People are drawn to places of safety, familiarity and stability – places they call home. The built environment then becomes a visible measurement of the security of a community: if structures are intact, so are the people housed within them. Yet each year with increasing intensity and frequency, natural disasters are wrecking buildings and communities all over the globe. The unstoppable force of a natural disaster remains undetectable and unpredictable, even with scientific experts employing the most technologically advanced monitoring systems.

Due to its diverse landscapes and amount of coastal territory, the United States consistently suffers from natural disasters. According to data from the National Oceanic and Atmospheric Administration, 2017 endured the most massive natural disasters (in terms of cost, fatalities, and climatic measurements) than any year prior, indicating escalation rather than stagnation of annual disaster occurrences.

So what role does architecture play in this intersection of natural processes and the urban environment?

Located in the Cascadia subduction zone, Seattle, Washington, is “due” for a massive (8.0—9.0 magnitude or higher) earthquake, followed by a tsunami that could inundate coastal areas under 5 meters of water. According to this catastrophe, the City of Seattle is an urban environment under the threat of the “really big” quake and killer wave. Fantastical responses to this disaster operate within architectural timestamps; and the surface, underground and off-shore ecologies of Seattle.

In order to grasp the destructive path of this lethal quake and inundation, what architectural processes can tap into the path of this lethal quake and inundation to protect and guide Seattle’s urban population? In what ways can light as an architectural tactic become a beacon of safety, an indicator of relief, a sign of remediation in the shadow of disaster?

This thesis intends to cross multiple scales of design to create visions of future fictions that could soon resemble future realities.