba-1) through immunohistochemistry in the prefrontal cortex (PFC) using Rabbit monoclonal anti-Iba-1 antibody (1:10,000; ab178846).

Figure 1

- No defeat & Saline
- Defeat & Saline
- No defeat & 20 µg/kg
- Defeat & 20 µg/kg
- No defeat & 100 µg/kg
- Defeat & 100 µg/kg
- No defeat & 500 µg/kg
- Defeat & 500 µg/kg

Experiment 2:
- Social Defeat/No Stress
- Euthanasia & Perfusion

1. **Acute Social Defeat:**
 - Subjects were exposed to three, 5-minute aggressive encounters in the home cage of three, separate, larger, aggressive hamsters. Encounters occurred at 5-minute intervals. Control animals were exposed to an empty aggressor’s cage.
2. **Euthanasia:**
 - 7 days following defeat

Figure 2

The morphological transformation that occurs in progressive activation states of microglia (Figure adapted from Hinwood et al., 2012).

Figure 3

- Iba-1 Immunoreactivity in Infralimbic Cortex
- Iba-1 Immunoreactivity in Prelimbic Cortex

- Microglial Morphology

- 7 Days After Stress (no injection)

Conclusions

- These findings indicate that acute social defeat primes microglial activity in the vmPFC following subsequent LPS exposure.
- Acute social defeat appears to “activate” microglia in the vmPFC, as indicated by increased Iba-1 expression and acute changes in morphology.
- Acute social defeat does not appear to contribute to an arrested hyper-ramified state, as discussed in Hinwood et al., 2012.

Discussion & Future Directions

- The greatest differences were observed at 20µg/kg, which may indicate a point at which a greater percentage of cells display hyper-ramification.
- The disparity between OD and morphology data at 20µg/kg may be due to low sample size (n=4/group); current efforts are increasing the power of these samples.
- Future work will still for phagocytic microglial activation state marker, CD68.
- Determine the effects of an antibiotic, minocycline, that selectively inactivates microglia on defeat-induced changes in behavior.

Acknowledgements and References

The authors would like to thank the Cooper Lab, the NeuroScience Associates (NSA), and Dr. Alex Osmand from UTK BCMB for assistance on this project. This project was made possible by the NIH R15 grant MH107007 and UTK student/faculty award. REFERENCES: 1. Frank et al., 2006; 2. Hinwood et al., 2012.