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ABSTRACT

A new integrated fault-tolerant control and diagnostics system was developed and

applied to the feedwater flow regulation system of a pressurized water reactor

(PWR). Control, signal and command validation, monitoring and diagnostic tasks

were integrated into one large-scale system.

The control module of the Fault-Tolerant Control and Diagnostics System (FCDS)

includes two nonlinear control algorithms, in addition to conventional controllers.

A software-based parallelism was implemented in the design of the control module.

The parallel control includes a model-based adaptive controller, two fuzzy logic con

trollers, and proportional-integral (PI) controller. Each algorithm was designed to

handle the same control task using different strategies and different sets of plant

measurements.

Using family of control solutions requires a systematic approach to select the most

suitable control action for the present demand. A new concept, called Command

Validation, was developed as part of the Fault-Tolerant Control and Diagnostics

System. Command vahdation is a prediction scheme in which the objective is to

provide an estimate of the expected control action using relevant plant variables.

The prediction is then used to cross-examine the output of the control algorithm

before the final decision is made by the Decision-Making module. This approach

enables the control system to detect anomalies in the sensors, actuators and in the

control actions.

A Signal Validation module was also developed for validating the plant measure

ments before they were utilized by the control algorithms. A software-based paral

lelism was also included in the signal validation and command validation modules

by incorporating two different modeling techniques: process empirical models and
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artificial neural network models. The estimations of selected plant signals were made

via a set of process measurements and the developed models.

The FCDS was tested using an application to the feedwater flow regulation sys

tem of a typical four-loop Westinghouse type PWR. In order to test the system, a

nonlinear feedwater flow system was modeled with 96 state equations. The model

includes four steam generators, two main feed pumps, piping and their control sys

tems. There are two control systems in the feedwater flow regulation of a PWR:

the steam generator water level controller and the main feed pump speed controller.

Both of these controllers were included in the model.

Reconstructive Inverse Dynamics (RID) and the Fuzzy Logic controllers were devel

oped for water level control and pump speed control systems. The RID controller

is a model-based controller and is found to be exceptionally accurate if the control

problem is of a trajectory-following type. The fuzzy logic controllers give excellent

results during unexpected changes in the behavior of the plant as well as during

trajectory-following problems. An extensive testing of the fuzzy logic controller was

performed to demonstrate the robustness of the fuzzy logic control approach, since

the application of this technique is considerably new in the nuclear industry. The

development of fuzzy logic controllers for such highly nonlinear systems was one of

the objectives of this dissertation.

The utilization of more than one algorithm not only improves the availability of

the control system during sensor failures or inadequacies in the control algorithms,

but also provides alternate approaches for different plant operating conditions. The

Fault-Tolerant Control and Diagnostics System improves the availability of the con

trol system and provides fault-tolerance through multiple control strategies and the

incorporation of signal and command validation features.
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Chapter 1

Introduction

The design of fault-tolerance has become an important requirement for power plant

control because of safety and availability considerations. Typical applications in the

process control industry employ redtmdant hardware for data acquisition and pro

cessing, in order to guarantee continued operation even in the presence of anomalies

in instrument channels.

Digital technology implementation issues axe being considered in the design of ad

vanced reactors, and in the recent upgrades in some of the existing nuclear power

plants such as TVA's Sequoyah Nuclear Plant [2]. Although a major benefit of dig

ital technology is its computational power and the capability to incorporate a large

number of algorithms, the current implementations mostly emulate the principles

of analog control and data processing methods. An objective of this dissertation is

to utilize the computational advantages of digital systems to develop fault-tolerant

control algorithms.

A number of new and advanced methods including inverse dynamics, fuzzy logic,

artificial neural networks, and expert systems were used in this research for the devel

opment of fault-tolerant control algorithms. The architecture, employing "Software



Fault-Tolerance" differs from the conventional philosophy by requiring nainimal

redundancy in the measurements.

The fault-tolerant control principle is implemented with parallel control and com

mand and signal validation functions. Parallel control includes a number of control

algorithms, each designed to accomplish the same control task using different sets

of plant signals. A family of control solutions is evaluated to select the best combi

nation of solutions as the final control action. Therefore, the development requires

the design of a family of controllers and a criterion for the final control selection.

Command validation is based on a prediction scheme. The objective is to esti

mate the expected control actions via process variables. The prediction is used to

cross-examine the control solutions. With this capability, the control system can

detect anomalies in sensors, actuators, and in the software platform [1].

The integration of the control design, signal and command validation, and mon

itoring and diagnostics into a large-scale system is the primary objective of this

dissertation. The use of signal and command vahdation modules with parallel con

trol architecture has shown the benefit of reducing system failures which arise due to

inadequacies in plant measurements. An effective signal validation module increases

the possibility of overcoming measurement problems in the control system, since the

signal vahdation module has the ability to estimate parameter values over a period

of time.

1.1 Importance of the Research

The purpose of this research is to develop a parallel, fault-tolerant control and diag

nostics system (FCDS) for enhancing nuclear reactor operations. The objective is

to combine monitoring and diagnostics tasks with control tasks so that the overall



control strategy and its implementation may be more effective. The interactions

between the diagnostics and control systems are automated while retaining a ca

pability for operator intervention at all times. The advanced methods used in this

study include artificial intelligence techniques such as neural networks and fuzzy

logic, signal processing techniques such as process empirical modeling, and nonhn-

eax control techniques such as inverse dynamics [16].

The existing digital systems in operating power plants do not fully utilize the ad

vanced methods in control, signal processing, and artificial intelligence. Most of the

existing automatic control systems lack a cross-talk feature with diagnostics sys

tems which may prevent plants from reaching an undesired condition; presently, the

coordination and supervision are generally handled by reactor operators [17]. One

important reason for not utihzing the advanced systems in existing power plants is

the "proven" old tedmology versus "unknown complexity" of new algorithms with a

potential of not being easily understood by the operators. The reliability of digital

software systems must also be tested extensively, before they can be implemented

in operating plants.

The research presented here demonstrates the feasibility of integrating two existing

tasks, signal validation and control, and a new concept - the command validation,

into one system. Signal validation is a proven useful tool that establishes a system

atic way to demonstrate the accuracy of sensor readings. The FCDS offers a signal

validation approach in which two different methodologies are utilized to overcome

their individual inadequacies. Cross-checked results of the signal validation schemes

provide better reliability for control input signals.

The FCDS houses two nonlinear control algorithms, in addition to the conven

tional proportional-integral (PI) control system. One of the nonlinear algorithms



is a model-based adaptive controller which gives excellent results for trajectory fol

lowing problems. The second nonlinear control algorithm is based on fuzzy logic,

and gives exceptionally accurate results during unexpected behavior of the process.

The control module of the FCDS utilizes these nonlinear algorithms to offer a better

control system for the feedwater flow regulation of a pressurized water reactor. The

parallel design of the control algorithms is an enhancement to the existing control

systems and provides an alternative solution in the event of controller failure. The

inverse djmamics controller is foimd to be excellent for trajectory following prob

lems, and the fuzzy logic controller is foimd to be very robust during transients for

which the current control systems fail to give accmate results. The use of multiple

control algorithms not only improves the availabihty of the control system in the

event of a sensor failure or a controller failure, but also provides alternate control

strategies which may be utilized during different operating conditions.

The command validation is the third module of the FCDS. It is a new valida

tion scheme that checks the quality of the control solutions and ensures the validity

of the final control action. A decision making procedure is paxt of the conunand

validation module. Decision making is used to select the best control signal based

on the availability and accuracy of the control input and output signals. The com

mand validation module includes another module called Decision Making where

the selection of the most suitable controller is made. The selection of the controller

is based on the availability and accuracy of the controller signals. Some controllers

may be more suitable for different operating regimes. Simulation tests have shown

that the Reconstructive Inverse Dynamics (RID) controller is a better controller for

trajectory following and steady-state operations. Based on this a priori knowledge,

the decision making module selects the RID controller (unless there is an inaccurate

control input signal) to complete the operation. The fuzzy logic controller is found

to be more suitable during transients where the system model does not give good



estimations about the status of the plant. Since fuzzy logic does not rely on a model-

based information, the control action produced by the fuzzy logic controller is more

accurate during transients for which the system dynamics may contain uncertainties.

Figure 1.1 gives the overall structure of the FCDS.

1.2 Statement of the Problem

In this dissertation, the apphcation of the Fault-Tolerant Control and Diagnostics

System is demonstrated for the regulation of the feedwater system in pressurized

water reactors (PWRs). The speed control problem in turbine-driven pumps is re

lated to the regulation of pressure difference (AP) across the feedwater valve around

set points during feedwater maneuvers. The present speed and level controllers in

PWRs do not include a direct communication between the two control systems: the

three-element level control and the AP control. The lack of communication between

these two controllers [2] [34] may be resolved by utilizing different control strategies

for the level and speed control systems of pressurized water reactors. The inverse

dynamics controller and the fuzzy logic controller developed for the feedwater regu

lation system include feedforward measurements of the feedwater flow rate and the

pump speed signals. A common reactor trip occurs during a plant startup when the

feedwater flow is being switched from the main feedwater bypass control valves to

the main feedwater control valves. During the switchover, an uncontrollable swing

caused by improper measurements in the steam generator level results in a reactor

trip at low levels [2].

Another good example is the problem of oscillations in the steam generator wa

ter level. In the case of a higher feedwater demand the three-element controller tries

to open the feedwater valve. Since there is a long time constant (some about 30 min

utes [33]) in the existing proportional-integral (PI) controllers, this demand is not
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satisfied immediately. At the time the (AP) controller realizes that more feedwater

is needed, the three-element controller again changes the position of the feedwater

valve in order to maintain the water level at a desired value. The new change does

not affect the (AP) controller command and the (AP) controller tries to meet the

higher water demand for the steam generator. Sometimes similar actions create ma

jor swings in each steam generator, and the operators switch the control systems to

manual mode so that the problem can be solved without shutting down the plant [2].

A wide range of sensor/signal validation, diagnostics, monitoring, and control ap

plications for large scale, complex systems is found in the literature [61] [43] [41]

[40] [39] [38]. In most cases these tasks are performed individually. Recently, a few
studies have tried to combine several of these tasks into one system, such as the

combination of validation and monitoring functions for large scale systems [43] [40].

A common objective of these studies is to "simplify" the operation of industrial

processes; another objective is to reduce system failures or process discontinuities

due to sensor failure or invalid control actions.

This dissertation research involves the development and evaluation of a system which

integrates sensor/signal validation, diagnostics, and most importantly the control

schemes into one. In addition to these tasks, it also provides "command validation",

which validates the control actions based on the observation of state variables. A

new, software-based, parallel control strategy design is part of the research. Inte

grating these tasks will significantly reduce the system failures due to missing signals

or invalid control actions.



1.3 Contributions of the Dissertation Research

Traditionally, a process control task is performed with one software system or one

hardware system. Studies in which hardware redundancies were introduced in signal

measurements and especially in control systems were reported recently [43] [46].

These redimdant systems receive identical signals and use identical strategies to

perform their tasks. In addition to hardware redundancy, the FCDS offers software

redundancy iot sensor/signal validation, command validation, and most importantly

for the control task. Thus the FCDS may be referred to as a "smart" controller.

The contributions of this research include the following.

1. Development of a software-based parallel control system.

2. Development of a nonlinear four-loop PWR feedwater flow regulation system

model, including four steam generators, two main feed steam turbine driven

pumps, and their controllers.

3. Development of model-based adaptive control, and fuzzy logic control for

steam generator water level and (AP) controllers, in addition to the exist

ing PI controllers.

4. A detailed testing of the fuzzy logic control for its robustness.

5. Development of signal vahdation models for selected parameters of the feed-

water flow regulation system.

6. Development of command validation models for feedwater valve and turbine

governor valve positions.

7. Implementation of an expert system-based decision making module for choos

ing an appropriate control input to the actuators.



8. Integration of the control, signal/sensor validation, command validation and

decision making modules into one large system.

9. Development of a workstation-based graphical user interface.

10. Application of the FCDS to the secondary side of a four-loop PWR.

1.4 Organization of the Dissertation

A literature review and background of advanced control systems for power plants,

monitoring and diagnostics, artificial intelligence and fault-tolerant control systems

are given in Chapter 2. In Chapter 3, the feedwater flow regulation system of a pres

surized water reactor (PWR) and modehng of the U-tube steam generator, main

feed pump, feedwater control and main feed pump speed control systems are pre

sented.

Chapter 4 gives a detailed description of the new Fault-Tolerant Control and Diag

nostics System (FCDS). This chapter discusses each of the module and the devel

opment of models for signal and command validation.

Chapter 5 is dedicated to the control modules of the FCDS. The development of the

control algorithms, and the theory of fuzzy logic control are discussed in this chapter.

Analysis of the integrated control system, apphcations to the feedwater flow regula

tion system and performance testing of the fuzzy logic controller axe given in Chap

ter 6. The results obtained from signal validation, command validation, decision-

making and parallel control systems are also presented in this chapter. A summary

of the dissertation is presented in Chapter 7, including conclusions and suggestions

for future research.



Chapter 2

Literature Review and

Background

A review of the literatiire, related to feedwater regulation systems, monitoring and

diagnostics, artificial intelligence, and fault-tolerant control systems is presented in

this chapter. The purpose of this discussion is to present the current status of the

topics of interest. Although most of the operating power plants utilize similar con

trol techniques, namely the PID controllers in their feedwater regulation systems, a

number of studies have been conducted to try to improve the current systems and

minimize plant trips [42] [55] [46]. Along with the feedwater flow regulation system

studies, there is also a number of studies related to diagnostics and monitoring sys

tems in power plant operations [41] [40] [43].

Apphed artificial intelhgence methodologies are being increasingly used for con

trol, monitoring and diagnostics. There axe studies involving on-line monitoring

systems using artificial neural networks in power plants. There is also an ongoing

research using artificial intelligence (AI) for developing control systems for feedwater

flow regulation and reactor power control for nuclear power plants. The following

sections discuss these topics and give an overview of the approaches used.
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2.1 Advanced Control Systems for Power Plants

Recent emphasis on nucleax plant surveillance and control suggests that future power

plants would require fault-tolerant control strategies that can cope with varying

plant conditions and instrumentation malfunctions. There are two important rea

sons for this trend from the nuclear power generation point of view: safety and

availability. New "passive" reactor designs such as the PIUS, the simplified BWR

[14], and the IFR [15], and the AP-600 PWR have introduced a significant margin

of improvement in reactor safety. These designs have inherent capabilities for safe

shut down under adverse operational problems. In addition, the design of emergency

shut down and plant protection systems has been improved to handle a wide range

of problems. These advances have shghtly shifted the objective of reactor control

design from primarily assuring safe operation, to avoiding plant operation close to

trip conditions. Accordingly, if undesired regimes can be avoided by control, both

safety and availability requirements are satisfied.

The identification of an abnormal status of components and inappropriate con

trol strategies can prevent a plant from drifting into the vicinity of trip conditions.

This constitutes a challenging diagnostics task which undoubtedly requires on-line

computational capabihty for handling numerous sensor readings, extracting useful

information, and providing decision aids to operators. An accurate diagnosis is only

part of the solution to the trip avoidance problem. A control decision based on

diagnostics results is required to maneuver around the problems. The trend in the

integration of diagnosis and control may be seen in the form of computer-controlled

design in western Europe, Japan and Canada [3] [38] [40] [61].

The current modular power plant designs do not incorporate a fully automated

startup control strategy. Automatic load-following control systems are being de
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signed for pressurized water reactor (PWR) plants by Mitsubishi Atomic Power

Industries [3] in Japan. The primary objective here is to control core axial power

distribution using load-following control rods. Automation in the Canadian heavy

water reactors (CANDU) is the most advanced in the industry [43]. The goal is to

achieve 100 % digital control and protection in the new plants, such as the Darling

ton units of Ontario Hydro.

The CANDU reactors were the first systems that incorporate digital technology.

In the most recent Canadian reaotor designs, the Darlington plant, nearly 100%

of the reactor and process control is digital. In the early 1980's CANDU reactor

designers implemented the trip decision logic for the process trip in the CANDU 600

design. Darlington units, which have been on-line since 1990, have 100 % digital

control systems. The centralized dual process controller is implemented in the Dar

lington plant. One of the two control systems is on-hne during the entire process.

Both of these controllers have their own databases and do not utilize each other's

information in case of an anomaly. If any failure or abnormality is detected in the

control system, the second system would be activated for on-line operation.

The switching is done simply by a fast reacting electronic component. Since both the

systems utilize identical control strategies, and use the same signals for producing

the control signals for the entire plant, a simple switching system seems feasible for

the CANDU reactors [35]. CANDU reactors are designed with a number of systems

to shut down the reactor, to maintain cooling, and other functions. Each reactor

has two shutdown systems (called SDS-1 and SDS-2) to increase the reliability of

the overall system. Every system is independent of the other, each utihzes different

sensors, logic, devices, and more importantly they are physically separated. Both

of the shut down systems are completely independent of the plant control systems.

12



An advanced feedwater flow regulation systems has been developed for the Fu-

gen Nuclear Power Station in Japan. The system utilizes fuzzy logic for the steam

drum water level control. The first stage of the study was simulation and the sec

ond stage was development of the prototype system for an on-line support system.

Validation tests were performed in 1989 and the fuzzy logic control system for the

steam drum level control was implemented in the Fugen Nuclear Reactor in July

1992. In Fugen Reactor, a three-element PI controller is used for the water level

control in the power range between 10 % and 100 %. The control system is taken

over by a single-element PI controller in the lower power range. Since the lower

flow rate valve cannot cope with the rapid changes in the reactor output, sometimes

Tpanna.1 operation is necessary for a faster adjustment of the steam generator wa

ter level. During these manual operations, feedwater flow rate and steam flow rate

measurements are diflBcult to perform since they are too small to sense accurately.

Therefore, a corrective action for valve openings was introduced by the operators

based upon their personal experiences. Since fuzzy logic can easily formulate these

qualitative features and the subtle human reactions into the control rules, a fuzzy

logic control system for the feedwater flow regulation was developed by the Power

Reactor and Fuel Development Corporation (PNC) [55].

An advanced digital feedwater control system was introduced at the Commonwealth

Edison Company's (CECo) LaSalle County Nuclear Station. Numerous feedwater

control system hardware failures occurred during the operation, resulting in many

high reactor water level feed pump trips and plant scrams [42]. The digital control

system was designed to recognize failed sensor inputs, control elements, and take

automatic actions to prevent the feedwater system from water level transients. This

system replaces the analog feedwater level control system and the turbine speed con

trol system. The new system is expected not to allow more than one plant scram

in 10 years of operation. Three different narrow range sensors axe used in the water
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level control system, and two-out-of-three trip logic for the feed pumps and the main

turbine control is used at the LaSalle County Nuclear Station.

2.2 Monitoring and Diagnostics

In the CANDU reactors, control and monitoring axe combined into one system so

that the duty of the operators can be eased in case of an anomaly. The MONITOR

computer in the shut down systems performs different identification and communi

cation functions related to monitoring. A safety system monitor computer acquires

data, alarm messages and test results at the Darhngton plant. The basic function

of this computer is the storage of historical data. There is only one computer for

this monitoring unit.

Two computers coUect most of the plant data for the distributed control system

(DCS) and the CANDU plant display system (PDS). The information from the

safety system monitor (SSM) is sent to two operator workstations. Data acquisi

tion and process control functions for the non-safety systems axe performed by an

advanced distributed digital control system. The system controls low-level and in

terlocking functions for individual process devices such as pumps, valves, and others.

High-level control functions, steam generator level control, system pressure control,

inventory control, and others are also performed by the same system. Automatic

and manual mode changes, set point changes, and control actions in response to

operator commands axe within the scope of this control system.

Many utilities have developed advanced monitoring systems for their power plants.

Florida Power & Light (FPL) has developed an on-line monitoring system to im

prove their current system. FPL's new performance monitoring system is expected

to offer reduction in fuel consumption to generate the same capacity, improve their

current data collection and archiving system to reduce operator errors, offer en-

14



hancement to their maintenance program, and others [67].

PC-based operator interface systems for plant-wide monitoring are being introduced

to power stations by many different agencies to improve operations and to reduce

plant trips. Some features of these systems axe performance analysis for feedwater

heaters and condensers, heat rate monitoring, equipment performance monitoring,

core monitoring, and safety parameter display [40] [41].

2.3 Artificial Intelligence

Artificial intelligence has become one of the most-utilized methods for monitoring,

diagnostics and control. Artificial intelligence includes Expert Systems (ES), Arti

ficial Neural Networks (ANN), and Fuzzy Logic (FL) as major branches. Expert

systems have been used in many different areas, including the nuclear industry for

many years. Recently, a better understanding of new neural network paradigms

and more powerful computers has lead to the utilization of neiiral network modeling

in the areas of vahdation, monitoring, diagnostics, and control. The apphcabihty

of neural networks in the nuclear industry for monitoring and validation has been

demonstrated in a niimber of studies [36] [49].

2.3.1 Neural Networks

For effective control strategies in many process industry systems, it is necessary

to perform validation and monitoring of important variables. Early apphcations of

validation and diagnostics systems utilized model-based tedmiques where polyno

mial fits were used to capture the relationships among the variables. The Kalman

filtering technique uses a physical model of the system for state estimation. A new

approach, artificial neural network modeling, has broadened the capabilities of val

idation, monitoring, and diagnostics systems even further. This approach provides

an opportunity to develop a nonlinear model between the related parameters.
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Artificial neiiral networks are models inspired by the architecture of the human

brain. A neural network consists of a large number of highly interconnected pro

cessing elements (PEs). A PE, analogous to a neuron, has a nximber of input paths.

It combines the values of the weighted inputs, modifies the combination with a

transfer function, and produces an output. In an artificial neural network, the pro

cessing elements axe organized in a sequence of layers.

The generation of an accurate model, using model-based techniques, requires an

effort which is proportional to the size of the complexity of the system. Neural

networks offer several advantages for signal validation, monitoring, and diagnostics

when compared to traditional techniques [7].

1. It is not required to define a functional form to relate a set of process

variables.

2. The functional form developed by an Artificial Neural Network (ANN) is

implicitly nonlinear.

3. Neural networks do not require detailed system specifications.

4. Neural networks axe more fault-tolerant in the presence of anomalies.

Neural networks are intrinsically parallel and non-algorithmic methods. These fea

tures of neural networks make real-time processing of data and information more

feasible. Some of the current applications include nuclear fuel management, multi-

sensor information fusion, sensor validation, diagnostics, and pattern recognition

[49].

Although, today's computers axe still not as fast as one would like them to be,

artificial neural networks provide fast responses or solutions to complex problems
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such as plant-wide monitoring or model-based sensor/actuator validation. They are

easy to implement and they can be used as real-time failure detection tools due to

their inherently robust and parallel computational architecture.

2.3.2 Fuzzy Logic

Although fuzzy logic has gained most of its recognition recently, fuzzy set theory

was established by Zadeh [11] as the "dialectical synthesis of continuously graded

degree of membership to a set" in the year, 1965. The mathematical foundations of

the fuzzy set theory can be seen as the generalized form of the classical set theory.

The fuzzy logic theory was essentially introduced by Zadeh to describe the systems

that are "too complex or too ill-defined to admit precise mathematical analysis."

The major characteristics of fuzzy logic are the use of linguistic rather than numeri

cal variables and establishing the relationships among variables by fuzzy conditional

statements.

Fuzzy set theory offers major advantages compared to the crisp theory of numbers.

No artificial precision is needed to avoid the borderline problems. For example, it

is not necessary to define the concept of "tall" as a person whose height is greater

than 1.834523 m. In other words there is no need for cleax-cut distinction between

the borderhnes. Fuzzy logic enables us to define relationships that we use during

our daily fives. The definition of a "tall person" can change from person to person,

from region to region.

In process control, the main difference between the fuzzy logic approach and the

traditional techniques is that the former uses qualitative information whereas the

latter require rigid mathematical relationships to describe the process. Control ac

tion in a rule-based system is performed by first measuring the relevant paxameters

and then defining their membership grades in the appropriate subsets.
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2.3.3 Expert Systems

Expert systems axe computer programs designed to "mimic human expertise." Ex

pert system programs are used to solve a well-defined problem by utilizing the hximan

expertise in the related area. Uhrig [73] [72] lists a number of advantages of expert

systems. Some of the advantages are

• Experts do not have to be present for a possible consultation. Expert systems

may be dehvered to other locations where needed.

• Expert systems do not get tired or careless if they are utilized for long hours.

• They are more efficient in terms of searching larger data bases or finding out

more appropriate data bases.

Like many other systems, expert systems also have some serious disadvantages.

• Experts systems mostly handle static situations.

• They must be updated as more information becomes available.

• Results are highly dependent on the accuracy of the collected knowledge base.

• Expert systems are hmited to their domain of expertise, and in many cases

they are unable to detect the limitations of their domain [73] [72].

The main components of an expert system are the inference engine, and the inter

face between the expert system and the users. The inference engine collects the

information from the human expert and/or from a data base, and leads a search

after which a conclusion is drawn.

Although there is a vast number of expert systems available in different areas in

cluding power plant operations and control [74] [71], only a few expert systems

interact with plant operators or provide information in the control rooms. Decision
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support systems, diagnostics systems, training programs, monitoring, maintenance,

and advisory systems are some of the available expert systems in industry. Real-time

applicability is one of the appealing features of the expert systems to the nuclear

industry [71]. Another feature of expert systems which captures the attention of the

nuclear industry is that the capabihty of providing an explanation of the conclusion

reached by the system, and the ease of updating the knowledge base.

Artificial intelligence (AI) technology is still a growing and maturing area. Al

though they are not routinely used in many areas of the industry, especially in the

nuclear industry, there is a growing trend towards understanding the capabilities of

these relatively new techniques: artificial neural networks, fuzzy logic, and experts

systems. These systems may eventually become a part of the "critical" tools in most

areas of the industry.

2.4 Fault-Tolerant Control Systems

Control systems which retain acceptable performance in the presence of failures are

said to be "robust" systems. Reconfigurable systems are those control systems in

which the original structure or some of the parameters may be altered in response

to a system failure which is identified by that control system. If a system is fault-

tolerant due to its reconfigurability, it is adaptive and redundant. It is redundant

since the system can overcome the existing problems with its remaining resources,

it is adaptive because it can adjust to those new states [47] [61].

The major expected enhancement of fault tolerance is the improvement of system

reliability, availability, and survivability. Reliability of a system is the ability of that

system to perform or complete its task at a given time in its operation. A control

system that helps to complete the normal task of a plant after a component failure

or system failure, improves the reliability of that system. Survivability is mainly
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the concern for a system to operate within the design safety limits without creating

any danger to the environment, and especially to human lives. Lower performance

due to a component failure or a control system failure is acceptable as long as the

system or the plant is brought back to its normal operational state [47] [61].

In principle, control system failures can be minimized if two or more sensors, actua

tors, or computers are used for controlling a complex system, provided each of them

is able to control that system individually. A voting system is used in dijfferent con

trol systems such as in aerospace, power plant, and process industries. For example,

a two-channel system is considered "fail-safe", since failures can be detected. The

weah point of two-channel systems is that, identifying the failed system is left to a

built-in logic. The three-channel systems are called "fail-operational" since the task

of the system can be completed after a single failure. Systems with four-channels

are called "fail-op/fail-op" since two failures can be overcome by the system and yet

the overall system will still be operating normally within its nominal performance

[47].

Detection and isolation of faults usually can be achieved by using built-in test sys

tems. A practical solution to this problem can be found, within the abihty of control

computers to compare the expected response to the actual response. Failure identi

fication for sensors and actuators usually require sophisticated tests that are costly

and time consuming.
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Chapter 3

Feedwater Flow Regulation
System of a PWR

3.1 Introduction

In order to understand and develop an eflFective control system for a plant subsys

tem, one needs a detailed model. For example, such a model may be used to study

the thermodynamic behavior of the balance-of-plant. The secondary side of a Pres

surized Water Reactor (PWR) was modeled with emphasis on the U-tube steam

generator. The model could be further developed if necessary, by including the

condenser, main turbine, drain tanks, feedwater heaters, and the reactor core. The

present simulation code combines four U-tube steam generators, two turbine driven

main feedwater pumps, piping, and their controllers. A conventional three-element

PID controller is used for regulating the water level in each steam generator. An

adaptive controller, using the Reconstructive Inverse Dynamics (RID) algorithm,

and a Fuzzy Logic controller were also developed for this system.

U-tube steam generator and turbine driven main feedwater pump models are pre

sented in some detail. The design of a control strategy for a turbine-driven main

feedwater pump for an operating nuclear power plant was undertaken as part of the

Fault-Tolerant Control and Diagnostics System (FCDS) development. This research
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task is important in contributing to the improved transient performance that com

bines steam generator level control and main feedwater valve diflFerential pressure

regulation.

The control problem in turbine-driven feedwater pumps is related to the regtila-

tion of pressure difference (AP) across the feedwater valve around set points during

feedwater maneuvers. In the conventional strategy, the feedwater valve position is

adjusted to satisfy a feedwater demand whereas the turbine valve position is ad

justed to maintain the AP close to its set point.

In order to offer a better solution for the problem, it is necessary to simulate the

existing control system of an operating nuclear power plant. A computer code was

developed and used to simulate the dynamics of the steam generator and the feed-

water system. The code consists of models for a U-tube steam generator, main

feedwater pump turbine, feedwater pump, and their related control and bypass

valves.

Although the development of the code was carried out on a SUN Sparc worksta

tion, the code is completely system independent (except the graphical user interface,

GUI) so that it could be executed in personal computers as well as workstations.

There are two controllers involved in adjusting the valve positions:

1. Three-element controller for feedwater valve actuation.

2. Turbine governor valve control to adjust the speed of the turbine driven

pump.

The existing controllers in most of the plants are based on analog technology and

do not include direct communication between the two control systems. During some
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steam generator transients where a rapid change in feedwater flow is required for

level control, these control systems may go out of phase due to the sluggish behavior

of the turbine controller. Thus, a major improvement in feedwater operations re

quires a couphng between the turbine valve control system and the feedwater/steam

generator system to improve the turbine speed adjustment.

The solution to this control problem includes the utilization of more process vaxi-

ables as the input to the turbine valve control system in a feedforward fashion,

and/or utilizing different algorithms with different strategies. A number of control

algorithms (including PID, fuzzy logic, inverse dynamics) were developed to solve

this problem within a fault-tolerant architecture. Although fuzzy logic and inverse

dynamics controllers use signals similar those used in the current FID controllers.

Since their strategy is different than the PID, an improvement in the feedwater flow

regulation is expected. The water level signal, feedwater flow, and pump speed

signals are included as a feedforward control input signals in the development of

fuzzy logic and inverse dynamics controllers to overcome the lacking communication

between the AP controller and feedwater valve controller.

An operating four-loop PWR's current three-element PID controller and turbine

governor valve PID controller are duplicated in the model. Controller gains and

time constants match closely those used in the plant controllers. The primary goal

is to develop a system model whose overall behavior is similar to that subsystem of

the actual plant. These PID controllers in the simulation use the same form of input

signals as those used in plant actuators. The controller generates actuation signals

in milliamps (mA) current units. Since the final goal is to have a parallel fault-

tolerant control system, adaptive controllers for both the steam generator water

level and turbine governor valve controllers were developed. The second controller.

Reconstructive Inverse Dynamics (RID), has a faster response compared to the PID
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controller. This faster response comes from its adaptive nature. The RID controller

is a model based controller, and essentially follows the plant dynamics; possible

changes that might occur within the plant is directly reflected to the RID controller

since the inverse dynamics behavior of the plant is the driving force of the RID

controller. The adaptive nature of the RID controller comes from its model-based

inverse dynamics feature. A constraint on the rate of change of actuator response

can be imposed to match the real system response.

The third controller is the fuzzy logic controller. Two different controllers were

developed using the fuzzy logic approach. First controller uses inputs similar to

those used in the current PID controller of the plant, namely, level error and flow

mismatch. The second approach is an alternative to the existing control system.

Level error and the change in level error are the only two inputs to the fuzzy logic

controller. The comparison of simulation test results are discussed in the following

Chapter.

3.2 Steam Generator System Modeling

A typical U-tube steam generator was modeled for simulation studies. This model is

particularly developed for an operating typical four-loop Westinghouse PWR. The

primary coolant enters the steam generator through an inlet nozzle at the bottom

of the inlet planum. The coolant flows inside the U-tubes first upward and then

downward, and transfers heat to the secondary fluid in the shell side of the steam

generator. The primary fluid leaves the outlet plenum through an outlet nozzle into

the cold leg piping.

Feedwater enters the downcomer shell at a level just above the U-tube region. It

flows down through an annulus inside the shell and mixes with water coming from
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the drum section. The water enters the tube bundle region where heat is transferred

to the fluid. As it flows over the outside of the U-tubes, a mixture of steam and

water is formed. The mixture enters the riser region where the nozzle effect increases

the natural driving force. As the flow passes through the steam separator region,

water is separated from the steam and returned to the drum section [30]. Figure 3.1

gives a typical U-tube steam generator.

3.2.1 Steam Generator Model

The steam generator is one of the most important components of a PWR system.

It provides a dynamic link between the reactor and turbine-generator systems. It is

necessaxy to understand and model the steam generator to further analyze the PWR

systems. There axe many different studies performed for the U-tube steam generator,

(UTSG), itself and for the PWR systems as a whole [30] [31] [32]. Almost all the

models use lumped paxameter formulation. In this study four steam generators,

two main feedwater pumps and internal piping, and valves have been included. The

theoretical simulation is based on the conservation equations (mass, energy, and

momentum) [30]. The following assumptions are made for the derivations of the

model equations:

• Both water and steam are considered to be saturated.

• Density and specific heat of the feedwater, subcooled region, and the primary

side axe assumed to be constant.

• Heat transfer coefficients axe constant.

• Steam leaving the UTSG is assumed to be 100 % saturated.

• Heat transfer between the downcomer and the tube bundle regions is negligible.

The thermodynamic properties of the saturated water and steam axe assumed to

be linear functions of the steam pressure for a range of ± 100 psi from the normal
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Figure 3.1: A Typical U-tube Steam Generator.
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operating point. Equation (3.1) describes the mathematical expression of the above

assumption.

=  + (3.1)

where

Fp is saturated water or steam property.

Xm is a constant of the equation.

K- - iie.■^n — Qp •

P is steam pressure.

The steam flow leaving the UTSG is considered to be a critical flow. The flow
is defined in terms of steam pressure and steam valve coefficient.

W, = QP (3.2)

where

Wa is the steam flow rate.

Ci is the steam valve coefficient, and P is steam pressure.

A complete description of the UTSG model is given in Appendix A. The forcing
functions of the isolated UTSG model are:

(a) primary coolant inlet temperature,

(b) steam valve coefficient,

(c) feedwater temperature.

3.2.2 The Steam Generator Feedwater Control System

The steam generator feedwater control system maintains the steam generator level
at its set point and the main valve differential pressure program by controlHng the
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feedwater flow rate through the regulation of the position of feedwater control valve

and the speed of the turbine driven main feed pump. The conventional three-element

controller generates an error signals from the deviation of the water level from its

set point, and steam flow and feedwater flow rates. The error signals are used in a

PI controller to actuate the feedwater valve to regulate the water level according to

its set points.

In order to minimize the duty on the feedwater control valve, the variable speed

main feed pump turbine controls the differential pressure between the feedwater

header and the steam header according to a AP program which is a function of the

main steam flow rate. Figure 3.2 gives the AP set point program. This control

action tries to keep the differential pressure at a constant value during the steady-

state operation. The conventional AP controller generates its error signal from the

pressure differential between feedwater header pressure and steam header pressure,

and from its set point and is used in a proportional-integral controller.

The steam control valve ahead of the feed pump turbine adjusts the pump speed to

its set point by regulating the extraction steam flow through the control valve. The

basic momentum balance for each feedwater loop is represented as

C/l = [P,„ + ̂  - (/i + A + A + 4) WJ - P.,]A lUg, (3.3)
where

M = mass of fluid in this system,

U = velocity of fluid,

A = area of the pipe,

Psuc = suction pressure of the main feed pump,

Pjg = steam generator pressure,

Wf = feedwater flow rate.
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Figure 3.2: AP Set Point Program.
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/i>/25/3 = constants related to the pipes,

fy = constant related to the valve,

Ay = feedwater control valve opening.

The momentum change may be represented as

d{MU) djpALU) dW, ,
dt dt dt

where

L = length of pipe.

3.2.3 Feedwater Control Valves

One feedwater control valve is used in the feedwater line for each steam generator.

The valve for a particular steam generator is operated by an automatic control

system which regulates feedwater flow to maintain desired water level in that steam

generator. There is an independent conventional PI control system for each steam

generator. Manual control for each of the valves is also used in case of a malfunction

of the automatic controller.

3.2.4 Main Feedwater Pumps

There are two, 60 percent capacity, variable speed, turbine-driven, centrifugal main

feed pumps that raise the pressure of the condensate to a value that is high enough

to feed the steam generators [28]. The main feed pximps discharge to a conunon

header which supplies the high-pressure heaters. The feed water then flows into

a common header which supplies feedwater to the steam generators. Figure 3.3

displays the schematic of the feedwater system of a typical PWR nuclear station.
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3.3 Pump Model

The pumps axe modeled using their characteristic curves. The characteristics curves

show the variation of pump head, H, and pump efficiency, e// = N/Nq, to be a

function of both volumetric flow rate, Q and pump speed, N.

where 0 indicates the full power condition; the coefficients 01,02? °3 s-re ob

tained from the characteristic curves at full power condition which are supplied by

the manufacturer [32].

The outlet enthalpy, ho, is represented as

ho (3.6)

where

hi = enthalpy of fluid at inlet.

For a constant speed pump, the pump head is considered to be a function of the

volumetric flow rate. The pump speed is determined by the driving torque and

pump torque.
^ ̂ (3.7)

60 dt ^ ^ '
where

I = pump moment of inertia,

N = pump speed in RPM,

Td = driving torque,

Ti = pump load torque.

The pump load torque is given by

eff2nN
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where

Wf = feedwater mass flow rate in Ibmlsec.

3.4 Pipe Model

A very simple approach is used for modeling an insulated pipe with incompressible

liquid flowing through the pipe. Balance of momentum equation gives the following:

^-^ = P2-P. + 5^ + (Z.-Z.),- (3.9)

where

Pi = pressure at position 1,

F2 = pressure at position 2,

/ = Dajcy-Weisbach friction coefficient of the pipe,

W = liquid mass flow rate through the pipe,

p = density of the liquid,

A = cross sectional area of the tube,

L = length of the tube,

D = diameter of the tube,

Zi = elevation at point 1,

Z2 = elevation at point 2,

g = the gravity acceleration,

Qc = conversion factor (32.2

3.5 Feedwater Pump Speed Control System

The feedwater pump speed control circuitry is shown on Figure 3.4. A load signal,

derived from the total steam flow, is used to generate a AP program (steam pressure

- feedwater header pressure). This signal and a preset minimum differential pressure
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signal are supplied to a high value gate in the PWRs, the output of which is the

programmed differential pressvire.

Actual steam and feedwater header pressures are compared and the actual differ

ential pressure is computed. The program and actual differential signals are then

compared to produce a differential error signal which controls feedwater pump speed.

The feedwater pump speed control system consists of the following three interrelated

components.

1. The set point calculators which smn the four steam flows, provide the lag

on set point changes, and contain the basic scaling adjustments.

2. The differential pressure controller which compares the steam header

pressure, feedwater header pressure, and the calculated set point to de

termine the required speed signal (a fairly slow reset action is provided

in this controller to reduce the steady-state operating error).

3. The feed piunp manual/auto stations which provide the operator with

the flexibility of choosing various operating modes.

Feedwater flow to the individual steam generators is controlled automatically above

15 % load by adjustment of a feedwater regulator valve in the piping to each steam

generator. The valve's position is determined by a conventional three-element con

troller that uses steam generator water level, steam flow, and feedwater flow as the

inputs. During startup and operation below 15 % load, additional control is avail

able from small bypass valves. The bypass valve's position is determined by a single

element controller using steam generator water level as the input [29].

Simulation and operational experiences have shown that a large load reduction is

the governing transient in the design of the feedwater control system [27]. The clos

ing of the turbine governor valve results in an increase in the steam header pressure
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(and consequently a decrease in the steam generator level). The increased pressure

results in a decreased flow rate from the feed pumps, as long as the valve position

and the pump speed remain unchanged. To minimize the duty on the valve, the

control system should increase the speed of the pump so that the pump dischaxge

pressure increases by at least as much as the pressure in the steam generator. To

cichieve this, the pressure difference between feedwater header and steam header is

used as a control variable, to be compared with a set point in order to generate a

pump speed signal.

To provide a given flow margin at any load, the steady-state AP may be reduced

at lower loads. Therefore, the header-to-header AP set point varies with load, in

creasing as the load increases. As an index of load, steam flow is used. To avoid

a momentary drop in the steam flow during the time period between the closing of

the turbine valve and the opening of the steam dump valves, the pressure difference

set point is delayed. This delay provides a constant pressure set point during the

first stage of the transient.

3.5.1 The Pump Control System Model

An operating four-loop PWR's current three-element controller and turbine governor

valve controller were simulated. The controller gain constants and time constants

closely match those used in the plant controller. The mathematical derivation of

the AP controller is given in this section. The pump speed control system model is

stated in the following equations.

AP = Phd - Pave (3.10)

Pe,, = AP,et - AP (3.11)
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W„„ = K.A,Pi^ (3.12)

,dN W„f,(hi„-h^,)778 HW,
N  TffN

H = f(W,,N) (3.14)

P,i. = P»c + (3-15)

Pu = Pa. - h Wf (3.16)

P» = Pu-hW] (3.17)

Pd. = P., + hWj (3.18)

where

/i = (PdM - Pim)IW%

h = (PiM - P.vo)/Wf^

h = (Pm - P.!f>)IW%

Phd = Pressure at feedwater header

Pave — Ei=i Psg{i)l^7 Average pressure of the four steam generators

N = Pump speed

As = Steam control valve opening

Wmfp = Extraction steam to main feed pump turbine

eff = Efficiency of turbine

hin = Inlet enthalpy to turbine

hout = Enthalpy at the turbine exhaust
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Pin = Inlet pressure to turbine

I = Inertia of turbine-pump

H = Piunp head

P^ig = Pressure at pump outlet

Psuc = Suction pressure of feed pump

Puv = Pressure at upstream of feedwater control valve

= Pressure at downstream of feedwater control valve

Table 3.1 gives the steam valve control model variables [30].
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Table 3.1: Steam Valve Control Model Parameters.

No: Variable Name Description

1. Pag, Steam generator pressure 857 Psi

2. Pdia, Discharge pressure of feed pump 989.17 Psi

3. Pressure at the Upstream of valve 917 Psi

4. Pressure at the Downstream of valve 877 Psi

5. Wf, Feedwater flow rate (each loop) 1035.125 Ibm/s

6. N, Pump speed 5362 RPM

7. Ldwi Water level (from the top of the tubes) 9.63 ft

8. p. Density of water 50

9. 7, Pump turbine inertia 160

10. hin, Inlet enthalpy of turbine 1271.4 Btu/lbm

11. hout, Enthalpy at the turbine exhaust 976.2 Btu/lbm

12. Pauci Suction pressure of feed pump 360 psia

13. Pin Inlet pressure to turbine 160 psia

14. ci, Pump head coefficient 2440

15. 02, Pump head coefficient 241.19

16. 03, Pump head coefficient -869.17
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Chapter 4

Parallel, Fault-Tolerant Control
and Diagnostics System

4.1 Introduction

A nuclear power plant is a complex system with the various subsystems fulfilling the

needs of process control and safety. Continued operation of these systems has both

economic and safety implications. Electric utilities seek continuously to improve the

operation of power generating stations. The various studies in control, monitoring,

diagnostics, validation, and performance analysis of these systems are reviewed in

Chapter 2.

The primary focus of this dissertation research is to develop and apply advanced

techniques to some of the problems identified by utilities in the areas of instrumen

tation and control. An integrated approach for control, diagnostics, and monitoring

is the major contribution of this work. In this chapter, the design of a parallel, fault-

tolerant control strategy for the main feedwater flow regulation system is discussed.

The goal is to combine the steam generator water level controller and the main

feed pump speed controller, and develop an integrated system consisting of control,

signal vahdation, and command validation modules. The resultant fault-tolerant

control system consists of five major components.
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1. Control module,

2. Signal validation module,

3. Command validation module,

4. Decision making module,

5. System executive module.

Figure 4.1 shows the general architecture of the FCDS design. Each module has

multiple approaches in its implementation. In order to offer fault tolerance at the

control level, FCDS utilizes three diflFerent control algorithms in a parallel manner.

The control module incorporates reconstructive inverse dynamics control, fuzzy logic

control, and the conventional PID control for feedwater flow regulation of a pressur

ized water reactor (PWR). Reconstructive inverse dynamics (RID) is a model-based

adaptive nonlinear control algorithm. Fuzzy logic is a nonlinear controller where the

qualitative information of the process and approaches of human operators are uti

lized. In addition to these nonlinear controllers, existing PID controllers of a PWR

are also developed as part of the control module in the FCDS. During normal oper

ation, the multiple controllers provide a choice of a controller suitable for operation.

The objective of the signal validation system is to monitor outputs from sensors,

detect and isolate faulty sensors, and if necessary provide estimation of control and

protection system signals. Two different methods are used for validating the sig

nals in the FCDS: (a) Process empirical modeling (PEM), a model-based technique

where polynomial empirical models are used to present the relationships among the

measurements, (b) artificial neural networks (ANN), a non-algorithmic approach

which has the ability to capture the nonlinear relationship between a set of inputs

and one or many output variables.

The purpose of the command validator is to verify the control signals (to the actua-
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tors) and outputs of the actuators. Although command validation is a new approach

that improves the reliability of the control actions, it can be envisioned as signal

validation in which the signals are either the control actions produced by the control

algorithms or by the operators. Similar to the signal validation module, both PEM

and ANN techniques are used for developing the models.

The system executive module serves as a high-level decision support unit. It analyzes

the overall performance and selects appropriate controllers based on the command

validation and decision mahing modules, displays the signals and allows the user

(operator) to interact with the FCDS.

4.2 General Features of the Fault-Tolerant Con

trol and Diagnostics System (FCDS)

The fault-tolerant control and diagnostics system introduces parallelism to vah-

dation and control by utilizing different algorithms, and increased reliability and

fault-tolerance due to the integrated systems approach. The following sections dis

cuss the fault-tolerance, parallel architecture, and command validation features of

the FCDS design.

4.2.1 Fault-Tolerance

The FCDS architecture shown in Figure 4.2 represents a fault-tolerant strategy to

circumvent problems which may cause reactor trips in conventional systems. The

fault-tolerant capability in the FCDS is designed to solve problems in an anticipa

tory fashion before their effect causes or induces reactor trip. It is important to note

that the definition of fault-tolerance does not include any trip avoidance maneuvers

in the vicinity of the prescribed safety limits.
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The FCDS includes signal and command validation blocks. Their major contri

bution to the fault-tolerant strategy comes from the fault detection capability. This

ran be performed continuously so that anomalies do not propagate in time. For ex

ample, the signals that axe used in control systems are analyzed on-line to check their

validity. Anomalies are detected promptly and the relevant systems axe warned. A

similar logic holds for the command validation task. The commands which axe not

appropriate to the system are not allowed to affect the system. Thus, the validation

blocks function as an early failure detection system. However, the early detection

does not complete the fault-tolerant logic since the question of "what to do next"

has to be answered.

The decision about the actions to be taken following the detection of an anomaly

constitutes one of the most significant issues. This problem is solved in the FCDS

design by creating redundancies in control systems that operate in parallel. The

redundancy built in the FCDS not only introduces a software fault-tolerance, but

also offers a number of solutions in case of anomalies. The control block houses

three different controllers, each of which

1. Uses a different set of plant measurements,

2. Uses a different control law,

3. Has different robustness characteristics and,

4. Produces the same (or different) output(s).

A signal anomaly can be bypassed by activating one of the controllers which do not

utihze the faulty signal. This solution holds if the anomaly is caused by the mea

surement system. Similarly, if the on-line controller starts generating unacceptable

commands, an alternative control system takes over. There exist a jump condition
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as part of the decision maJcing process. This measure indicates if the jump condition

from one controller to the other is acceptable. The FCDS fault-tolerant logic cannot

resolve equipment malfunctions (except verifying actuator output) since it is not an

expected capability of any control system, in general. In addition, the multiple

anomalies occurring simultaneously may not be avoidable; however, the proposed

design, in general, offers a better solution than the existing designs.

Figure 4.2 shows the fault-tolerant featinre of the parallel control system interacting

with the validation blocks. The three controllers use different sets of measurements.

The decision making continuously receives the status information from signal and

command validators. In case of anomalies, the destination of the corresponding

signals is disabled. When there is no signal or command anomaly, the FCDS is ex

pected to drive the plant along the pre-determined trajectories. The fault-tolerance

built into the FCDS can also handle software/hardware failures. This requires iso

lating redundant control algorithms from each other by using different computers,

and different operating systems.

4.2.2 Parallel Control Systems

In general, a parallel architecture consists of multiple information processing systems

each with the same fimctional objective. The objective may include the generation

of one control signal or the prediction of one process variable. This is illustrated in

Figure 4.3-a, where V is the output, {X„} is the nth subset of measurements, and

is the algorithm of the nth processor. Referring to Figure 4.3, the parallelism

can be categorized in two ways: vertical redundancy and horizontal redundancy.

1- Vertical Redundancy

The simplest parallel form, called vertical redundancy, utilizes the same subset of
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measurements and the same algorithm.

{x.} = {X2} = ... = {.y,}

= ... = F,(X„) = Y.

This form of parallelism implies that faidt-tolerance can only be improved by phys

ically isolating the processors from eadi other. Stand-by systems used in various

industrial applications fall into this category [53].

2- Horizontal (Functional) Redundancy

This architecture utilizes different subsets of measurements along with different al

gorithms.

F^iX^)^F2{X,)^...^Fn{Xn).

The parallel system above suggests n possible solutions for the generation of the

output Y. Note that the fault-tolerance property introduced here serves a different

purpose compared to that of the vertical redundancy. First, n possible solutions

constitute an opinion poU for the decision of Y. Thus, Y is potentially more reliable

than the single opinion suggested by vertically redundant processors. Second, there

axe different combinations of measurements utilized by different processors which

provide an avoidance capability in case of a measurement anomaly. Because there

axe alternative processors not utilizing a corrupted signal, the generation of output

Y by those processors will not be affected by signal anomaly.

The feasibility of developing n valid algorithms for single objective depends solely on

the specific problem. Sinnlarly, the selection of measurements is not arbitrary. The

measurement subsets determined in accordance with each algorithm may include

some measurements at the input of every processor. Thus, avoidance against every
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possible signal failure may not be feasible.

Horizontal (functional) redundancy improves the smvival capability in case of mea

surement anomalies, and enhances decision making via multiplicity of opinions

without the requirement of physical isolation of hardware. Hence, it is also called

"software-based fault-tolerance".

4.2.3 Command Validation and Decision Making

As shown in Figure 4.3-a, the functionally redundant control system produces mul

tiple solutions of the control (output) V. The decision of choosing a control strategy

requires the validation of each solution independently. Thus, the final decision crite

rion may reduce to the selection of the best solution, or a combination of reasonable

solutions [50] [54].

Within the command validation module, there is a sub-module called, the Checker,

these two, conunand vahdator and checker, work very closely. The Chedker eval

uates and compares the control signals generated by different control algorithms.

Each control signal is compared with the estimations of the PEM and ANN models.

If the control output agrees with the estimation results, then the on-line control

strategy is kept unchanged. In the event of a disagreement, an alternate control

signal is sought. Since it is shown that the FID controller can handle most of the

current problems in nuclear power plants, using FID results as a guidance would

be reasonable. On the other hand, there are problems such as sluggish behavior,

slow response time, and lack of communication between the controllers that FID

controllers cannot handle.

The objective of this study is to overcome these current problems, therefore, us

ing FID responses as a standard is not appropriate at each stage. In order to
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overcome this problem, it is necessary to evaluate each control signal using the com

mand validation and decision making systems so that the best control signal, or

combination of two signals is sent to the actuators. Finally, it is also important to

realize that the control signal that will be chosen must be generated by an algorithm

that is not likely to fail in the following stages of the operation; that is, there should

not be a degrading signal, or failed sensor in the input signal set of that control

algorithm. The necessary information identifying the current status of each signals

is provided by the Signal Vahdator and Weight Assigner blocks. Weight assigner

block assigns values to the validated signals indicating the confidence in the signals

based on the signal validation models. Figure 4.4 shows the integration of Command

Vahdator and Checker blocks. Figure 4.5 shows an example of designing different

control strategies to achieve the same final goal. The approach studied in this dis

sertation utihzes different control algorithms which are using different sets of input

signals. If one of the signals used in a controller is inaccurate, then this information

becomes available through the signal vahdation block to the decision making and

command validation blocks. An alternative controller whose input signals are vahd

will be available, and the output signal of this control algorithm will be sent to the

actuators.

4.2.4 System Description

The fault-tolerant control and diagnostics system includes five major components:

system executive, signal vahdation module, command vahdation module, decision

making module and control module. In this section each of these modules is dis

cussed, the developments of the modules and their individual results are given.

These modules are highly interactive, and share information. Although each of

the four modules can operate separately, they are organized under a system exec

utive. Signal vahdation, control, and conunand vahdation modules operate as one

big module. On-hne vahdation of the signals which are used in the control module
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axe completed and sent to the decision making module. Command validation and

decision making modules select the most appropriate control action calculated by

three different control algorithms, and sends the signal to the actuators.

4.3 System Executive

The FCDS combines various modules into one large scale system where control,

validation, decision malcing, and monitoring taJce place. Although each of these

modules can operate individually, every module produces a series of output which is

shared by the other modules. Information sharing is one of the important features

that maJces this integrated system fault-tolerant. The validation module broadcasts

information about the control input signals which helps decision making and control

modules to determine which controller to use in the event of an invalid sensor.

The estimation results of the signal validation models along with the actual mea

surements are broadcast and stored in a data file which can later be used. Actual

values of selected parameters axe displayed by the graphical user interface (GUI).

The results of the command validation and decision making modules axe also stored

in a file for further use after the simulation is completed. The information produced

by the modules is not only stored in external files, but is also shared among the other

modules. Command validation and decision making modules receive the estimation

results of the signal validation module along with the actual measurements of the

parameters.

The display of the selected parameters is handled by the system executive via the

graphical user interface. Plotting various parameters of the plant, graphical displays

of the control systems, and subsystems axe also handled by the system executive.

The FCDS system executive is a menu-driven system, where the graphical user
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interface is developed using a commercial softwaxe package on a SUN SPARC work

station. The details of the GUI is given in the next section with sample displays of

the system executive.

4.3.1 Graphical User Interface

A graphical user interface is developed to provide user friendly access to the FCDS.

The GUI is developed on a SUN SPARC workstation using a commercially available

software, WINGZ [70]. The GUI displays the various results of modules, vahdation,

monitoring, control actions, and simulation results. The GUI allows the user (oper

ator) to interact with the code at each stage. The flow logic and the organization of

the GUI are give in Figure 4.6. Figmre 4.7 displays the main menu of this graphical

interface.

If simulation is selected, then simplified graphical display of the secondary side of

the PWR will appear along with manual/automatic (control mode) control options

and steam generator water level and differential pressure control set point switches.

This display is given in Figure 4.8. If user selects the Control box from Figure 4.8,

a new display FCDS Architecture for Feedwater Control of a PWR appears on the

screen (Figure 4.9).

If the user selects the upper box (^Conventional Controllers for both steam generator

level and main feedwater pump speed control), control diagrams for the conventional

PID controllers will be displayed (Figure 4.10). If the second box (Conventional and

RID) is chosen, a control diagram which shows PID controller for the level, and RID

controller for the speed will be displayed (Figure 4.11).

Initially, the program uses the automatic control with predefined set points. The

GUI allows the user to change each of the following set points: steam generator
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Figure 4.6: Schematic of the Graphical User Interface (GUI) and the Flow Diagram.
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water level set point, diflFerential pressure set point, during simulation. The user

may also switch the controllers from automatic to manual. During the simulation,

seven different graphs axe displayed and updated each second. These displays are

feedwater valve position, steam valve position, steam generator level and its set

point, differential pressure and its set point, main feedwater pump turbine speed,

feedwater flow rate, and steam generator pressure. The GUI also displays the levels

of the four steam generators, speeds of the turbines, and positions of the valves for

each component. While the simulation is being run on the SUN workstation, the

results may be displayed on the PC as well as on the workstation.

4.4 Signal Validation

In laxge power generating systems and process control systems, sensor outputs from

many different channels are used in control systems, protection systems, and plant-

wide monitoring systems. It is necessary to validate the outputs of these sensors

to increase the reliability of operator decision and improve the plant productivity.

Signal validation is one of the means which can help to increase the reliability of

the control systems. "Signal validation is used to check the consistency of the re

dundant measurements of selected process variables, estimate their expected values

from measurements, and detect, isolate and characterize the type of anomaly in the

instrument channel outputs [20]."

The routine validation of critical signals in a reactor system is useful for monitoring

incipient changes in sensor behavior and for improving the control strategy with less

challenge to the control systems. Signal validation and process monitoring require

the prediction of one or more process variables in a system. The prediction of system

state variables is performed traditionally using either physical or empirical models.

Empirical models require knowledge of all variables having a sigmficant effect on
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the signal to be modeled. The model characterizes a signal as a function of a set of

other measurements which influences the behavior of the signal under consideration.

Model-based prediction assumes a fixed structure for characterizing relationships

among process variables. The generation of an accurate model requires an effort

which is proportional to the size and complexity of the system. An alternative

method, artificial neural networks offers modeling without defining a fxmctional form

for relating process variables [7]. In this dissertation research, both the approaches

were utilized for developing models of critical signals which are used in the control

systems.

The signal validation block contains multiple methods for processing raw sensor

data and generating validated data for specific use. Multiple vahdation techniques

are used concurrently to check the data. An intelligent supervisor then votes or

weights the outcomes of the various techniques to arrive at a validity parameter.

Data samples and validated parameters are broadcast to a specified destination.

Operational records of PWRs indicate various measurement problems encotmtered

during their operation. The feedwater flow elements are subjected measurement

errors due to venturi fording. The steam flow measurement used in the present au

tomatic feedwater control system is also subjected to inaccuracies due to calibration

and sensor problems. Steam generator (SG) narrow-range level is another critical

measurement for both feedwater control system and reactor protection system. In

strument inaccuracies in the narrow-range SG level measurements impose indirect

limitations on the feedwater control system by reducing the margin between the pro

grammed level and the low-low level reactor trip point. Feedwater and steam header

pressure measurements are also important parameters used in the feed pump speed

control system, a failure of either one of these signals wiU cause a transient which
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may result in a reactor trip. Especially non-redundant measurements may some

times provide misleading information due to sensor degradation or measurement

noise. Thus, an on-line signal validation capability is necessary for a fault-tolerant

control strategy.

4.4.1 On-line Signal Validation Strategy

The signal validation consists of creating a set of base signals. The signals obtained

from redundant-measurements are called base signals. The validation strategy also

includes empirical models to estimate signals using the non-redundant measure

ments. The empirical models are developed oflF-line using data obtained during the

previous states of the power plant. These data include the base signals. Thus, the

empirical models axe developed only using the base signals. This is because redun

dant measurements axe more reliable than non-redundant measurements.

The signal vahdation block (SVB) shown in Figure 4.12 includes two different rou

tines that check independently the validity of the signals. The first routine uses a

nonlinear, process empirical modeling (PEM) technique developed previously [20].

The second routine uses a well-known artificial neural network paradigm called the

backpropagation network (BPN). This routine was also developed for diagnostics

purposes [7]. Thus, the SVB includes two modules (PEM and BPN) for each set

of measurements, and also for other important parameters. Development of the

empirical models requires off-line computations.

The PEM routine uses a nonlinear curve-fitting method and is known to provide a

very good prediction [68] [20]. It is suitable for rapid updating since the development

process takes relatively short CPU time. The BPN is a learning algorithm which

requires off-line training. The training period can be long, thus it is not updated

easily on-line. However, it is robust against abnormal situations. It is also known to
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be a powerful generalization tool. The diflFerent characteristics of the two methods

cover a variety of anomalies so that the fault-tolerance can be handled by, at least,

one of the two routines.

During the on-line implementation, the SVB block receives the selected signals. It

uses the base signals as the inputs to the models to estimate one or more variables.

A comparison takes place between the estimated value and the actual reading. If the

deviation exceeds a pre-defined band, then the SVB disqualifies the corresponding

signal.

4.4.2 Process Empirical Modeling

The process empirical modeling (PEM) module generates nonlinear multiple-input

single-output (MISO) models [68] [20]. The measurements of a sensor output may

then be compared against the estimation from the PEM model. The PEM module

provides an independent estimate of the process variables. The PEM models are

utilized to determine the sensor degradations or drift by on-line monitoring of the

sensor readings.

Figure 4.13 demonstrates the schematic way of formulating a critical signal as a

function of related variables. The analytical measurement or prediction of a signal

y as a function of related variables in a subsystem is given by

y = f{x) = f{Xi,X2,...,Xm) (4.1)

Empirical Modeling Algorithm

The empirical modeling method creates an optimal nonhnear multiple-input single-

output (MISO) model from the given data set. The form of the data driven predic-
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Figure 4.13: Empirical Modeling of a Critical Signal,

tive models is given by
N

t=i

(4.2)

where

y = output signal,

X = vector of input signals,

$,• = nonlinear formation of input signals,

Ci = coefficients.

A geometrical description of the nonlinear modeling algorithm, developed previ
ously [20] [68], follows.

"The closest nonhneax cross-product vector relative to the output vector is deter
mined. New nonlinear vectors (terms) are subsequently selected by projecting the
remaining unselected vectors onto a subspace of the original vector space orthogonal
to the selected vector(s). This procedure continues until N terms (vectors) are cho-
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sen. The final step is to fit a linear type model using the selected terms to compute

the coefficients [68]." Figure 4.14 gives the schematic of the empirical modeling.

4.4.3 Artificial Neural Networks

In this section one of the most widely used neural network training algorithms,

namely the Backpropagation Network (BPN), is discussed [7]. BPN is a multi-layer

fully connected training algorithm. Figure 4.15 shows a typical topology of a three-

layer artificial neural network (ANN) architecture. The first layer, usually referred

to as the input buffer, receives the information, and feeds it to the inner layers. The

second layer, in a three-layer network, commonly known as a hidden layer, receives

the information from the input layer, modified by the weights on the connections

and propagates this information forward. The hidden layer is used to chaxacterize

the nonlinear properties of the system analyzed. The last layer is the output layer

where the calculated outputs (estimations) are presented to the environment.

The BPN algorithm was utilized to develop "models" for the "Signal Validation

Module." The neural network modeling has the distinct advantage of generating

the relationship between two information sets. Thus, it is not necessary to make

an assumption about the type of nonlinearity. Model-based prediction assTimes a

fixed structure for characterizing either steady-state or dynamic relationships among

process variables. Relationships between signals in a subsystem of a plant can be

modeled using neural networks which provide fault-tolerant estimates of process

variables. Neural network models when compared to model-based techniques are

more robust against the anomalies in the input signals, and they can give better

estimations outside their modeling domain. The drawback in the neural network

modeling is the longer model development time. Adjustments of the connection

weights between the processing elements (PEs), the basic units of artificial neural

networks, is an iterative procedure where the series of input and desired output
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Beginning with N data samples
Input vector; x(k)
Output vector; y=y®

Compute M cross-products (vectors)

v(i)=v%=*(x(k))
(i=1 M) (k=1 N)

Calculate the projection matrices to determine ttie
cross-product term closest to the output vector, y.

p(i) =
[v'(i)] iv'(i)r
[v'(i)f [V (i)]

(i=1 M)

where j=number ol terms so lar selected

Project the output vector on each cross-product
and compute the scalar length of each.

y'(i) = p(i)y'
R(i) = ly'(i)f(y'(i)l

The next term in the model is selected from the
cross-product with the largest scalar length, R((J.

Calculate the projection matrix corresponding to
tfte selected tenn

P(i) =
[v'(Ul lv'(iK)r
(v'(v)r[v'(iK)l

(i=1 M)

Project the remaining vectors into a vector
ortt»gonal to all vectors previously selected

V * 0) = M v'(i)
(i=1,...M) (i4;k=1,2 j)

IVl

Project the output vector rmto this sul)space
y'»\i) = lyi'y'(i)

If more terms are desired, continue.
Otherwise compute the error and stop.

Figure 4.14: Process Empirical Modeling (PEM) Schematic.
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Figure 4.15: Topology of a Three-Layer Perceptron.



signals axe presented to the learning algorithin respectively.

The Backpropagation Network Algorithm

The Backpropagation Network (BPN) algorithm uses the generalized delta rule for

training. Figure 4.15 shows the topology of a network. The algorithm as presented

in [21] is outlined below.

1. Assign a random number r (uniformly distributed) in the range [+1,-1]

to all the connection weights w'j, and bias of all processing elements

(PEs).

2. Present the normalized input vector to the first layer and propagate it to

the output layer as

" l+e-'XS,
after which each PE in every layer of the network wiU have an associated

value of Xjp. /3 is the shaping parameter of the sigmoidal thresholding
function.

3. For each PE compute the local error at the output layer between the

desired value and the calculated value using the generahzed delta rule

where, tjp is the target value.

4. For each PE in the hidden layers, starting at the layer below the output

layer ending above the input layer, compute the local error by using

(^-5)
i

5. Compute all the connection weight corrections by using

Apwjj(n + 1) = a(S'jpxi;^) + /xApw'ij(n) (4.6)
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where n indexes the presentation number, /i is a coefficient called mo

mentum term, a is the learning coefficient, and the bias corrections axe

given by

A05(n + 1) = ̂  (4.7)

6. Update all the connection weights by adding the weight corrections to

the old weights as

w'ij{n + 1) = w\j(n) + Apw\j{n + 1) (4.8)

7. Update all the PE bias values by adding the bias corrections to the pre

vious bias values as

»;.(n + 1) = «j(n) + A«; (4.9)

8. Present the next pattern, p, to the network until all the patterns axe

presented.

9. Repeat (step 2) until the error between the desired and the calculated

value of the output is sufficiently small.

4.4.4 Signal Validation Database

Prior to developing the signal validation modules using process empirical modeling

(PEM) and artificial neural network (ANN) techniques, a database is created using

the simulation data and some operational data which were collected from an op

erating Westinghouse four-loop pressurized water reactor (PWR). Simulation data

covered a wide range of level perturbations. The reason for using such data is to in

clude as wide dynamic range about the system in the models as possible. Including

a wide range of dynamics enables the signal validation models to give better results

in the event of sensor failure, drift, or any other anomalies. The signal validation

modules axe especially created for those signals that axe vital for the operation of
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the plant and for the feedwater flow regulation control system. Some of the sig

nals included in the signal validation database were: steam generator water level,

feedwater flow rate, steam flow rate, steam pressure, coolant temperature in the

outlet plenum, drum water temperature, downcomer temperature, feedwater header

pressure. These signals were selected to develop the signal validation models, since

the focus of this dissertation is on the feedwater regulation system of a PWR.

Using the base data PEM and ANN models were generated for steam generator

water level, feedwater flow, coolant temperature, and feedwater header pressure.

The models are developed off-hne and are utilized within the signal validation block

as part of the fault-tolerant control system design. Before the signals are sent to

the control module, they axe validated and cross-examined by the PEM and ANN

models. If the error between the predictions and the measured signals exceed a

predefined error, a lower validation measure is assigned to that particular sensor

reading by the Weight Assigner and this information is broadcast to the points of

interest such as the decision making block where the final decision about the con

troller to be used is made. Results of the signal validation models developed using

PEM are presented in Chapter 6.

4.4.5 Weight Assigner

In order to decide what signals or sensors to use in the control block, a procedure

is needed to separate corrupt signals from good signals. The Weight Assigner block

designates a value (between 0 and 1) to each signal and/or sensor which will be used

in the parallel control block. Weighting is done according to the availability of the

sensors and based on the Signal Validation block evaluations. If the estimations of

the PEM and ANN models closely match with the measurements (based on defined

tolerances), then a high confidence factor (1.0) is assigned. If the measurements

differ greatly from the estimations, then a value close to (0.0) is assigned indicating
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a possible sensor error. The WA is especially useful along with a generalized consis

tency checking system when the FCDS is to be tested with real plant data. The final

result is then sent to the Decision Making block for further use. Figure 4.16 displays

the integrated form of the Data Acquisition System (DAS), the Signal Validation

Block (SV) and the Weight Assigner (WA).

4.5 Command Validation

The purpose of the command validation block is to determine the accuracy of the

command generated by the control system or by the operator, and to validate the

resulting output of the actuator system. A command validator as a distinct function

is a relatively new concept in process control. It parallels, to some extent, the signal

validation black. The overall command validation involves verification of control

signal input (to actuator) and actuator system output (plant response). A classic

example of a command validator is the conflict resolver circuit of a traffic-light con

troller. Should the timers and phase sequencers produce simultaneous green lights

at an intersection, the conflict resolver overrides the situation to produce flashing

red or yellow lights.

A definition of the requirement for valid control strategy is that the controller's

output to the actuator and the actuator's output must remain within certain bands

of a desired strategy or trajectory. The procedure for command validation consists

of

• identifying faulty control signals (input and output)

• isolating plant actuator malfimction

• quantifying the control signal's variation from its nominal value.
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The purpose of command validation is to provide an intermediate confirmation stage

before the commands are sent to the plant actuators. From a practical point of view,

the command validation is similar to signal validation, except that the signals to be

validated are obtained from the operator, controller and/or actuator. The concept

of conunand validation covers the failure possibilities of the command generating

components such as the hardware, software, and the operator.

The command validation block (CVB) shown in Figure 4.12 also utilizes two em

pirical models for each command. The routines used for the CVB are the same as

those used in the SVB. Similarly, the models in CVB are developed off-hne using

available data. The strategy consists of utilizing base signals to estimate the com

mands. The estimations are compared with actual conunand signals. When a large

deviation occurs between the estimated and actual commands, CVB disqualifies the

corresponding command strategy.

Along with the CV block, there is a checker to verify the control signals by either

comparing the results of different algorithms, or by comparison with the estimates

of the CV block. This dissertation research concentrates on the feedwater regulation

of a four-loop PWR. Command vaHdation schemes are apphed to feedwater valve

and to turbine governor valve control signals. Since the actuator signals are not

archived by the data acquisition system at Sequoyah, necessary data for guidance

were obtained from TVA's Sequoyah Nuclear Station Simulator [34]. Various simu

lator transients such as main turbine trip and maximum rate power ramp, and level

perturbations were considered during the development of the command validation

modules.
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4.5.1 Feedwater Valve Validation Models

Two input signals, steam generator water level and feedwater flow axe used for

this PEM model of the form, U\ = f {level, Wfeedwater)- Equation (4.10) gives the

formulation of the model.

Ul = ao + aix^ + a2y + + a^x (4.10)

where,

U1 = Feedwater valve position {%)

X = Feedwater flow rate (Ibm/sec)

y = Steam generator water level (feet)

Co = 14.79513

ai = 0.06148146

02 = -0.4696181

as = 0.02457267

04 = -1.744343

Modeling Error (%) = 0.96 %

Along with the PEM model, an artificial neural network (ANN) model for the

feedwater valve opening is developed as paxt of the command validation module.

Table 4.1 gives the model specifications. Results of the command validation using

PEM and ANN models are given in Chapter 6.

4.5.2 Turbine Governor Valve Validation Models

This model is developed with data that were collected during a AP set point change.

Four input signals were used to develop the PEM model for the governor steam valve

validation: feedwater header pressure, pump speed, steam generator pressure, and

feedwater flow rate. Equation (4.11) gives the formulation of the model for the
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Table 4.1: ANN Model for Feedwater Valve Opening

Input Signals SG Water Level

Feedwater Flow

Number of Training Patterns 150

Number of Hidden Nodes 10

Training Standard Deviation 8.61 X lO-"*

governor steam valve validation.

U2 = Co + aix + a2y + asz + a4W (4-11)

where

U2 = Turbine governor valve position (%)

X = Feedwater header pressure (psi)

y = Feedwater flow rate (Ibm/sec)

z = Steam pressure (psi)

w = Pump speed (RPM)

oo = -1517.08

fli = -18.69873

uj = 58.23101

03 = -5.689079

04 = 24.18062

Modeling Error (%) = 0.4529714

A neural network model was also generated for validating governor steam valve

openings. A similar input set was used to develop the model: feedwater header

pressure (P„„), pump speed (Np^rnp), steam generator pressure (P), and feedwater

flow rate {wf). Details and the accuracy of the neural network model axe given in
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Table 4.2: ANN Model for Governor Steam Valve Opening

Input Signals

Feedwater Header Pressure

Pump Speed

Steam Pressure

Feedwater Flow

Number of Training Patterns 150

Number of Hidden Nodes 15

Training Standard Deviation 1.64 X 10-3

Table 4.2. The comparative estimation results of both PEM and ANN models are

presented in Chapter 6.
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Chapter 5

The Control Module

5.1 Introduction

The Fault-Tolerant Control and Diagnostics System, developed as part of this re

search provides two alternative controllers to the existing conventional controllers

used iu the feedwater flow regulation system in PWRs. The first controller devel

oped is a model-based adaptive controller which uses the inverse dynamics approach.

Reconstructive Inverse Dynamics (RID) controller was developed for both level and

(AP) control systems. In addition to a model-based control approach, a fuzzy logic

(PL) concept is also utilized in this dissertation as part of the control module. Two

different fuzzy logic controllers were developed for the steam generator water level

control system and one controller for AP control. During the simulations, both

the level controller and the speed controller are in action. Any combination of the

control algorithms can be selected as the initial control strategy. PID, RID, and PL

controllers are designed to operate interchangeably during normal operating condi

tions and during transients. The following sections discuss the control algorithms

and give their derivations.
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5.2 Reconstructive Inverse Dynamics (RID) Con
troller

Inverse problems in various fields of applied sciences exhibit differences in mathe

matical formulation. Despite the variations, the similarities are significant enough

to treat them as a single class of problems. The following discussion of the inverse

dynamics controller is talcen from Berkan [25].

Consider a mathematical model representing a physical process. Typical architec

ture consists of principal quantities such as input, system parameters, and output.

The description of the process is often characterized by a set of equations (ordinary

and/or partial differential/integral equations) with bounded parameters. The anal

ysis of the given process via the mathematical model may be separated into three

distinct types of problems.

(A) The direct problem. Given the input and the system parameters, deter

mine the output of the model. Also known as the forward problem.

(B) The reconstruction problem. Given the system parameters and the out

put, determine which input has led to this output.

(C) The identification problem. Given the input and output, determine the

system parameters which axe in agreement with the relationship between

input and output.

The problem of types (B) and (C) are called inverse problems because known con

sequences are used to determine imknown causes. The mathematical representation

of the forward and the inverse problems can be carried out by defining;

X = space of input quantities,

Y = space of output quantities,

3^ = space of system parameters,
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A{p) = system operator from X into Y associated to p €

Using the terminology above we can formulate the three tsrpes of problems.

(A) Given x € X and pE^, find y := A{p)x.

(B) Given y EY and p € 3ft, solve the equation

Ax = y {x E X)

where A := A{p)

(C) Given y eY and x E X, find p € 3ft such that

A(p)x = y.

The reconstruction problem for the linear case, that is if A is a linear map, has been

studied extensively, and its theory is well-developed. The situation in the nonlinear

case is somewhat less satisfactory. Linearization is very successful to find an accept

able solution to a nonlinear problem for small dynamic perturbations but in general

this principle provides only a partial answer.

A typical example of the type (B) inverse problems consists of dynamic forces

acting on a mechanical system. The problem statement is as follows.

Determine the unknown dynamic force having a measured vi

bration response of a system, whose parameters are considered

to be known.
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Considering a one-degree-of freedom mechanical system, the dynamics may be de

scribed by the following ordinary differential equation

mx{t) + kx{t) = f{t) (5.1)

where m and k are the mass and stiffness constant, respectively. The driving force

/(<), which is also considered as a control variable, can be solved provided the

displacement measurement x(t) exists and is twice differentiable.

f{t) = mx{t) -f kx{t) (5.2)

The solution would not work in practice if the measurement x{t) is contaminated

by noise i? for which the derivatives do not exist. Even if ?? is regular enough mt?

may be a highly oscillating function.

The underlying principle of the RID controller includes creating the inverse dy

namics of the process using a set of equations (linear or nonlinear) that describe the

system dynamics [25]. The technique yields algebraic control laws that are easily

implementable in a digital environment. The derivation of the control law may be

illustrated by considering a simple, nonlinear system where x and u are state and

control variables.

x(t) = F [x(t),u(<)] t > 0 (5.3)

The reconstruction problem defined by Baumeister [23] states that the unknown

control u can be found in terms of the state x and its derivative via an inverse

solution G.

u(t) = G[x(t),i:(<)] (5.4)

The existence of such a solution strictly depends on the explicit nature of F. The

equilibrium of control for a given time to is given by

u(to) = 0 [x(to),x(<o) = 0] (5.5)
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The condition x(to) = 0 represents a stable solution. In a similar fashion, a dynamic

equilibrium of control is given by

Ueg(t) = G [ar(t),i:(t) = 0], t > 0 (5.6)

where Ue? denotes the dynamic equilibrium. It was later shown by Berkan [25] that

such an inverse solution yields the dynamic equilibrium of control when a desired

dynamics E{t) is substituted for x. A first-order lag dynamics is sufficient to follow

a continuous trajectory Xr{t) with an adjustable constant k.

E{t) = A;[xr(t) — a:(t)] = x (5.7)

The final form of the control is found by substituting (5.7) into (5.4)

u{t) = G[E{t),x{t)] (5.8)

When G is the exact inverse dynamics of the plant dynamics F and when the mea

surement x{t) is available, the closed-loop dynamics coincides with the definition of

the desired plant behavior given by Equation (5.7). Previous studies showed that

the closed-loop performance is highly robust against inexact inverses [24]. Adap

tive features axe incorporated within the theory to enhance performance in case of

significant uncertainties. If there axe non-measurable state variables required by

the control law, an on-line model can be used for state estimation. The example

presented here is for a single input and output, but the technique can be extended

to multiple vaxiables.

State Reconstructing Inverse Control Law

The reconstruction principle defined by Baumeister [23] states that in Equation

(5.6) can be computed provided measmrement x(<) is available and G is known. The

primary goal in nonlinear control is to find an appropriate reconstruction of u

for the trajectory following case where the effect of imperfect measure

ments and partially unknown G are guaranteed to be insignificant for all
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practical purposes.

Referring to Equation (5.7), we define a new dynamics for the process which allows

a trajectory following in a first-order-transport-lag (FOTL) fashion. The definition

is given by

x(t) = k[xr{t) — x(t)] = E{t) (5.9)

where A; is an adjustable constant, Xr is the reference trajectory and E{t) is the

dynamic error in trajectory following. Then, the reconstruction problem may be

stated as follows:

Find u{t) such that A:[zr(t) - ®(t)] = ■F[x(t), «(<)]
where x{t) is the solution of x(t) = A:[xr(i) — ®(t)],

for k > 0 and t > 0.

Solution to the problem requires combining Equation (5.3) with Equation (5.9).
Eliminating x{t) between these two equations gives

Eit) = F[x{t),u{-t)] (5-10)

The reconstruction of u{t) from the above requires "inverse" G such that

u{t) = G[E{t),x{t)]. (5.11)

Thus, Equation (5.11) is the control design for a system described by Equation (5.3)
that requires the knowledge of G and measurement x{t). The closed-loop dynamics

can be foimd by substituting u{t) in Equation (5.3)

x(«) = f{i(i),G[£:(«),i(i)]} (5.12)

which further reduces to

x{t) = E{t) = fc [xr(t) — a;(t)]
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Inuerse

Dynamics

Figiire 5.1: Feedback Arrangement of Inverse Dynamics Control.

as defined in Equation (5.9), because G is the inverse dynamics of the forward plant

dynamics F. Comparing controls given by Equation (5.6) and Equation (5.11), it

can be interpreted that the latter is a dynamic equilibrium of control along the

bounded trajectory x(t) = E{t) instead of x{t) = 0.

Adaptive Nature of the RED Controller

The RID control law given by Equation (5.11) operates on the measurement vector x

in a unique form defined by the inverse dynamics operator 0 which yields a feedback-

control structure shown in Figure 5.1. The two possible problems (1) corrupted or

lack of measurements, and (2) inexact operator G, may deteriorate the closed-loop

performance. Therefore, a model-reference adaptive method is employed. Both the

problems stated above can be handled by incorporating an on-fine model where the

state variables are estimated. Only the estimation of unmeasurable state variables

is required.



5.2.1 RID Control Design Steps

The RID control design requires an adequate knowledge of the dynaimcs of the

system under consideration. Although RID is very robust against modeling errors,

accurate modeling facilitates the task of the adaptive part and improves the robust

ness against anomalies. The RID control design includes the following steps.

• Modeling: A nonhneax model must be developed using the state space rep

resentation. The model should include all the known nonlineaxities as well as

the uncertainties [25].

• Control Law Derivation: Using the nonlinear model, the control law is

derived as discussed previously in Equations (5.3) - (5.8). The analytical

derivation, even if there axe many solutions to satisfy a given demand, should

be performed. The derivation step is completed by defining which state vari

ables are not available as measurements. If state variables are not available,

then an on-line model needs to be part of the control system to provide the

estimation of the missing state variables.

• Tuning: This step includes simulations in which the complete RID control

design is included within the model. Tuning is very straight forward since the

gain parameters can only have positive values. The tuning takes place only to

solve the cost of control, and the stiffness condition restrictions.

• Final Testing: Once the controller is tuned, the robustness of the RID con

troller may be tested against various perturbation and uncertainties.

5.2.2 The Water Level Controller

A nonhnear, state-space model was previously developed to represent the feedwater

flow regulation system of a PWR. In this section, the derivation of the inverse
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dynamics controller for the steam generator water level control is discussed. Steam

generator water level model is given as:

— - "^/ + (^ ~ a:e)u;4 - wl
dt pAdw

where, xe is the exit quality of the steam leaving the boiling region, and wl, axe

the riser and separator flow rates, respectively, p and Adw are the density of water

and the effective axea of the drum water section, and wf is the feedwater flow rate.

The details of the U-tube steam generator model are given in Appendix A. The first

step in deriving the RID control equation is to define an equation to represent the

level model. The control system uses state information from the duplicate model.

This approach enables the control system to test its robustness against unknown

dynamics. The duphcate model uses a new notation to indicate that it is the on-line

estimator of the RID control design.

^ = Gainl(l.„ - () (5.14)
where last is the level set point, i is the level measurement and Gainl is an ad

justable quantity. The design of the RID control law depends on the distribution

of the control variables versus trajectory assignments. Solution to the trajectory

following control problem requires additional reconstruction through an auxihary

state [25]. Equation (5.14) gives the first auxiliary state which yields replacement

of the dynamic error ̂  with Substituting Equation (5.14) in (5.13) gives the

following equation.

-t)= + (5.15)

Solving Equation (5.15) for wf and renaming it as wf* gives us the first RID model-

ba.sed feedwater flow control equation, wf is the feedwater flow measurement and

wf* is the auxiliary state variable for the feedwater flow rate.

wf* = Gainl(laet — i)pAdw — (1 — xe)w4: + wl (5.16)

87



In the feedwater flow regulation model, the feedwater flow rate is given by the

following equation

^ = Arealfti, - (/I + /2 + /3 + (5.17)
Details of this equation axe given in Chapter 3 and in Appendix A. In order to

derive the second RID equation, for the feedwater valve control action, Ul, a new

equation, auxiliaxy state variable, for the feedwater flow is defined as

= Gain2{wf* — wf) (5.18)
at

Replacing Equation (5.17) with Equation (5.18) yields the feedwater valve control

action of RID controller, 171, which is given as:

~  1 (Gain2{wf*-wf)L i p \ (5-19)-(/I + /2 + /3) - ̂;77( Area.144^2.2

where Gainl and Gain2 are the tuning parameters and can only have positive values.

As discussed previously, using large values for gains, results in a better performance

of the controller [25]. A value of 100 for Gainl and Gain2 was determined from

simulation studies.

5.2.3 The Pump Speed Controller

This section discusses the derivation of the RID controller for the pump speed con

troller. The details of the pump model are given in Chapter 3. The differential

pressure is defined as the difference between the feedwater header pressme and the

steam pressure. The equation for the differential pressure AP is

P,-, = AP + P„ (5.20)

where Psg is the average steam header pressure, and Phd is the feedwater header

pressure. The first order lag equation for Phd is

^  - Pm) (5.21)
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The derivation of the RID controller for the speed control requires the construction of

an auxiliary state variable, Pj^. The next step gives a new formulation for Equation

(5.21) as a first-order transport lag

-(Pi-Pu) = GainZ{Pl,-Pu) (5.22)
T

Solving Equation (5.22) for Ph and renaming it P^ gives the auxiliary state variable

for the RID AP controller.

P;: = GainSiP;:, - Pu)r + Phd (5-23)

From the pump model given in Chapter 3, solving for the pump head, H, and

renaming it gives the following

Pi

where P^^ is the pressure at upstream of feedwater control valve, Psuc is suction

pressure of feed pump, fl and /2 are constants given in Chapter 3, wf is the

feedwater flow rate, and pi is the density of water. Similarly, from the pump model,

solving for the pximp speed, and renaming it Ng, yields the following

There are two solutions for Equation (5.25); the one with the physical meaning has

the positive sign, and is given by

_o2 I .I(a2wj_\2 _
=  °1 ^ al 1 (5 26)

2

The pump speed model equation is given as

dNjnimp ^pt ^pump /c 9'7\
dt I ^ ^

RID formulation for the pump speed model requires the construction of the auxiliary

state variable and is given as

= Gaini{N^^p - Np^mp) (5.28)dNp^Ynp ^pt ^pump
dt 1
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where Xpt is the driving torque and Xp^^p is the pump load torque.

^  Wmfpi^in ho^t)77S 2g^
Xpump

where and hout are the inlet and outlet enthalpies of the turbine, H is the pump

head, eff is the efficiency of the turbine, and W^fp is the extraction steam flow

rate to the main feed pump turbine.

Wmfp = U2ProKr (5.31)

Substituting Equations (5.29), (5.30), and (5.31) into Equation (5.28) and solving

for U2 gives the RID control variable for the pump speed control.

TTn ^ (N^JJ^p — Npump) Xjmrnp + 'Jjj'
PrKr{hi^-h^,)m ^

where is

N^mp = {N,r){Np,mp^) (5.33)

The values of the gain constants are fotmd from simulation tests as ICQ for both

GainS and Gaini. The details and definitions of the pump model are given in

Chapter 3.

5.3 Fuzzy Logic Controller

The important difference between the fuzzy logic approach and the traditional ap

proaches for control design is that, the former uses qualitative information where

as the latter requires rigid mathematical relationships describing the process. The

control action in a rule-based system is performed by first measuring the relevant

parameters and then defining their membership grades in the appropriate subsets.
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There are two types of applications of fuzzy sets in control theory. In the ap

proach developed by Bellman and Zadeh [56] [10] the performance criterion is a

combination of subjectivity and computational tractability. The second approach is

Zadeh's hnguistics approach, which motivated many researchers in developing fuzzy

logic controllers for large, complex systems [56].

"The optimal control is to find a sequence of inputs (possibly of a fixed length)

in order to reach a prescribed final state (the goal) [56]." The purpose of controllers

is to compute action variables from the observation of the state variables during

a process. The relationship between the state variables and action variables can

be a set of logical rules. An example of a fuzzy rule is "i/ level error is positive

large or positive medium then feedwater valve opening is medium small." Positive

large, positive medium, medium small are different sets defined on various universes.

The main advantage of using fuzzy control is that it is not necessary to have a

mathematical model of the observed system. Mathematical models in this research

were used for simulation purposes. Their robustness comes from human experience.

Fuzzy controllers, when compared with the traditional FID controllers in highly non

linear systems, have given better results [44]. Recently, fuzzy controllers have been

very successful in apphcations to complex systems. Examples of fuzzy logic con

troller include automatic fast-train controllers, feedwater flow regulation systems,

and cement kiln controllers [55] [48] [44]. As Zarieh [10] has pointed out, an intel

ligent control is descriptive and relies on the operating experience via a rule-based

representation such as fuzzy rules, whereas the conventional control is prescriptive

and relies on a crisp logic. Thus, the fuzzy logic is well-suited for the management

of uncertainty present in the context of complex behavior which cannot be properly

handled by a crisp logic [18].
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A fuzzy logic is chaxacterized by a linguistic variable whose values are words or

sentences in a synthetic language. A linguistic variable includes an adjective-like

term (and its antonym), a modifier and a connective. The modifier is a measure of

intensity which is associated with a possibility distribution. This is often referred

to as the membership function in the literature. The fuzzy control policy is repre

sented by a finite collection of rules of the form "i/ X is A then Y is B" where

the truth value of the antecedent if X is A is determined by the grade of membership.

In fuzzy logic control, a fuzzy relationship between the information about the sys

tem and the current conditions of the system is developed. Traditionally control

algorithms work with crisp numbers which represent the condition of a system. In

fuzzy control the algorithm is composed of if-then statements. These statements axe

called fuzzy rules. There is a group of fuzzy control rules that calculates the control

output for the actual data. This calculation is performed using a fuzzy inference.

There are various methods of fuzzy inferences [62]. The fuzzy control inference usu

ally uses numerical values as an actual input to the controller, and not fuzzy values.

Fuzzy rules are derived using fuzzy subsets which describe the controlled process

and the output of the fuzzy controller.

A fuzzy subset A of a universe of discourse U is characterized by a membership

function /x : 17 —> (0,1) which associates with each element u ai U & number fi{u)

in the interval (0,1), representing the grade of membership of u in A. The fuzzy set

A of 17 = {ui, ti2,..., Un} is denoted by

i=l i

where denotes imion.

Two basic operators axe used in the steam generator water level control. The union
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of fuzzy subsets A and B is shown hy A + B and is defined as

A + B = V (5.35)
i

where V stands for maximum. The union corresponds to the operator OR. The

second operation, the intersection of fuzzy sets A and B is denoted hy A - B and is

defined as

A - B = A (5.36)
t

where A means minimiun. The intersection corresponds to the operator AND. The

definition of fuzzy sets permits one to assign values to fuzzy variables [63]. An

aggregated value of control can be found by a voted average among the contributing

rules. The design of a fuzzy control for dynamic systems includes a table of fuzzy

rules that relates the state variables to the control variables. Every fuzzy nde

corresponds to a unique relationship among the state and control variables of the

system. Control is determined by an interpolative method when the input to the

control system does not match with the canonical structure of the table (fuzzy

predicate). The membership functions are usually triangular or trapezoidal on the

universe that lies between two connecting points of the truth table. As plant states

change in time, membership functions are shifted to a new tmiverse. This approach

saves computational costs by minimizing the number of membership functions for

the trajectory following case. For example, a ramp trajectory can be divided into n

intervals in which the same control logic holds. Instead of using n x k membership

functions {k is the number of propositions in each interval), we can use only k

memberships apphcable to n different universes. A control law Y calculated in

terms of trainable weights W,, and partial controls Ui is given by

(5.37)

Each paxtial control Ui is based on a unique relationship among the state variables

of the plant.

93



5.3.1 Fuzzy Variable

Let us consider a continuous variable Y which can have the values between -10 and

10. If this variable is defined in a crisp logic, then the information that can be

obtained from this variable will also be crisp as expected. For example, if Y denotes

temperature, then the information Y = 5 will simply say that the temperature is 5

°C. On the other hand, consider the heuristic approach in which the range (imiverse

of discourse) of Y divided into several regions is defined by an interpretable term.

Suppose the intervals -10 to -4, -5 to 5, 4 to 10 are defined a.s low, medium, and high

regions of Y, respectively. Then, the variable Y is defined as a fuzzy variable which

can talce linguistic values of low, medium, and high. Figure 5.2 displays the umverse

of the fuzzy variable Y and its regions. The fuzzy representation contains more

information about a variable than that of the standard representation in calculus.

Using the same example, the information Y = low means that the temperature is

within a range of -10 and -5 °C and it is defined as low with respect to the other

values it can take. The variable temperature is now defined by a range of numbers,

rather than a crisp value such as F = 5. This representation is closer to the human

reasoning than that using crisp values.

5.3.2 Fuzzy Membership Function

Let X be a classical set of objects, called universe, whose generic elements are

denoted by x [56]. The membership in a classical subset A of X is often viewed as

a characteristic function pA from X to {0,1} such that

1  iff X e A,

0  iff X ̂  A.
Pa{x) = <

k

{0,1} is called a valuation set, € means "is a set of" and iff means "if and only if."

If the valuation set is allowed to be the real interval [0,1], A is called a fuzzy set [11].
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A Fuzzy Variable
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Universe of Discourse

Figure 5.2: A Fuzzy Variable with Three Linguistic Values.



In the fuzzy set theory //^(x) is the grade of membership of x in A. The closer the

value of is to 1, the greater is the belonging of x in A.

A is completely characterized by the set of pairs

A = {(x,/xa(x)), xeA) (5.38)

When X is a finite set {xi,..., x„}, a fuzzy set on X is expressed as

n

A = //>l(Xi)/xi + + f''A{^n)l^n — ̂ )/x," (5.39)
»=1

When X is not finite, we write

A = J^fiA (x)/ X (5.40)

Two fuzzy sets A and B are said to be equal (denoted A = B) xS

y X e X, fiA{x) = hb{x)

where V means "for every." In Section 5.3.1 a fuzzy variable Y as temperature was

defined. Now the definition of low and other values of temperature are discussed.

The definition of low or any other term simply depends on the person defining the

fuzzy variables. In the fuzzy logic, the judgement of this definition is formulated

with a possibility distribution, talcing values between 0 and 1. This distribution is

called a membership function. In the temperature example, the membership function

low must give 1 (or the maximum value defined for low) at a certain point on the

universe of discourse which best represents low. Figure 5.3 displays an example

of membership function distribution of Y between -10 and 10. The shape of the

membership function may have any form, as long as it represents the relationship

of interest [66]. Trapezoidal fuzzy membership functions have been utilized in this

dissertation research.
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a Fuzzy Variable, Temperature.
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UNIVERSE OF DISCOURSE

Figiire 5.3: An Illustration of Membership Fimctions Low, Medium and High.



5.3.3 Implementation of a Fuzzy Controller

In this section membership cuts and principle of implications are discussed. There

are two major steps in implementing a fuzzy algorithm: fuzzification and defuzzifi-

cation. Fuzzification is a process in which the variables are transformed into fuzzy

variables, and defuzzification is simply the opposite of the fuzzification process. Af

ter defuzzification the results will again be real values. Since the goal is to develop

a controller using real values obtained from the plant, real values are used as inputs

and outputs.

Fuzzy Inference Engine

A fuzzy inference engine is a rule-based system (which can be a computer program,

an integrated circuit, or an information system in other media) that implements

the fuzzy logic. It must have both inputs and outputs. It performs a nonlinear

mapping between the input domain and the output domain. Its objective function

can be a control, classification, pattern recognition, filtering, prediction, diagnostics

or modeling. The fuzzy inference engine can be viewed as a decision maldng tool

in general. Figure 5.4 shows an example of a fuzzy inference engine. It receives

numerical values of measurements such as Flow Error and Level Error, and produces

a numerical output such as Valve Opening.

Rule Composition

Rule composition refers to the organization of the left-hand-side (LHS) statements

using logic operators such as (OR) and (AND). For example, consider the following

fuzzy rule:

IF X = low AND Y = high THEN U = medium

Here, the LHS statements {X=low and Y=high) are connected by the AND operator.

Suppose that the membership functions for X — low and Y = high are designed
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Flow Error

If Flow Error Is High
AND

Level Error Is High
THEN

Valve Is OpenLevel Error

' Valve Opening

Figure 5.4: Fuzzy Inference Engine.

as triangles as given in Figure 5.5. When there are entries (inputs) of X = 1.5

and Y = 8.5, the corresponding values of the membership functions (/x) are fotmd

as shown in the Figure. The values of X = 1.5 and Y = 8.5 yield 75% and 100%

possibility for X being low and Y being high, respectively.

The AND operator uses the values of fi = 0.75 and /x = 1.0 to compute the output

of the composition which is the minimum of the two entries, 0.75. This output is

then used in the implication process by the THEN operator.

Fuzzy Projections

The evaluation of membership functions (sometimes called cuts) for a given nu

merical value is dilferent for the input and action variables. The evaluation of a

membership function of an input fuzzy variable is similar to that of calculus (i.e.

calculate y = f{x) given values of x). Once the inputs of an inference engine

are projected onto the contours of membership functions, they may be considered

as being mapped onto a fuzzy space or fuzzy clusters {fuzzification). Consider a
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U=0.75

X IS Low U=1.0

X=1.5

Y is High

Y=8.5

Figure 5.5: Rule Composition for Two Fuzzy Input Variables.

membership function called LOW that lies between 10 and 30 of the universe of

composition left-hand-side (LHS) variable called FLOW. If FLOW is 23.5 Ibm/sec

then the membership function will take a value between 0 and 1. Figure 5.6 displays

the fuzzy cuts of the membership functions. Similarly, if FLOW is an implication

right-hand-side (RHS) variable the results of rule composition will be projected onto

the contours of the membership fimction. The cut will be side-ways, leaving a shape

underneath often in the form of a trapezoid. Another way of implementing cuts is

to place a new triangle inside the trapezoidal. K there are N rules, each of those

rules will produce a similar shape, and the final decision will be made through the

implication process which takes into account all the resultant trapezoids and com

putes the center of gravity [66]. Figure 5.7 gives the method of placing a triangle

below the cutting line, the fuzzy cut is found with the product of the contributing

fuzzy variable entries.



FLOW-LOW

3010

Flow ibm/sec

Figure 5.6: Membership Function Cuts in the Form of Trapezoidal.

FLOW-LOW

0.85

Flow Ibm/sec

Figure 5.7: Membership Function Cuts by Placing a New Triangle.
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C«ntM- of Gravity
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Figure 5.8: Implication Principle of the THEN Operator for one Variable.

Implication of Rules

In this section interpretation of the operator THEN is discussed. One of the common

approaches for interpreting THEN is to calculate the center of gravity of the final

shape obtained by cutting the right-hand-side (RHS) membership function with

the results of the rule composition. For example, if the composition result is 0.75

from the LHS, this yields a cut in the output variable's membership function from

0.75. The center of gravity of the new trapezoidal area of the output membership

function is the result. Often this process is called "defuzzification", and the RHS

variable is called "action variable" [66]. The real value of the action variable is

within the universe of discourse of that action variable which is defined during the

fuzzification process, along with the input variables. When there is more than one

rule for the same action variable, the resulting areas overlap. The final shape is

used to calculate the center of gravity as the result of the action variable. Figure 5.8

displays the implication principle of THEN operator. Figure 5.9 gives the resulting

action variable which is obtained by combining three different cuts.
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Center of Gravity
of the Shaded Area

Figure 5.9: Resulting Form of the Action Variable by Combining Various Fuzzy

Cuts.

5.3.4 Fuzzy Inferencing Methods

This section discusses two diflFerent inferencing methods which are used in the fuzzy

logic applications, namely min-max gravity and product-sum gravity [44] [64] [56]

[45]. These methods combine the fuzzy relations defined on different Cartesian

products and compose a new relationship. Fuzzy if/then rules or fuzzy algorithms

are mathematically equivalent to fuzzy relations and the problem of inferencing (or

evaluation for specific inputs) is equivalent to composition.

Min-Max Gravity Method

Most of the existing fuzzy logic controllers use Mamdani's "min-max" fuzzy reason

ing method. There are two relations in this method, (max V) and (min A). Let

there be two fuzzy relations A{x,y) and B{y,z) defined over X xY and Y x Z,

respectively. The min-max composition of A and B is a new relation shown as AoB
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defined on X x Z with

AoB= f V[/i^(x,y) A/iB(y,^)]/(x,2r) (5.41)
JXxZ

where "o" stands for min-max composition method. When the product X x y is

discrete then the integral (union) is replaced by summation. Consider the following

multiple reasoning form for a better understanding of the min-max method:

Rule 1: A1 and B1 => Cl

Rule 2: A2 and B2 => C2

Rule n: An and Bn => On

Facts: xq and yo

Result: Zq

where A,- is a fuzzy set defined in a set X, and similarly Bi is a fuzzy set in a set

Y, and C,- is the resultant fuzzy set in a set Z. Figure 5.10 displays the member

ship functions for Al, Bl, and Cl, and the min-max composition of membership

functions. The resulting membership functions for the rules is given by

tiAiandBi=>Ci (x, V, z) = (x) A flBi (v) A Hd {z) (5.42)

where A stands for mm. The inference result C[, which is obtsdned from the facts

xo, yo, and the fuzzy rule A,- and Bi => C,-, can be displayed as

f^Ci (^) = (®o) a fiBi (yo) A fiCi {z) (5.43)

The final form of the n rules, C,', will be aggregated by taking the union (U) of

Cl', C2',... Cn' as shown in Equation (5.43).

C = CT U C2' U ... U Cn' (5.44)
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c'=c'uc'.

Figure 5.10: Min-Max Gravity Composition Method.



which is,

Hc'{z) = V • • • V ficn'{z) (5.45)

where V stands for max. From Equation (5.41) the grade of membership fimctions

of each (s, z) pair can also be displayed by

f^AoB{x, z) = Vj,[^A(a:, y) A usiy, z)] (5.46)

The representation of the point zq (displayed in Figure 5.10) for the resulting fuzzy

set C is obtained as the center of gravity of C

f/ic>iz)dz

This fuzzy composition method is known as Mamdani's method [64] and called the

""min-max gravity method".

Product-Sum Gravity Method

The second method was introduced by Mizumoto as an alternative to the min-max

method of Mamdani. The product-sum gravity method proposes a placement of a

triangle for the fuzzy cuts. This method replaces the mm function with product,

(•), and max function with sum in the min-max method. The product-sum gravity

method is shown in Figure 5.11. The inference result of C- from the facts xq, yo,

and the fuzzy rule A aJid Bi=> C, is given by

pcfiz) = fiAiixo) • fiBiiyo) • fiCiiz) (5.48)

Aggregated form of C is given by

C" = CT-|-C2'-H----t-Cn' (5.49)

The resulting membership function for the aggregated form of C is given with

t^c'{z) = Mci'(^) H 1" Mcn'(^) (5.50)
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The representative point, zq, of the C" is obtained using the center of gravity method,

similar to the min-max method. However, the center of gravity for the product-sum

gravity method is derived as follows.

Let Zi be the center of gravity of the inference result C,' of Equation (5.48) and

Si be the area of C,' (see Figure 5.11), which is given with
_ Jz-ncf{z)dz ̂  fz-nc'.{z)dz ^ ̂

I lJ'Cf{^)dz Si

which yields

j z • nc[{z)dz = Si Zi (5.52)
Center of gravity, zq^ of the final form of C given with the Equation (5.50) can be

displayed as

_ fz-fic;(z)dz _ fz • [nci'iz) + h fiCn'{z)]dz
f Mc((^)dz /[a'ci'(^) H licn'{z)\dz

_ f z • ̂ Cl'(z)dz -I f z • fXCn'(z)dz
f Mci'(z)dz -1- h f MCn'(z)dz

—  + ̂2^2 + • • • + SnZn
Si + S2 + • • • Sn

The center of gravity, zq, therefore is the weighted average of ar.'s (center of gravity

of C-) with weights 5,'s (area of C-). The described method also corresponds to the
area method of defuzzification [44].

Comparison of Min-Max and Product-Sum Gravity Methods

A comparison of the two composition methods described above will be given with

an example in this section [45] [44]. Let ̂ 1,^25 zz, and Z4 be the heights at the lattice

points (xl,yl),(xl,j/2),(a;2,yl), and (i2,y2), respectively, in which xl < x2, and

yl < y2. For simplicity four fuzzy rules will be considered in this example:
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Rule 1: xl and yl => zl

Rule 2: xl and y2 => z2

Rule 3: x2 and yl => z3

Rule 4: x2 and y2 => z4

Facts : xq and ya

Result : zq

where xl is a fuzzy set representation of "about xl". Fuzzy sets xl and x2 are of the

triangular type and intersect each other at the height 0.5, the same holds for yl and

y2. Fuzzy sets zl, z2, z3, and z4 have the same width, although it is not restricted.

Figure 5.12 displays the resulting center of gravity point, zq, for both methods.

In the apphcations of fuzzy logic, both inferencing methods are widely used. Al

though the results of these methods are most of the time very close to each other,

some application dependent advantages and disadvantages of these approaches exist

[45] [44].

5.3.5 The Water Level Controller

In the application to a steam generator water level control three fuzzy variables are

used:

• LE Level Error, defined as the difference between the level set point and

the present value of the steam generator water level.

• FE Flow Error, defined as the mismatch between the feedwater flow and

the steam flow.

• U1 Feedwater Valve Opening (control action variable).

These variables are defined with a number of points to cover the universe of discourse,

and values to the variables are assigned using seven fuzzy subsets:
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Figure 5.12: Inference Results of Min-Max and Product-Sum Gravity Methods.



• PB Positive Big

• PM —♦ Positive Medium

• PS —> Positive Small

• ZO Zero

• NS Negative Small

• NM —^ Negative Medium

• NB —^ Negative Big

Two different fuzzy logic level controllers were developed as part of the parallel,
fault-tolerant control design. The first design uses variables similar to those used in
the conventional PI controller, namely level error and flow mismatch. The second

fuzzy controller is an alternative controller where, instead of using flow mismatch,
the change in level error is used along with the level error signal. This approach
enables the control design to overcome not only the sensor failures, but also possible
swings that may occur during plant operation. Since the change in level error has
± sign, this indicates not only how much change tahes place, but also the direction
of the change. Figures 5.13 through 5.15 display the fuzzy variables Level Error,
LE, Flow Mismatch, EE, and Valve Opening, Ul. Seven membership functions were
used for covering the effective domains of each fuzzy variables changing from NB to
PB. The control rules were implemented by using the fuzzy conditional statements.

IF LE is NB and EE is PS then Ul is NM

IF LE is NM and EE is NB then Ul is PS

IF LE is ZO and EE is PS then Ul is NM
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PBNB NM NS ZD PS PM

-0.51 -0.38 -0.25 -0.12 0.0 0.12 0.25 0.38 0.51

Leuel Error (feet)

Figure 5.13: Fuzzy Variable Level Error, LE.

NB NM NS ZO PS PM PB

-11 -8.25 -5.5 -2.75 0.0 2.75 5.5 8.25 11

Floui Error (Ibm/sec)

Figure 5.14: Fuzzy Variable Flow Mismatch, FE.
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PBPMZO PSNSNMNB

0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Ualue Opening

Figure 5.15: Fuzzy Control Variable, Valve Opening, Ul.

Table 5.1 gives the rules for the first fuzzy logic controller for the steam generator

water level control of a four-loop PWR. The definition of the fuzzy variable do

mains and the timing of the fuzzy rules were completed with extensive tests and

trials. Numerous simulation tests were completed to determine the effective ranges

of the variables and the rules. A single rule implication from Table 5.1 presented

in this section. First fuzzy logic water level controller has two inputs, namely Level

Error, LE and Flow Mismatch, EE. Suppose the value coming from the plant for LE

falls between 0.25 and 0.51, for which the membership function PB is defined. Simi

larly a value for FE falls between 5.5 and 11 for which the membership function PB

is defined. The following fuzzy rule will be fired according to these incoming fuzzy

variable values: "If LE is PB AND FE is PB THEN Ul is NB." During the fuzzifica-

tion stage, the minimum of the two fuzzy cuts from LE and FE wiU be found, since

the operator AND is used, then the fuzzy cut within the fuzzy variable Valve Open

ing (Ul) will be found as it was discussed in the previous sections. Defuzzification

will take place according to the cut within the fuzzy membership function NB which

covers the domain of 0.0 and 0.20. The centroid of the area will be foimd according
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Table 5.1: Steam Generator Water Level Fuzzy Control Rules I

Flow Mismatch ̂ FE)

Level Error

(LE)

U1 NB NM NS ZO PS PM PB

NB PM PM ZO ZO NM NM NM

NM PS PS PS PS NM NM NM

NS NS NS NS NS NS NS NS

ZO PB NM NM NM NM NM NM

PS NB NB NB NB NB NB NB

PM NM NB NB NB NB NB NB

PB NM NM NM NM NM NM NB

to the fuzzy cut, and the centroid value wiU be the control action for water level

controller. If there are more than one fuzzy membership fimctions contributing to

the same action, then the areas of each trapezoid (obtained from the fuzzy cuts) will

be added, and the resultant centroid of the area will be the control output. Fuzzy

inferencing was discussed in detail in Section 5.3.4. Figures 5.16 through 5.18 show

the fuzzy variables for the second fuzzy logic controller. Table 5.2 gives the second

fuzzy logic controller rules for the steam generator water level control of a four-loop

PWR. The results of the fuzzy controllers for the steam generator water level axe

presented in Chapter 6.

5.3.6 The Pump Speed Controller

One of the objectives of this study is to develop a better feedwater regulation system

for Westinghouse-type four-loop Pressurized Water Reactors (PWRs). In order to

overcome the sluggish nature of the current pump speed controllers, an alternative

control design using fuzzy logic is presented. The nature of the fuzzy control design.
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PM PBPSNM NS ZDNB

-0.51 -0.38 -0.25 -0.12 0.0 0.12 0.25 0.38 0.51

Leuei Error (feet)

Figure 5.16: Fuzzy Variable Level Error, LER.

NM A NS/\ ZO A PS /\ PM

0.0

0.26 -0.17 -0.08 0.0 0.08 -0.17 0.26

Change in Leuel

Figure 5.17: Fuzzy Variable Change in Level, A L.
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PBPMPSZONSNMNB

0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Ualue Opening

Figure 5.18: Fuzzy Control Variable, Valve Opening, U2.

Table 5.2: Steam Generator Water Level Fuzzy Control Rules II

Level Error (LER)

Change in Level

(AL)

U2 NM NS ZO PS PM

NM PB PM NS NM NB

NS PM ZO PS NB NB

ZO PM NS NM NB NB

PS NS NS NM NB NB

PM NM NM NB NB NB
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allows us to develop a controller that has a smoother response when compared to

the conventional PID controllers [12]. Fuzzy variables are defined with overlapping

membership functions, therefore each of these membership functions contribute to

the resulting control action. A fuzzy controller also allows us to use signals in the

feedforward fashion. This further enables the controller to overcome the possible

problems that occur in the event of steam generator transients. The pump speed

fuzzy controller, has two inputs, feedwater flow and differential pressure. The feed-

water flow signal indicates the flow demand during a certain operating power level.

The differential pressure is the difference between the feedwater header pressure and

the steam header pressure, and is set according to a differential pressure program.

Fuzzy variables for the pump speed controller are defined similar to those for the

water level controller. Seven membership fimctions are used for each variable to

cover the effective domain of the controller.

The pump speed fuzzy controller has two inputs, feedwater flow and differential

pressure error (AP„r)- Fuzzy variables for the controller are shown in Figmes 5.19

through 5.21. Table 5.3 gives the fuzzy rules for the controller. Feedwater flow

signal is used as feedforward signal, and the effective domain of the fuzzy variable

WF is determined based on the possible transients that might occur during the

normal operation of a PWR. The range of the feedwater flow variable covered was

with seven overlapping membership functions from 975 Ibm/sec to 1100 Ibm/sec.

Similarly, APerr and US are defined using seven membership functions, and their

effective domains were determined with simulation tests. Performance test results

of the pump speed controller are presented in Chapter 6.
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PBPS PMNM NS ZDNB

975 990 1006 1021 1037 1053 1068 1084 1100

Feediuater Floiu Rate

Figure 5.19: Fuzzy Variable Feedwater Flow (WF).

PBNB NM NS ZO PS PM

- 11 -8.25 - 5.5 - 2.75 0.0 2.75 5.5 8.25 11

AP Error

Figure 5.20: Fuzzy Variable Differential Pressure Set Point Error, APg,
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PM PBZO PSNM NSNB

0.14 0.24 0.34 0.44 0.54 0.64 0.74 0.84 0.94

Gouernor Uaiue Opening

Figure 5.21: Fuzzy Control Variable, Main Feed Pump Turbine Valve Opening, U3.

Table 5.3: The Pump Speed Fuzzy Control Rules

Feedwater Flow (WF)

APe,

U3 NB NM NS ZO PS PM PB

NB ZO ZO ZO ZO ZO ZO ZO

NM ZO ZO ZO ZO ZO ZO ZO

NS PS PS PS PS PS PS PS

ZO PS PS PS PS PS PS PS

PS PM PM PM PM PM PM PM

PM PB PB PB PB PB PB PB

PB PB PB PB PB PB PB PB
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5.4 Conventional PID Controller

In a PWR plant, a standard three-element controller regulates each steam generator

water level individually. Water level, pressure, feedwater flow, and steam flow read

ings compose the instrumentation for each controller. The three-element control

system uses the measurements of steam generator water level, feedwater flow, and

steam flow. The control system maintains the feedwater flow at a value equal to

the steam flow, when the steam generator water level is equal to the level setpoint

[27]. Feedwater flow is controlled automatically above 15 % power [27]. The main

feedwater pump speed controller responds to the error between the actual differen

tial pressure at the main valve and its set point. The feed pump turbine valve is

regulated to provide proper pump head.

5.4.1 The Water Level Controller

The three-element controller regulates the main feedwater valve position such that

sufl&cient feedwater flows into the steam generator to maintain the programmed level

value. The level error signal indicates the deviation of the water level signal from the

desired setpoint. The setpoint is derived from the first-stage turbine impulse pres

sure [28]. The signal representing the measured level passes through a filter

to remove any high frequency oscillations. The narrow range level indicator reading

is compared with the desired level signal, and the error is sent to a proportional-

integral (PI) controller, Kii{l -f ̂ ), which eliminates the steady-state level errors.
The output of this first PI controller goes to the three-mode valve controller. The

controller subtracts the feedwater flow from the steam flow, adds the level error

signal and sends the final signal to another PI controller, Ki2{l + ehminate

steady-state errors in feedwater flow. The output of the PI controller is the final

main feedwater valve position signal. Figure 5.22 gives the block diagram of the

conventional three-element controller [28].
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5.4.2 The Pump Speed Controller

The feedwater pump speed control system maintains a programmed differential pres

sure between the feedwater pump's discharge and the steam header by controlling

the speed of the feedwater pump turbine drives [28]. A single controller governs

the speed of both turbine-driven main feedwater pumps. The programmed pressure

difference is maintained as a fimction of plant load in order to:

• Maintain feedwater control valve position in the linear range at part power

• Reduce pump power requirements at part load

• Reduce the possibility of valve plug erosion due to excessive closure at part

load.

Description of the Pump Speed Control System

The fimctional diagram of the piimp speed control is given in Figure 5.23. The

programmed differential pressure between the feedwater header and steam header

is derived as a function of the plant load as measured by the total steam flow.

Figure 5.24 shows the differential pressure program. The programmed pressme

difference signal passes through a lag imit to slow the effect of large steam flow

perturbations, and it is summed with a bias signal to allow feedwater flow against

static head losses at no-load conditions. The programmed pressure difference is

then compared with the actual pressure difference signal (feedwater header pressure

- steam header pressure) to generate an error signal. The error signal is sent to a PI

controller, K^2{'^ + which ehminates the steady-state error. The output of the

controller is the actuation to change the pump speed by throttling the feed pump

turbine valve.
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Figure 5.24: DiflFerential Pressure Set Point Program.

124



5.5 Summary of the Chapter

This Chapter presented the control module of the Fault-Tolerant Control and Diag

nostics System developed for the feedwater flow regulation of a PWR. Three different

control algorithms were developed as part of the parallel control approach introduced

in this research, namely the conventional PI controller, the Reconstructive Inverse

Dynamics (RID) controller, and the Fuzzy Logic Controller (FLC). The feedwater

flow regulation consists of two major control systems: the steam generator water

level control and the main feed pump speed control. Both of these control systems

were included in the FCDS. The development of the control algorithms and details

were presented in this Chapter.
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Chapter 6

Results of Analysis of the
Integrated Control System

6.1 Introduction

Unknown plant dynamics, time-delay in measurements, actuator constraints, flow

and temperature perturbations, and main feed pump failure are the most common

causes for plant trip in PWRs. The robustness of the FCDS control algorithms

was demonstrated by simulating these cases. The performance of the existing PI

controller, inverse dynamics and fuzzy logic controller for water level set point and

steam valve perturbation tests were also analyzed. The results are compared in

the following sections. The test of AP set point perturbation for the pump speed

controller is also discussed in this chapter to illustrate the robustness of the RID

and the fuzzy logic controllers.

Since one of the objectives of this research is to demonstrate the feasibility of using

multiple controllers for the same task, the case of water level perturbation is used

to integrate all the three control algorithms for the feedwater control system. The

resiJts of the conunand vahdation and the decision-making modules, and the signal

validation module are also presented in this chapter.
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6.2 Fuzzy Logic Controller

One of the important contributions of this dissertation reseaxch is the design of

Fuzzy Logic Controllers (FLO) for the steam generator water level control and the

turbine-driven feedwater pump speed control in pressurized water reactors (PWRs).

Although fuzzy logic controllers have been developed for various systems such as

electric trains, cement kilns, water purification plants, and many others, there is no

real application of fuzzy logic in the nuclear industry, except in the Fugen reactor in

Japan. This dissertation research introduces a new control system for the feedwater

flow regulation with the development of water level control and pump speed control.

These two controllers work individually as part of the FCDS, and operate jointly to

regulate the feedwater flow in PWRs.

Fuzzy controllers were introduced by Mamdani and Assilian in 1975 for the con

trol of complex processes, especially when no precise model of the process exists

[56]. The fuzzy controllers were designed to handle a process sunilax to a human

operator's actions. Since the fuzzy logic controller follows the actions of a human

operator, the stability analysis of fuzzy controllers is not straight forward. Stabihty

analysis of a control system relies on the availability of mathematical models of pro

cesses [56]. The main advantage of a fuzzy controller is that its synthesis does not

require the existence of any model. Therefore the stabihty analysis of fuzzy logic

controllers caimot be carried out in the traditional manner. They are assumed to

be imphcitly robust because they are based on human experiences [56] [62] [63] [65].

Dynamic models of a PWR steam generator and controllers were used in this re

search in order to simulate the feedwater system responses. Based on the model,

and using the possible real world failures, the performance and the stabihty of the

fuzzy controllers can be evaluated. Since the transient steam generator dynamics is

127



highly nonlinear, and there are various factors that might change during the oper

ation of a power plant which challenge the control systems, testing the fuzzy logic

controllers will enhance the reliability of the controllers. The details of the fuzzy

logic controllers for both the steam generator water level control and the differential

pressure control are given in Chapter 5. In addition to the perturbation tests which

are discussed in the following sections, a set of performance tests were also carried

out to show the robustness of the fuzzy logic controllers.

The following cases are chosen to test the fuzzy logic controller performance, since

these situations axe more likely to occur during the operation of a power plant.

• Unknown plant dynamics.

• Measurement delays.

• Constraints in the control ax:tions.

• Boimdary condition perturbations.

6.2.1 Unknown Plant Dynamics

Some of the design parameters change during the normal operation of a power plant.

These are usually handled by the operators without challenging the control systems.

Three different parameters were selected to test the robustness of fuzzy controllers.

The heat transfer coefiScients from primary side to metal side (Upm), from metal side

to subcooled region (t/mai), and from metal side to boiling region (UmaT), are con

sidered. The details of the U-tube steam generator model and how these coefficients

affect the modeled system are given in Appendix A. These parameters may degrade

due to changes in the design values such as deposit build up, breaks, concentration

deviations, or possible turbulence in the flows. Four different external disturbances

are applied to each of the coeiBBcients varying from 0.5 % ramp change within 50

128



seconds to neaxly 100 % change. The fuzzy logic controller is able to handle the

disturbances without creating further complication to the feedwater system. This

test also evaluates the robustness of the fuzzy logic control.

Figure 6.1 shows the perturbations (~ 100 %) applied to the heat transfer co

efficients from the primary side to the metal side (I7pm), from the metal side to

subcooled region (Umsi), and from the metal to the boiling region ([/ms2)- After

the analysis of the effects of changing three coefficients, it is concluded that the

primary to metal side transfer coefficient, Upm, has the most impact on the water

level control. The fuzzy logic controller is able to handle all disturbances with no

steady-state error, or negligible steady-state error in the water level. Figures 6.2

through 6.4 give the corresponding steam generator water level responses for the

first ~ 100 % parameter disturbances.

In addition to the 100 % disturbance that was introduced to Upm-, a filial test was

simulated by increasing the coefficient to 3 times its original value within 50 seconds.

In order to imderstand the effective domain of the fuzzy logic controller, this unreal-

istically large perturbation test was performed (see Figure 6.5). These disturbances

are much greater than those that might occur during the operation of a nuclear

power plant. The fuzzy logic water level controller showed a robust response to the

disturbance and controlled the water level within the design limits with a negligible

steady-state error (see Figure 6.6). In conclusion to these unknown plant dynamics

tests, the fuzzy logic controller is robust against these types of disturbances.

6.2.2 Measurement Time-Delay Problem

One of the problems associated with control systems is their robustness against

the abnormalities in measured signals. Sensors often undergo a gradual degrada

tion before they become completely non-operational. Although the FCDS offers a
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sensor/signal validation module to overcome this problem within its fault-tolerant

design, it is necessary to show the robustness of the individual controllers against

measurement delays that often occur dming the operation of a power plant. Since

the emphasis is given to the fuzzy logic controllers in this dissertation, various mea

surement delay tests were applied to the fuzzy logic steam generator water level

controller.

Before a sensor anomaly is detected by any signal validation technique, it is im

portant that control systems respond properly during the period in which one or

more sensors are degrading. In this test, the simulations include time-delays in water

level measurement and feedwater flow measurement. The measurement time-delay

is modeled using a first-order delay dynamics given by

^ = i(i - i,) (6.1)
CLt T

where Ld, L, and r axe the measvured signal, plant state variable, and sensor time-

constant, respectively. The first time-delay test simulation introduces a 100 mil

lisecond delay in both of the control inputs: flow error and level error signals. These

delays axe defined to be in addition to the normal time constants of the sensors in

the plants. Figure 6.7 shows the steam generator water level response during a level

perturbation. Level pertmrbation is a set point change in which the level set point

was increased 16 % from 9.63 feet (measured from the top of the U-tube bundle)

to 11.13 feet within 300 seconds. The second simulation was made with 5 second

delay in the level error signal and a 100 millisecond delay in the flow error signal.

The result of this simulation test is shown in Figure 6.8. The third test was made

with a 5-second delays in both of the control input signals. Figure 6.9 gives the

responses of the water level signal when there is a 5-second delay in the control in

put measmrements. The results of the simulation tests have shown the robustness of

the fuzzy logic controller against possible time-delays in measurements. Although

136



11.2

11

10.8

_ 10.6

10.4

10.2

0
CO 10

200 400 600 800 1000 1200 1400 1600

Time (sec)

Figure 6.7: Steam Generator Water Level Response with 100 Millisecond Time-

Delay in the Control Input Signals.

137



a>

11.2-

11

10.8-

_ 10.6-
0)
>
0)

CO

10.4-

10.2

CD
CO 10

9.8

9.6
200 400 600 800 1000 1200 1400 1600

Time (sec)

Figure 6.8: Steam Generator Water Level Response with 5 Second Delay in Level

Error, and 100 Millisecond Delay in Flow Error Signals.

138



11.2

11

10.8
o
0

10.6
0
>
0

10.4-
0

OJ
10.2-

O
CO 10-

9.8-

9.6-
200 400 600 800 1000 1200 1400 1600

Time (sec)

Figure 6.9: Steam Generator Water Level Response with 5 Second Time-Delay in

the Control Input Signals.

139



the time delay in the control input signals caused small fluctuations in the level

signal, the fluctuations were insignificant, and the fuzzy logic controller completed

the perturbation successfully.

6.2.3 Actuator Constraints

Actuator constraints limit the capabiHty of control systems because of electrome

chanical or safety-related constraints. The error between the desired trajectory and

the system response must be minimized by modifying the trajectory such that the

actuator hmitations axe not exceeded. There is a maximum rate for the control-rod

motion, pump discharge, and valve openings in nuclear reactors where the safety

limitation often imposes more restrictions. Therefore, the trajectories must be de

signed so that violations of these limits are avoided. Fast changes in the control

action may cause actuator hardware problems. Protecting the actuators from an

excessive control signal can be accomphshed by using input limiters. Although such

fast control actions have not occurred during the various perturbation tests dis

cussed later in this chapter, constrained actuator tests were applied to show the

robustness of the fuzzy logic controllers.

The actuator dynamics can be expressed as

^  K{u -z)> (6.2)
at

"77 — ky{u — z), Rmax ̂  ^ Rmin (^•^)
at

^  K(u -z)< iCin (6.4)
where Rmax and Rmin represent the upper and lower boundaries of the actuator

signal rate respectively, and is the time-constant of the actuator.

Although the fuzzy logic controllers do not have control actions that require ac

tuator constraints to save the control valves, various limitations to control actions
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have been placed to test the performance of the controller. In operating nuclear

power plants, the feedwater control valves are designed to handle a 10 % step in

crease, and a 50 % step decrease in the flow demand [34]. This indicates that the

existing control valves have very fast response capability in the event of transients.

A number of simulations were performed to test the fuzzy logic controller during

a level perturbation. The actuator limitations varied from ± 10 % change in the

control action to ± 0.1 % change. When the control action limits were higher than

± 0.001, the fuzzy logic controller handled the perturbations without causing any

disturbance to the system. If the control action changes were limited to as low

as ± 0.001, the fuzzy logic controller would fail to handle the perturbations. It is

obvious that a ± 0.001 change in control actions is not logical for power plant oper

ations. Therefore, the failure is not due to the design or the logic of the controller,

it is due to the external restrictions that were added to the control valve dynamics.

Figure 6.10 displays the comparative normalized control actions for the fuzzy logic

controller with and without applying the constraints on the actuators. Figure 6.11

displays the steam generator water level response for the constrained (± 0.005) and

vmconstrained controllers during a perturbation. It is concluded that the fuzzy logic

controller is able to operate with very restricted control actions.

6.2.4 Boundary Condition Perturbations

The nonhnear modeling of the feedwater flow control system used the following

forcing functions.

• Feedwater temperature

• Primary flow

• Steam valve coefficient.

The perturbation results of the steam valve coefficient are presented in the following

sections along with the FID and RID controllers of the FCDS. In this section, as
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paxt of the performance analysis of the fuzzy logic controller, perturbation test

results for the feedwater temperature, and the primary inlet flow are discussed.

The possible disturbances that noight occur in these parameters should be handled

without causing further problems to the feedwater system.

Feedwater Temperature Perturbation

A number of simulations were completed to analyze the robustness of the fuzzy logic

controller in the event of feedwater temperature disturbance. The design value for

the feedwater inlet temperature is set to 434.3 at fuU power normal operation of

a PWR. During the test 5 % to 25 % changes lasting for 50 seconds were simulated

and the performance of the fuzzy logic controller was observed. The fuzzy logic

controller was able to handle the disturbances less than 25 % increase in feedwater

temperature. When the feedwater temperature was increased by 25 % (from 434

°jP to 543 °F), the control system is not able to handle the transient. A 100 °F
change in feedwater flow temperature is not likely to occur under normal operating

conditions of a PWR. Figure 6.12 shows the 20 % increase in the feedwater tempera

ture for 50 seconds, and Figure 6.13 shows the steam generator water level response

during the perturbation. A sudden increase in the feedwater inlet temperature is

not very likely to happen during the normal operation of a PWR.

In order to study a transient which is more hkely to occur, decrease in the feed-

water inlet temperature was also considered as part of this study. Feedwater inlet

temperature may decrease due to various reasons during normal operations (feedwa

ter heater outage for example). Similax to the previous simulation tests, a range of

disturbances were introduced to the feedwater control system. The fuzzy logic level

controller was able to handle even a 25 % decrease in the inlet temperature which

would disturb the feedwater system significantly. Figure 6.14 shows the introduced

25 % feedwater inlet temperature decrease, and Figure 6.15 shows the steam gener-
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ator water level behavior in response to the disturbance.

These simulations demonstrate the ability of the fuzzy logic controller to handle

significant temperature changes in the feedwater flow without causing trip condi

tions. The robustness of the fuzzy logic design against sudden changes in the inlet

temperature is shown using these various simulation tests.

Primary Flow

Although chzinges in the primary flow are not hkely to occur, two diflFerent simidation

tests were completed to test the fuzzy logic level controller. Primary flow may be

disturbed due to a pump failure or loss of coolant. If there is any change in the

primary flow, the auxiliary pumps are activated to compensate for the loss of flow.

One of the simulation tests demonstrates the loss of flow for a short period of time.

The primary flow was decreased from 11000 Ibm/sec to 8500 Ibm/sec, and the

water level controller was observed. Figure 6.16 gives the transient that occurred

in the primary flow. The steam generator water level response to the transient is

given in Figure 6.17. Although the water level has a sudden drop, the fuzzy logic

controller was able to bring the water level to its set point without causing a trip.

The feedwater pump speed is shown in Figure 6.18. As expected the pump speed

increased to compensate for the flow loss.

Feed Pump Failure

The second simulation test demonstrates the possible main feed pump failure. Ac

cording to the surveys carried out by various agencies [27] [2] [34] the plant trips

caused by main feed pumps make nearly 35 % of the total trips in PWRs. The

apphcation of FCDS to the feedwater system tries to offer a better control system

to overcome the existing problems. There are two 60 % capacity, variable speed,

turbine driven centrifugal main feed pumps that raise the pressure of the condensate
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to a value that is high enough to feed the steam generators. Failure of one of these

pumps causes a loss in feedwater flow, even though one feed pump can handle nearly

80 % of the flow demand by itself.

Since the pump head is very laxge (the decrease in the feed flow is not sudden)

a slowly decreasing flow loss is simulated to demonstrate the robustness of the fuzzy

controller in the event of pump failures. Steam generator water level and pump

speed responses for the simulation test are given in Figures 6.19 and 6.20, respec

tively. Figure 6.21 shows the change in the feedwater flow rate. The fuzzy logic

controller shows a robust response to a pump failure and flow disturbance that

might occur during normal operations in PWRs.

