Laser Ablation Synthesis of Energetic Graphitic Coated Aluminum Nanoparticles

Camille Berigin\textsuperscript{1,2}, Seyyed Ali Davari\textsuperscript{1,2}, Jennifer L. Gottfried\textsuperscript{3}, and Dibyendu Mukherjee\textsuperscript{1,2} \textsuperscript{1}Department of Mechanical, Aerospace, & Biomedical Engineering, \textsuperscript{2}Nano-Biomaterials Laboratory for Energy, Energetics, & Environment (nbm-E\textsuperscript{3}), University of Tennessee, Knoxville. \textsuperscript{3}Lethality Division, Energetic Materials Science Branch, US Army Research Laboratory (ARL), Aberdeen Proving Ground, Aberdeen, MD.

Abstract

Nanomaterials have gained widespread attention from an array of scientists and engineers for their unique physical and chemical properties that are believed to be a product of their high surface area to volume ratios, thus making them favorable for a wide variety of engineering applications. Specifically, here aluminum (Al) nanoparticles (NPs) are investigated for their energetic behaviors suitable for solid-state propellants. However, it is challenging and unsafe to preserve pristine Al NPs without any unwanted surface oxidation in ambient conditions, which in turn passivates and retards their energetic activities. To address these challenges, this poster presents a research initiative in collaboration with the US Army Research Lab (ARL) to synthesize graphitic-coated Al NPs as alternative and enhanced energetic materials via laser ablation in organic solvents.

Introduction and Motivation

- AI has large enthalpy of combustion (\~1675 kJ/mol for bulk; \~2324 kJ/mol for single atom) \rightarrow smaller sizes equals more energy
- A facile technique is proposed to synthesize AI NPs encapsulated in graphitic shells to prevent any unwanted surface oxidation.
- Laser ablation synthesis in solution (LASSIS) offers a green, facile, and inexpensive way to synthesize these graphitic-Al shell-core NPs while offering a way to manipulate desired NP characteristics such as composition and size distribution.
- It was hypothesized that the carbon coatings would not only protect the AI NPs from surface oxidation but also enhance performance in such ways that it would retard the particle aggregation rates and allow for fine-tuning of energetic behaviors.

LASSIS Setup

\begin{itemize}
  \item 1064 nm \rightarrow YAG pulsed laser
  \item 8 mL Acetone or Toluene
  \item AI target
\end{itemize}

Results

Effect of Solution

Scanning Transmission Electron Microscope (STEM) images of samples prepared in acetone (left) and toluene (right). Ablation occurred for 4 min at a laser fluence of 2.6 J/cm\textsuperscript{2}. Both show nanoparticles in a carbon matrix. The NPs in toluene appear to be larger than those in acetone.

Effect of Time

Particle size distributions for ablation in toluene for 2 min (top left), 4 min (top right), 6 min (bottom left), and 8 min (bottom right).

Effect of Laser Fluence

- Both show D- and G-band at \~1375 and 1585 cm\textsuperscript{-1} respectively
- High resolution TEM (HRTEM) showing the presence of graphitic coating.

Conclusion

- Particle size distributions for ablation in acetone (top) and toluene (bottom) for two different fluences.
- Increasing fluence decreases modal sizes and standard deviations.
- Higher vapor pressure of acetone (32 kPa) vs toluene (3.8 kPa) results in earlier solvent and carbon coating pyrolysis for acetone.

Acknowledgements

We acknowledge the US Army Research Lab’s External Collaborator Initiative (ECI) for the scientific support for this work. Camille Berigin was supported through Center for Materials Processing (CMP) and the RISER program for her work here.

References: