Synthesis and Characterization of A-site and B-site Disordered High-Entropy Perovskites

Quinton Wright¹, Brianna Musico¹, Veerle Keppens¹

¹Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996-1000, USA

Introduction

Entropy-stabilized oxides are a new class of ceramic material inspired by high-entropy alloys. In entropy-stabilized oxides, many metallic elements in approximately equal amounts occupy one lattice site. The large number of atom types present in the crystal results in a high degree of disorder in the material. The purpose of this study was to determine if a single-phase samples of two entropy-stabilized oxides could be successfully created through solid-state synthesis. The first of these materials - (Gd₀.₂La₀.₂Nd₀.₂Sm₀.₂Y₀.₂)MnO₃ - has 5 A-site elements creating a high degree of disorder. The second of these materials - La(Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)O₃ - has 5 B-site elements creating a high degree of disorder. Successful synthesis of these two oxides proves that both sites of the perovskite structure can be used to create high-entropy oxides.

Experimental

Perovskite samples were obtained using solid-state synthesis. Stoichiometric ratios of the appropriate metal oxide powders were combined, ball milled for 30 minutes, pressed into 1/2" pellets, calcined at 950°C for 10 hours, reground, repressed, and then sintered at 1250°C for 10 hrs. The resultant pellet was ground into a powder and characterized using x-ray diffraction and scanning electron microscopy.

Results

X-ray diffraction and scanning electron microscopy confirm that single-phase samples of both perovskites were successfully synthesized through the method of solid state synthesis. The XRD scan of the sintered (Gd₀.₂La₀.₂Nd₀.₂Sm₀.₂Y₀.₂)MnO₃ shows that it is forming a single-phase orthorhombic perovskite crystal structure similar to GdMnO₃. The XRD scan of the sintered La(Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)O₃ is very similar to the XRD scan of the same material that appeared in the Sakar et al paper [3]. These results prove that a high-entropy perovskite can be successfully synthesized by creating disorder on either the A-site or B-site.

Conclusion

Future research should investigate the properties of these new materials in order to determine potential applications. Future research within the Keppens group will attempt to determine if these perovskites have desirable properties for dielectric applications.

Acknowledgements:

Quinton would like to acknowledge the support of the Center for Materials Processing, a Tennessee Higher Education Commission (THEC) supported Accomplished Center of Excellence.

References:

High entropy oxides: An emerging prospect for magnetic rare earth - transition metal perovskites

Crystal growth and magnetic property of orthorhombic R Mn O₃ (R = Sm - Ho) perovskites by mild hydrothermal synthesis

Rare earth and transition metal based entropy stabilized perovskite type oxides