6.3 Control Applications

The design of a control strategy for feedwater flow regulation of a four-loop pres

surized water reactor (PWR) was undertaken as part of the Fault-Tolerant Control

and Diagnostics System. This research task is of importance in contributing to the

improved transient performance that combines steam generator level control and

main feedwater valve differential pressure regulation.

The control problem in turbine-driven feedwater pumps is related to the regula

tion of pressure difference (AP) across the feedwater valve around set points during

feedwater maneuvers. In the conventional strategy, the feedwater valve position is

adjusted to satisfy a feedwater demand, whereas the turbine valve position is ad

justed to maintain the AP close to its set point.

A computer code was developed and used to simulate the dynamics of the steam

generator and the feedwater system. The code consists of models of a U-tube steam
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generator, main feedwater pump, and their related control valves. There are two

controllers involved in adjusting the valve positions:

1. A three-element controller for feedwater valve actuation.

2. A turbine governor valve controller (to maintain a desired AP ac:ross the

feedwater valve).

Existing controllers in operating PWRs are based on analog technology and do not

include direct commimication between the two control systems. During some steam

generator transients, where a rapid change in feedwater flow is required for level

control, these control systems may go out of phase due to the sluggish behavior of

the turbine-driven pump speed controller. Thus, a major improvement in feedwater

operations requires communication between the turbine valve control system and

the feedwater/steam generator system in order to improve the pump speed adjust

ment.

The solution to this control problem includes the development of advanced nonlin

ear control designs which utihze different control strategies. An operating nuclear

power plant's current three-element PID controller and turbine governor valve PID

controller were also simulated. The controller gains and time constants are closely

matched to those used in the plant controllers. The primary concern was to develop

a system model whose behavior is similarly to the actual plant.

These PID controllers in the simulation use the same form of input signals as those

used in plant actuators. The controller generates actuation signals in mA (milliamp)

current units. Since the final goal is to have a parallel fault-tolerant control system,

adaptive controllers for both three-element and turbine governor valve controllers

were developed. No changes were made to the existing control strategy.
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The second controller, Reconstructive Inverse Dynamics (RID), has a faster response

compared to the PID controller. This faster response comes from its adaptive na

ture. A constraint on the rate of change of actuator response can be imposed to

match the real system response. Finally, the third controller uses a fuzzy logic.

Two diflFerent controllers were developed using the fuzzy logic. One uses control

input signals similar to the current three-element controller (level error and flow

mismatch). The second fuzzy logic controller was developed as an alternative for

possible sensor failures or control system failures. Control inputs are rate of change

of level error and level error signals.

The RID and the fuzzy logic controllers provide improved commimication between

the level control and the differential pressure control systems. The derivation of

the RID controller clearly shows that the changes which might occur in the feed

pump system will be directly observed by the level controller since the feedwater

flow rate, steam generator water level signal, and pump speed signals are directly

included in the RID water level and pump speed controllers. Similarly, the fuzzy

logic controller provides improved communication between the two systems, since

the feedwater signal is an input signal in the development of the differential pressure

controller. During the simulation tests both the water level and the pump speed

controllers utilized, therefore the communication between the two control system

existed continuously.

6.3.1 Level Control Perturbation Test Results

In this section, comparative results of PID, RID, and Fuzzy Logic controllers during

steam valve perturbation and level change are presented. Since the purpose of this

research is to utilize the new concept of software parallelism, different control algo

rithms were employed to control the steam generator water level. In order to test

the robustness of the controllers, two different perturbations were used during sim-
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ulations. The first perturbation was a 5 % steam valve opening for 50 seconds, and

the second one was a water level set point change. Water level set point was changed

16 % within 300 seconds. Initial level set point was 9.63 feet (measured above the

U-tube bundle) during both of these perturbations. The set point was increased to

11.13 feet during the level perturbation. Figures 6.22 and 6.23 display the results

of the PID controller. As shown in the figures there is a negligible steady-state

error when the PID controller is used. This error could be minimized by changing

the gains and time constants of the controller. Since the goal of this research is not

to improve the current controller of the plant, there was no attempt to change the

PID controller design. Figures 6.24 and 6.25 present the results of the model-based

adaptive controller. Reconstructive Inverse Dynamics (RID). Figures 6.26 and 6.27

show the responses of the Fuzzy Logic Controller (FLO) for steam valve perturba

tion and level change, respectively. The results for the steam valve perturbation and

level change using the second fuzzy logic control axe given in Figures 6.28 and 6.29.

It is easy to see that both the RID and the FLO gave desirable results for both

of the perturbations. The FLC performed even better during the steam valve per

turbation when compared to the RID. Since the RID is a model-based system, it

requires a trajectory to calculate the desired control output. Although it is within

an acceptable range, feedwater flow has a larger swing during steam valve pertur

bation. The variations in the feedwater flow rate during steam valve perturbation

of the corresponding loop axe given in Figures 6.30 through 6.33 for the PID, RID

and FLC controllers, respectively.

6.3.2 Pump Speed Control Perturbation Test Results

In order to overcome the sluggish nature of the current pump speed controllers, an

alternative control design using fuzzy logic was developed. The nature of the fuzzy

control design, allows us to develop a controller that has a faster and smoother re-
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sponse than a conventional PID controller. The fuzzy logic control also allows us to

use signals in a feedforward fashion; this further enables the controller to overcome

the possible problems that occur in the event of steam generator transients. The

pump speed fuzzy controller, has two inputs: feedwater flow and differential pres

sure error. The feedwater flow signal indicates the flow demand as well as possible

transients that might occur. The differential pressure error is the difference between

the desired AP and the actual difference between the feedwater header pressure and

the steam header pressure.

Along with the fuzzy logic control for improving the performance of the pump speed

control system, the model-based RID controller was also developed. The details of

each of these controllers are given in Chapter 5. One of the common transients

that occur during the normal operation of PWRs is the set point change of the AP

controller. The normal operating range of AP set point is between 195 psi (100

% load) and 45 psi (no load). Due to operational difficulties during startup, the
differential pressure control domain is often changed and the lower limit is set to 80

psi. This adjustment has ehminated the transients that occurred during start up

[33].

Each algorithm was tested with a AP reduction, where the set point is reduced from

195 psi to 165 psi (see Figure 6.34). Figures 6.35 through 6.39 give the responses of

the steam header pressure, feedwater header pressure, pump speed, feedwater flow

rate, and one of the steam generator water level signals during this perturbation,

and using the RID controller.

A similar analysis was also carried out using the Fuzzy Logic Controller. The per

formance of the fuzzy logic controller was as good as the model-based adaptive

controller (RID). During the simulation tests both the water level control and the

172



200-

195-

190-

3 185-
-i-j

_c

2 180-
0)

? 175-Q.
Q

170-

165-

160-
0  200 400 So 800 1000 1200 1400 1600

Time (sec)

Figure 6.34: Differential Pressure Set Point.

173



w
Q.

<D

849.04

849.02

849

^ 848.98
CO
0)

I

E 848.96
CO
0

w

848.94

848.92
200 400 600 800 1000 1200 1400 1600

Time (sec)

Figure 6.35: Steam Header Pressure Signal Using RID, During AP Set Point

Change.

174



1065'

1060-

t 1055-
OJ

al

S5 1050-
•o
(0
<u

^ 1045
1—

d)

To

% 1040
0)
a>

1035

1030
0  200 400 600 800 1000 1200 1400 1600

Time (sec)

Figure 6.36: Feedwater Header Pressure Signal Using RID, During AP Set Point

Change.

175



5800-

5790-

5780-

5770-
CL

5760-
■D
(D
(D 5750-
Q.

CO
Q. 5740-
E
u
Q. 5730

5720

5710

5700
400200 600 800 1000 1200 1400 1600

Time (sec)

Figure 6.37: Pump Speed Signal Using RID, During AP Set Point Change.

176



1035.28

o
(U
c/j

E
JO

g 1035.27

§
■D
0)
(U

U-

1035.26
200 400 600 800 1000 1200 1400 1600

Time (sec)

Figure 6.38: Feedwater Flow Signal Using RID, During AP Set Point Change.

177



9.65

0)

S 9-64

0)
>
(D

0

(5

CD
CO

9.63

9.624
0  200 400 600 800 1000 1200 1400 1600

Time (sec)

Figure 6.39: Steam Generator Water Level Signal Using RID, During AP Set Point

Change.

178



pump speed control systems were active. The goal is to keep steam header pressure,

feedwater flow rate, and steam generator water level at their set points during the

AP reduction test. The results obtained from the (RID) controller were excellent.

Pump speed was reduced smoothly without causing any disturbance to the water

level, feedwater flow rate and steam header pressure. The trajectory-following ca

pability of the fuzzy logic controller was excellent for this perturbation. As can be

seen from the results, the steam generator water level has a negligible steady-state

error which is within the dead bands that axe used in the power plants. Feedwater

flow has no error, and AP is taken down to the new setpoint, with negligible set

point error. Figures 6.40 through 6.44 display the responses of the steam header

pressure, feedwater header pressure, pmnp speed, feedwater flow rate, and one of

the steam generator water level signals during perturbations when fuzzy logic con

trollers was used in the control systems. Similar to the RID results, the FLC was

also able to keep the water level, feedwater flow rate, and steam header pressure at

their respected set point values with negligible errors, and pump speed was reduced

smoothly without causing any disturbances.

6.3.3 Parallel Control Application

The apphcation of the FCDS is demonstrated for the regulation of the feedwater

system in pressurized water reactors (PWRs). There axe two main controllers in

the feedwater regulation system of a PWR. The steam generator water level control

and the main turbine governor valve control (to maintain a desired AP across the

feedwater valve). The FCDS utihzes three different control algorithms for the steam

generator water level control and the differential pressure control: the traditional

PID, the reconstructive inverse dynamics (RID), and the fuzzy logic control (FLC).

Each algorithm runs independently in the FCDS, and the decision making mod

ule selects the appropriate controller using the results of the Signal and Command

Validation blocks. In order to test the robustness of the controllers two different
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perturbations were simulated.

The first perturbation is a 5% steam valve opening for 50 seconds, and the sec

ond is a water level set-point change. The initial set point level was 9.63 feet during

both of these simiilations. The water level set point was changed 16% in 300 sec

onds, to a level of 11.13 feet. Figure 6.45 displays the results of level perturbation.

The simulation starts with the FLC controller. Due to high error between the level

set point and the actual value, the decision making block starts evaluating the other

control algorithms. The command validation block provides a combination of fuzzy

logic control and RID control around the 20"' second of the simulation. The com

bination of these two algorithms was used imtil the decision mahing block switches

from a combination control to fuzzy logic control, during the early stages of the

simulation. If the error between the level set point and the results of FLC is the

smallest among other controllers, then the decision making block switches from the

combination of two algorithms to the FLC controller exclusively. During level per

turbation, an artificial error was introduced to feedwater flow rate signal, one of

the fuzzy logic control inputs, and the signal vahdation block immediately relayed

this information to the decision block, which switched the control algorithm from

the FLC to the RID controller, since there are no invalid signals used in the RID

controller.

The RID controller is used for the level perturbation after that point. A siirdlax

application is also completed, where the RID controller was used at the beginning

of the level perturbation. An artificially introduced error to the feedwater flow rate

signal, one of the control input signals, was detected by the signal validation block,

and caused the decision making block to switch the controller from RID to FLC (see

Figure 6.46). These applications illustrate the feasibility of using parallel control

during transients in power plant operations. The parallel control not only reduces
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the set point error, but also provides flexibility of selecting a different controller in

the event of inconsistencies in the control system.

Integration of signal validation, control, and command validation enables the control

system to detect and isolate the faulty sensors and continue the operation in the

event of a controller failure without disturbing the system. One of the important

points to be noticed during the application of the paxaUel control system is that,

switching does not cause any disturbance to the system. The controllers were able to

handle the steam generator water level set point even in the presence of sensor degra

dation. One reason for this smooth switching from one controller to another is that,

each algorithm performs the computation independently within the FCDS. Parallel

controllers, validation modules and decision making system are highly integrated.

Each module broadcasts information indicating its individual results. Information

broadcasting is kept at a minimum, so that this process would not cause any further

delays in the system. Decision making works in a way so that, there is no switching

among the control algorithms, tmless there is no other way to overcome the existing

problem.

6.4 Command Validation and Decision Making

The objective of the command validation block is to determine the accuracy of

the commands generated by the control system or by the operator, and to validate

the outputs of the actuator systems. The command validator, as a distinct func

tion, is a relatively new concept in process control. It parallels signal validation to

some extent. The command validation block utilizes two empirical models for each

command. A process empirical modeling (PEM) technique and a backpropagation

neural network (BPN) were used to develop the models. In Chapter 4 the models

developed by PEM and BPN are discussed.
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6.4.1 Evaluation of the Signals

Decision making is performed according to the results of the signal and command

validation blocks. The decision making block receives information on the accuracy

of the control input signals from each signal validation module before any conclusion

is drawn about the final control signal. The results of the models are then cross

checked with each other to observe possible discrepancies.

If the signals used in the control algorithms are valid, control actions are then cal

culated by the control algorithms. After calculating the control actions, each action

is evaluated by the command validation module. The command validation module

also incorporates two models for feedwater valve and turbine governor valve posi

tions. Command validation and signal validation results provide the most important

information in the process of making the final control decisions. Figure 6.47 displays

the estimations for both PEM and BPN models versus the actual measurements of

the normalized control action of feedwater valve during a level perturbation.

6.4.2 Final Control Decision

Provided that the signals used in the control algorithms are valid and the commands

produced by the controllers axe accurate, the decision making block evaluates each

algorithm to decide which one gives the least error with respect to the set points. If

the set point error is within an acceptable range, then there is no switching among

the controllers; if the error exceeds the threshold (defined previously), then the de

cision making block determines which control algorithm to use.

The decision-making and command vahdation module of the system, is in charge

of choosing the appropriate control action, or a reasonable combination of actions,

using the set of solutions calculated by the controllers. The simple average of the
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control actions is utilized if and only if two controllers give similar accuracies for

the same operating condition. The final decision is made according to the quality

and availability of signals from the plant, the system state, and a priori information

about the performance of the control algorithms under different operating condi

tions. Once the decision has been made by the expert system, it is sent to the

actuators for execution.

The performance of a control strategy also depends on the knowledge of control

trajectory. The individual performance tests of the control algorithms have in

dicated operating domains where each of the algorithms give better results when

compared to the others. Simulation tests have shown that the RID controller gives

the best results when the control task is trajectory-following. Based on this a pri

ori knowledge, the results of the decision making module is weighted more towards

selecting the RID controller if the operation mode is identified as trajectory follow

ing. The state of the operation was identified from the steam generator water level

signal and its corresponding set point. Since the signal validation module provides

information on the critical signals such as steam generator water level, feedwater

flow, and steam pressure, transients other than trajectory following (i.e. set point

changes) are easily identified and observed before any control action is taken.

The fuzzy logic controller gave extremely robust results during various simulation

tests such as unknown dynamics, measurement time delays and parameter perturba

tions. A high confidence factor was given to the fuzzy logic controller if a transient

other than a trajectory following is identified. Although a wide operational range

was included in the fuzzy logic controllers during their development, fuzzy logic

controllers did not give accurate results outside their domain. In order to prevent

the complete failure of the fuzzy logic controllers, an external preventive measure

was embedded in the FCDS. If a transient causes control input signals to go out
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of the fuzzy logic controller operation domain, control actions corresponding to the

boundaries of their normal operation domain are provided. This prevents the fuzzy

controllers from failing completely. If the input signals for both RID and fuzzy logic

controllers are valid, and the control actions of these algorithms axe both accurate,

then a simple average of RID and fuzzy logic control actions is sent to the actuators.

The decision making block was designed to handle steam generator water level

perturbations without challenging any of the controllers. In the event of a steam

valve perturbation (similar to the power runback tests of operating power plants),

the decision making module selects either a PI controller or one of the fuzzy logic

controllers, depending on the availability of control input signals. This conclusion

was reached after the individual tests of the control algorithms. Since RID is a

trajectory following algorithm, it did not give the desired accuracy in controlling

the steam generator water level during a steam valve perturbation. During steam

valve perturbations there was no specific trajectory for model-based controllers to

follow. PI and fuzzy logic controllers were able to handle the perturbation with

desired accuracy in the level control. K both PI and fuzzy logic controllers fail, and

a disturbance similar to steam valve perturbation occurs, then RID can be used as

an alternate controller for the transient.

Table 6.1 gives the effective control domains for each controller. RID is the model-

based adaptive controller, FLCl is the first fuzzy logic controller which uses level

error and flow mismatch as control inputs, and FLC2 is the second fuzzy logic con

troller where level error and change in error are the control input signals. The

conventional PI controller is not included in the table since it is a proven control

system currently used in operating power plants.
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Table 6.1: Effective Ranges of the FCDS Control Algorithms

Control Tests RID FLCl FLC2

Trajectory Following 1 1 1

Steam Valve Perturbation 3 2 1

Boundary Condition Perturbations 2 1 1

Unknown Dynamics 2 1 1

Level Sensor Failure 3 1 2

Flow Sensor Failure 3 2 1

1 = Highly Accurate

2 = Moderately Accurate

3 = May Challenge the Control System.

Figure 6.48 is a flow chzirt showing the decision making process of the FCDS. Signal

and command validation results, and control set points axe among the inputs to the

decision making block. The control action is the output of the module.

6.5 Signal Validation Results

In this section the results of process empirical models and artificial neural network

models axe presented. Two different models were developed for each signal. Water

level, feedwater flow, coolant temperature, feedwater header pressure, steam pres

sure, drum water temperature, and downcomer temperatiire are the signals selected

from the feedwater flow regulation system of a PWR.

The validation of these signals is essential to provide an uninterrupted operation

for the feedwater flow regulation. Studies have shown that some of the plant trips
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axe caused by the malfunctioning sensors or invalid control input signals [34] [28].

The FCDS provides a redundant signal validation module where the results of the

algorithms are cross-checked to provide the best result to the operators and the

control modvde.

Details of the PEM and ANN models axe given in Appendix B. Figures 6.49

through 6.55 display the results of PEM and Figures 6.56 through 6.62 give the

ANN model results for each signal collected during the trajectory following tests.

The estimations of these models provide very importaxit information to the control

module either to help identify the state of the operation or to check the validity

of the signals. When the PEM results and the ANN results were compared, less

prediction error was seen in the ANN results, especially during the beginning and at

the end of each transient. This is because the disturbances coming from the input

measurements and PEM models axe not as robust as ANN models against these

uncertainties. The models for both PEM and ANN would give better results if more

information becomes available about the system. Using real measurements would

also improve the signal validation results, since the nonlinear model developed for

this study has its modeling limitations.

6.6 Summary of the Chapter

This chapter presented the results of the integrated control system with applica

tion to the feedwater flow regulation of a PWR. The Fault-Tolerant Control and

Diagnostics System includes three control algorithms as part of the software-based

parallel control module. The results of the individual control algorithms, namely,

the conventional PI controller, the Reconstructive Inverse Dynamics controller, and

the Fuzzy Logic controller are illustrated in this chapter. Various simulations were

completed to test the performance of the controllers. Two different control strate-
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gies were developed as part of the feedwater flow regulation system: steam generator

water level control and main feed pump speed control. Both of these control systems

were utilized during the simulation tests.

Along with the control module results, command validation and decision-maJcing

module results were also discussed in this Chapter. A systematic way for selecting

the most appropriate control strategy was developed and different tests were com

pleted to demonstrate the feasibility of utilizing more than one control algorithm

for the same task. The results of the signal validation module were also displayed in

this chapter. A software parallelism was utilized within the signal validation module

by developing two different models for the selected signals. Process empirical mod

els and artificial neural network models were developed for estimating the process

variables of interest.
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Chapter 7

Summary, Conclusions, and
Recommendations for Future

Work

7.1 Summary

The application of digital technology to nuclear power plant monitoring, diagnos

tics, and control offers a number of advantages, the most important being improved

availability and fault-tolerance. In this dissertation research the design and im

plementation of a control system that integrates various modules into one large

computer-aided system was studied. The digital technology enables us to imple

ment this new idea in the software domain.

The use of computational intelHgence, such as fuzzy logic, neural networks, and

adaptive control algorithms have broadened the relevance of developing robust and

rehable control systems for nuclear power plants. Integrating these control algo

rithms with vahdation and monitoring modules will further enhance the availabihty

and safety of these systems in the presence of degrading measurements, controller

anomahes, and unanticipated transients.
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The parallel control module was integrated with the signal validation and the com

mand validation modules. The utilization of software parallelism was investigated

and its applicability was demonstrated to feedwater flow regulation in PWRs. This

application also indicates the feasibility of the approach to large-scale systems.

The FCDS provides two different means of fault-tolerance. First, by including a

signal validation system, the possibility of sensor failures or computing inaccurate

control actions due to degrading sensor readings can be eliminated. Second, the

utilization of multiple control algorithms provides alternate approaches during the

operation of the controlled process. Different control algorithms may be needed

to avoid controller failure due to control input signal error, and the choice from

multiple algorithms may provide better results for different operating regimes.

7.2 Conclusions

A fault-tolerant control and diagnostics system for enhancing nuclear reactor op

erations was developed in this dissertation. The research has demonstrated the

integration of control, signal validation and command validation with application

to large-scale systems. The concept of softwaxe-based fault-tolerance was developed

and illustrated through a parallel design strategy. The new approach may be re

ferred to as a "smart" controller.

Signal validation is a proven useful tool that establishes a systematic way to demon

strate the accuracy of sensor readings. The fault-tolerant control and diagnostics

system (FCDS) presented here offers a signal vahdation approach in which two dif

ferent methodologies were utilized to overcome their individual deficiencies. The

signal validation module provides validation of some of the selected measurements

which are important for the feedwater flow regulation of pressurized water reactors.
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Steam generator water level, feedwater flow, feedwater header pressure and steam

pressure signals were among the validated signals. Two models were developed for

each of these selected signals to incorporate the software-based parallelism.

A process empirical modeling (PEM) technique and artificial neural networks (ANN)

were utilized for developing the models for the signal validation module. Although

the current signal validation module provides sufficient information about the mea

surements and gives accurate estimations for the modeled signals, a broader ap

proach for the signal validation would improve the overall reliabihty and availability

of the system.

The process empirical modeling approach usually gives accurate estimates if the

system is operating in the domain where the models are developed. The accuracy

of the model estimation becomes poor as the system leaves that domain, as well

as in the event of inaccurate readings of the model input signals. In order to over

come these shortcomings of PEM models, another approach was utilized, namely,

the artificial neural network modeling. ANN models are more robust against mea

surement degradation since the model structure is not rigid. They are not based on

conventional mathematical relationships and provide good results when the signals

fall outside their training domain. One major problem with the ANN models is their

long training phase. K an ANN model needs to be updated for a new operational

condition, the off-hne training may take several hours. One solution for this prob

lem is to use a system with an on-line training strategy. For better validation and

monitoring, on-hne, axlaptive neural network modeling must be used in the signal

validation module.

An improved version of the FCDS must be tested with redundant sensors and with

real data collected from an operating power plant rather than the simulation data.
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The current version of the FCDS covers only feedwater flow system signals in the

signal validation module. A broader signal validation module must include more

signals both from the primary side and the secondary side of a PWR. Including

the Kalman filtering technique with accurate models enhances the signal validation

results.

The FCDS incorporates two nonlinear control algorithms in addition to the con

ventional controller. One of the algorithms is a model-based adaptive controller

which gives excellent results for trajectory following problems. The second control

algorithm is based on fuzzy logic, and gives exceptionally accurate results during

unanticipated transients of the controlled process. Two different fuzzy logic con

trollers were developed as part of the control module. The first fuzzy controller uses

control input signals similar to those used in the conventional steam generator wa

ter level control system, namely, flow mismatch between steam flow and feedwater

flow rates and the level error. The second controller was developed to offer control

solution in the event of a feedwater/steam flow sensor failure or degradation. The

level error signal and the change in the level signal are the two control input signals

for this fuzzy controller. The FCDS utilizes these different algorithms to offer a bet

ter solution for the feedwater flow regulation problems of pressurized water reactors.

The Reconstructive Inverse Dynamics (RID) was used for both the steam generator

water level control and the main feedwater pump speed control of the feedwater flow

regulation system. The simulation tests had shown that the RID controller gives

the best results when the operation was of a trajectory following nature. Both the

RID controllers have given excellent results during water level set point changes and

AP set point changes. Although the RID controller gives reasonable results during

steam valve perturbations, the results are not as accurate as those obtained using

the fuzzy logic controller. A simple explanation of this poor performance of the
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RID level controller is that it is a model-based control algorithm and steam valve

perturbation creates disturbances in the system which cause undefined level errors.

Both the fuzzy logic controllers give considerably better results when compared to

the RID results. The second fuzzy logic controller, developed for steam generator

water level control, provides robust results since fiow mismatch is not an input sig

nal to the control algorithm. This once again demonstrates the importance of using

different strategies with different algorithms for feedwater flow regulation system to

overcome sensor/control problems. Fuzzy logic controllers have given exceptionally

good results during both level set point changes and steam valve perturbations.

The command validation is the third module that was developed as part of the

FCDS. This is a new concept as a validation scheme, and checks the quality of the

control solutions and ensures the vahdity of the control actions. A decision making

procedure was developed for the command validation module to select the best con

trol signal based on the availabihty of the control input signals.

Various perturbation tests were performed to demonstrate the feasibility of apply

ing the FCDS for feedwater fiow regulation of a PWR. Level set point changes were

introduced to test the system for trajectory following problems and excellent restdts

were obtained from each of the individual control algorithms. Steam valve pertur

bations and actuator constraint problems were introduced during normal operation

to test the quickness and robustness of the control system. Sensor problems were

introduced to test the signal validation module and the fea^ibihty of the software

paraUehsm within the control system. The decision-malcing module along with the

command validation system had given exceptionally accurate results while switch

ing from one control algorithm to another (for example to avoid the failed sensor

problem even during a level perturbation test).
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The command validation module with a rule-based decision making system was

developed for selecting the best controller, or the combination of controllers for feed-

water flow regulation in PWRs. By integrating the various tasks into one system,

the availability of the control system was increased during sensor failures, degrading

control input signals and during fast transients. Current control designs generally

cannot handle these conditions properly.

The current version of the decision-making process is a simple rule-based system,

where the status of the operation is checked through the predefined parameters such

as level error and flow error. The feasibihty of utilizing the decision making system

and command validation system was tested for several perturbations and the results

were excellent. The decision-making block was specifically designed to handle the

steam generator water level control without challenging the control systems. A-

priori knowledge of the individual performances of the control algorithms were the

basis for selecting control algorithms for different operating regimes. Tests showed

that the decision-making block was able to switch between the controllers even dur

ing a transient without causing disturbances to the system. The decision-making

block was developed to handle steady-state operation of a PWR.

The FCDS has introduced software parallelism to signal validation, command valida

tion, and to the control system. This feature provides an additional fault-tolerance,

and improves the availability of the overall system.

7.3 Recommendations for Future Work

The existing feedwater control system regulates the steam generator water level

in each of the four steam generators using measurements of the steam generator

narrow-range level, steam and feedwater flow rates, steam and feedwater header

216



pressures, and the turbine impulse pressure. The ability of this system to control

effectively is limited to some extent by sensor charjicteristics such as range, accuracy,

and availability.

Automatic feedwater control using existing feedwater flow measurement techniques

is not possible at low power levels due to range limitations. The venturi-type flow

elements are sized for rated flow conditions and they are not usable except as trend

information at less than 15-20 percent rated flow. Without accurate low-power flow

measurements, automatic control of feedwater flow in the existing systems is reduced

to a single-element control system using narrow-range steam generator level signal.

The feedwater flow elements axe also subjected to measurement errors due to venturi

fouling. Corrosion deposits on the venturi surface cause a shift in the differential

pressure and cause bias errors in the measured flow. An alternative flow mea

surement system needs to be utilized to overcome the existing flow measurement

problems.

Vulnerability to sensor failure imposes an additional limitation on the overall sys

tem availability. Although the FCDS introduces an integrated signal validation and

control system, a single failure of the selected sensor channel will result in a spuri

ous control system output and a possible reactor trip, since the existing systems in

PWRs depend on a single input from the feedwater flow channels. A more compli

cated signal validation system needs to be part of the feedwater flow regulation of

PWRs.

Automatic feedwater control at low-power levels can be significantly improved by uti

lizing feedforward inputs to replace the present feedwater flow measurement. Either

wide-range steam generator water level or neutron flux measurements (depending on
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the control algorithm) can be used to improve system response at low-power levels.

The existing systems are also subjected to steam flow measurement inaccuracies and

sensor failure limitations similar to those discussed earlier in this section.

Steam generator narrow-range level is another critical measurement for the feed-

water control system as well as for the reactor protection system. Level is measured

by differential pressure transmitters with a constant reference leg. These measure

ments are subjected to instabihties due to "shrink" and "swell" effects and inaccu

racies due to process temperature and pressure changes. The "shrink" and "swell"

phenomenon is a problem at low power levels, and a major cause for low-low level

reactor trips during startup. The FCDS includes a scheme to overcome the sensor

problems of the steam generator water level readings. The FCDS was tested only

for steady-state operations around 100 % power level; therefore it is important to

extend the work to include low power level operations and the general startup phase.

The present feedwater flow regulation systems are also limited by dependence on a

single-level channel input per steam generator. Although there are three channels

available for each steam generator, only one is selected for feedwater flow control.

A generalized consistency checking procedure must be part of the steam generator

water level channel selection system, as it is recommended for feedwater flow mea

surement system to avoid single failures of the level channels.

The feedwater and steam header pressure measurements are important inputs to

the main feed pump speed control system. The availability of this system is com

promised in its existing configuration due to the lack of redundancy in these mea

surements. The FCDS provides two models for each of these measurements which

provide accurate estimations in the event of failure of these sensors. A failure of a

single transmitter will cause a transient which may result in a reactor trip, especially
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if the failure causes a decrecise in the pump speed. This problem requires further

study to overcome the deficiency due to limited sensors.

An alternative solution to the single-failure limitations imposed by feedwater and

steam header pressure measurements must be developed. Control of feed pump

speed on feedwater demand, rather than on steam/feedwater header differential

pressure may eliminate the control system dependence on these two inputs.

This dissertation research has demonstrated the feasibility of integrating monitoring

and diagnostics tasks with control systems in the software domain. This system also

introduces "software paxaUelism" for validation and control by utilizing more than

one software algorithm to avoid possible algorithm dependent flaws. The system

may be transferred to the hardware domain, since the algorithms utilized in the

FCDS are easy to implement on digital systems. The hardware implementation of

artificial neural networks and fuzzy logic controllers has been demonstrated in Japan

and in the United States. The utihzation of an enhanced version of the FCDS for nu

clear power plants woiild show significant improvements in their operation, and the

fault-tolerant nature of the system would significantly reduce the cost of operation.
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Appendix A

U-Tube Steam Generator Model

Formulation

This section discusses the theoretical model of a U-tube steam generator. The study

was first completed by Ah [31], and the model was generalized by Naghedolfeizi [30].

The modehng by Naghedolfeizi's was further investigated, modified and developed

into a new code in FORTRAN. Following equations are the final form of the model

equations first developed by Ah.

A.l Governing Equations of the U-Tube Steam
Generator

A. 1.1 Primary Side Equations

Inlet Plenum

^ = (A.1)
U-Tube Primary Lump Equations

First node:
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Second node:

dTp2 Wpi frp rp \ , Upm Spm2' pt /rp rp \ I ^pm '-'pmi /rp rp \ ,
r-T— Upl - ip2j + n - ̂p2) +dt Ppi Ap Li2 Afpi Cpi

{Tp2 — Tpi) dLs\
■'j2 dt

Third equation:

dTp^ Wpi _ V
— - ^{Tpi-Tp2)-\-dt Ppi Ap Lg\

Uprr. Spm2
Mpi Cpi

Fourth node:

dTp4 _ Wpi rp \ t Upm Spml /rp rp \ ,
-IT -

Tp3 — Tp4 dLsi
Lsi dt

Outlet Plenum

dTm2 _ Upm Spm2 rp Spm2 "I" ^m$2 ^ma2 rp
IT ~ " k:^ ""

(A.3)

(r„3 - IW) (A.4)

(A.5)

Metal Tube Equations

First node:

dTml _ Upm Spml rp Spml "I" Umsl Smal rp .
IT ~ M„,C„ " M„,C„ "■ ^

Umsl Smsl iT, + T,at) {T„,2-Tmi)dL,r
MrnrCm 2 dt ^ ^

Second node:

Ums2 Sms2 rp , (-^m2 Tfnl) dLji f \ Q\
•" '^~2iZ dT
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Third node:

dTmS _ Upm Spm2 rp Upm Spm2 "I" Ums2 'S'ms2 rp ,

Ums2 ̂ma2 rp , (^m3 ~ Tm4) dLgi ^ ̂
laat + JTT TT

Mm2Cm 2Z,2 dt

Fourth node

dT,m4 Upm Spml rp Upm Spml ~l" Umal ̂ msl rp ,
ir~ ~ 17 7^ -ip4 — ,, py J-m4 Tdt MmlCm MmlC,

Umsl ̂ mal(r, + r,,,) {Tm3-Tm4)dL,^

MmlCm 2 2i,i dt ^ ^

A.1.2 Secondary Side Equations

Subcooled Region Equations

Mass Balance:

dL,^ _ {W^ - W2)
dt Psi Afa

Energy Balance:

(A.11)

WtC,^T,-W2C,2T,^ (A.12)

Boiling Region Equations

Riser/Separator Volume

^(VrPr) = W3-W4 (A.13)
dt

dpr _ {KxAK2Xa)Dp Vjg dX,
dt Vf+XaVfgY dt {Vf + XaVf^y dt
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Drum Water Volume

Mass balance:

Ad. Li.) = W,i + (\-X.)W>-W, (A,15)
at

Energy balance:

Ti^) = Wji Tji + (1 - X,) W, - W^ Td^ (A.16)
at

Drum Steam Volume:

(V* - Li.) ̂  - (p, Ai.)^ = X Wi-C,P (A.17)

A. 1.3 Downcomer Region Equation

dt Md

A.1.4 Constitutive Relations

Thermodynamic Properties of Water and Steam

= ̂(Ti.-Ti) (A.18)

h = h, + Y I'll {A-19)

hes = h, + ̂  hi, (A.20)

hi=X3 + K3P (A.21)

h„ = X, + KiP (A.22)
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i,2 = L-L,i (A.23)

T,at = Xs + KsP (A.24)

Vj=Xi+KiP (A.25)

Vja=X2 + K2P (A.26)

W,t = CiP (A.27)

V/ + f V,,

A.1.5 Recirculation Loop Equation

CiW

(A.28)

Pg = Xs + KeP (A.29)

i = -j^[pd {Ldw + Ld — Lax) — Lr (A.30)

Table A.l and Table A.2 give the list of model variables and their descriptions.
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Table A.l: Steam Generator Model Variables

No: Variable Name Description

1. Afs Secondary flow area in the U-tube region

2. Adxji Effective area of the drum water section

3. Effective pressure drop coefficient in the

recirculating loop

4. Ci Steam valve coefficient

5. Cm Specific heat capacity of the metal tubes

6. Cpl,2 Specific heat capacity of the primary fluid and

subcooled region

7. h Average enthalpy of the boihng region

8. hjjg Saturated and latent enthalpies of the water

9. hex Exit enthalpy of the boiling region

10. Ki-e
dVf dVta ̂  9^ aXiat
dPi dP ■>aP'> dP ■> dP ■> dP

11. L Effective height of U-tubes

12. Ld Downcomer length

13. Ldw Water level in the steam generator (drum section)

14. Ls\,2 Subcooled ad boihng lengths

15. Afml,2 Metal mass in metal nodes (1,2)

16. Mass of water in the inlet plenum

18. P Steam generator pressure

19. Prl,2 Inside and outside perimeters of the U-tubes

20. ^mal,2 Heat transfer areas from the U-tubes to the secondary

side in the subcooled and boihng regions respectively

21. Sprn\,2 Heat transfer areas from the primary side to the

U-tubes in nodes (1,2)
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Table A.2: Steam Generator Model Variables (continued)

No: Variable Name Description

22. Td Downcomer temperature

23. Tdw Drum water temperature

24. Tml-4 Metal tube temperatures in nodes (1-4)

25. Tpi-4 Primary coolant temperatures in nodes (T4)

26. Tr>i Coolant temperature in the inlet plenum

27. Tpo Coolant temperature in the outlet plenum

28. Tsat Saturated temperature of the water and steam

in the UTSG

29. Upm Heat transfer coefficient from the primary side to

the metal side

30. Umal,2 Heat transfer coefficient from the metal side to the

subcooled boiling regions

31. Vdr Volume of the drum section

32. Vf,, Specific volume of the water and steam

33. Vf, V,-

34. Vr Volume of the riser region

35. Steam flow rate

36. ^1-6 Constant parameters of the water property equations

37. Exit quality of the steam leaving the boiling region

38. Ph Average density of the fluid in the boiling region

39. Pg Density of the saturated steam

40. Pr Density of the fluid in the riser region
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Appendix B

Signal Validation Models

B.l Process Empirical Modeling (PEM)

A systematic effort was undertaJsen to create empirical models of selected param

eters of a feedwater flow regulation system for a pressurized water reactor. The

study involved the development of seven different process variables. Following sec

tions discuss the process empirical modeling results for steam generator water level,

feedwater flow rate, coolant temperature, feedwater header pressure, steam pressure,

downcomer temperature, and drum water temperature signals.

B.1.1 Steam Generator Water Level Model

The following model is the developed using PEM. Four input signals were used for

this model. These were feedwater flow, steam pressure, downcomer temperature,

and feedwater header pressure.

Level = ̂(IFyeediuater) P»ttam^ Tdowncomer^ Pfeedwater—header^

The formulation for the level model is given in Equation (B.l).

Level = 00 + aix + 02^ + asz + 0410 (B.l)
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where,

Level = Steam generator water level (feet)

X = Flow rate (Ibm/sec)

y — Feedwater header pressure (psi)

z = Steam pressure (psi)

w = Downcomer temperature (°F)

ao = -170.1369

ai = 3.108905

02 = -0.3681067

as = -109.3382

04 = 90.00582

Modeling Error (%) = 3.674383E-01

B.1.2 Feedwater Flow Model

Three input signals, namely, steam generator water level, steam pressure, and feed-

water header pressure, were used for this PEM model,

IF/eedtuoter — /{level,Psteamj Pfttdwater—header)

Equation (B.2) gives the formulation for the model.

Wfeedwater =00 + + O,*]) + (B.2)

where,

Wfeedwater = Feedwater flow rate (Ibm/sec)

X = Steam pressure (psi)

y = Steam generator water level (feet)

z = Feedwater header pressure (psi)

00 = -0.1097219E+05

01 = 3580.130
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az = -188.2649

as = -22.95189

a4 = 425.8047

as = -65.98013

Modeling Error (%) = 0.3046183

B.1.3 Coolant Temperature Model

Three input signals, namely, steam generator water level, feedwater flow rate, and

feedwater header pressure, were used for this PEM model,

l^coolant ~ feedwater —header^

Equation (B.3) gives the formulation of the model.

Tcooiant = Oo H- OiX + Ozx^ + + a^yx -1- asZ^ (B.3)

where,

Tcooiant = Coolant temperature (°F)

X = Feedwater header pressure (psi)

y = Steam generator water level (feet)

z = Feedwater flow rate (Ibm/sec)

Co = 571.5861

ci = -3.017898

02 = 0.7830303

03 = 0.2198355

04 = -0.2066177

05 = -0.06546272

Modeling Error (%) = 0.001606055
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B.1.4 Feedwater Header Pressure Model

Three input signals, namely, steam generator water level, feedwater flow rate, and

steam pressure, were used for this PEM model,

Pfeedwater—header ~ /(J^'^^^j^^feedwaterjPsteam)

Formulation of the model is given by Equation (B.4).

Pfeedwater-header = ̂0 + 0>iX + a2y + OsZ (B.4)

where,

Pfeedwater-header = Feedwater header pressure (psi)

X = Steam pressure (psi)

y = Feedwater flow rate (Ibm/ sec)

z = Steam generator water level (feet)

ao = 22150.48

fli = -1028.461

aj = -35.83885

03 = 0.6637346

Modeling Error (%) = 0.2026685

B.1.5 Steam Pressure Model

Two input signals were used to develop the PEM model for steam pressure signal,

namely, steam generator water level and feedwater flow rate.

Psteam ~ y(/eve/, feedwater)

Formulation is given by Equation (B.5).

Psteam =00 + 013; + + OsJ/ + 04^/^ (B.5)
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where,

Psteam = Steam pressure (psi)

X = Feedwater flow rate (Ibm/sec)

y = Steam generator water level (feet)

ao = 684.2070

fli = 26.03851

0,2 — -0.8989868

03 = -3.818944

04 = 0.01424117

Modeling Error (%) = 7.936214E-03

B.1.6 Downcomer Temperature Model

Coolant temperature and drum water temperature signals were used to develop the

PEM model for the downcomer temperature signal.

Tdowncomer ~ fi^coolant^Pdrum—■water)

Equation (B.6) gives the formulation of the model.

Pdowncomer = Oq "I" ul^J -H 02y

where,

Tdoxuncomer = Downcomer temperature (°F)
X = Coolant temperature (°F)
y = Drum water temperature (°F) oq = -2.560963
01 = 0.2834439

02 = 33.63156

Modeling Error (%) = 8.024223E-05

239



B.1.7 Drum Water Temperature Model

Coolant temperature and downcomer temperature signals were used for developing

the drum water temperature PEM model.

Tdrum—water ~ f{Tcoolant,Td owncomer)

Equation (B.7) gives the formulation of the model.

Tdrum-water = 00 + OlX + 02^/ (B-7)

where,

Tdrum-water =Drum Water temperature (°F)

X = Coolant temperature (°F)

y = Downcomer temperature (°F)

oo = 2.63261

d = -0.291588

= 33.66869

Modeling Error (%) = 8.024223E-05

B.2 Artificial Neural Networks (ANN)

Artificial neural network (ANN) models were developed using the Backpropagation

Neural Network training algorithm. The algorithm was previously implemented [7]

on a VAX workstation. The models were developed off-hne using simulation data

similar to those which were used to develop the PEM models. ANN models were

developed for steam generator water level, feedwater flow, coolant temperature,

feedwater header pressure, steam pressure, downcomer temperature, and drum wa

ter temperature signals. These models were utilized by the signal validation module
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Table B.l: ANN Model for Steam Generator Water Level

Input Signals

Feedwater Flow

Steam Pressure

Downcomer Temperature

Number of Training Patterns 150

Number of Hidden Nodes 15

Training Standard Deviation 8.87 X 10-3

Table B.2: ANN Model for Feedwater Flow

Input Signals

SG Water Level

Steam Pressure

FW Header Pressure

Number of Training Patterns 150

Number of Hidden Nodes 15

Training Standard Deviation 0.873

to cross-examine the signals before they were broadcast to the control module. Ta

bles B.l through B.7 summarize the information about the ANN models and their

prediction errors.
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Table B.3: ANN Model for Coolant Temperature

Input Signals

SG Water Level

Feedwater Flow

FW Header Pressure

Number of Training Patterns 150

Number of Hidden Nodes 15

Training Standard Deviation 1.24 X 10-3

Table B.4: ANN Model for Feedwater Header Pressure

Input Signals

SG Water Level

Feedwater Flow

Steam Pressure

Number of Training Patterns 150

Number of Hidden Nodes 15

Training Standard Deviation 1.12

Table B.5: ANN Model for Steam Pressure

Input Signals SG Water Level

Feedwater Flow

Number of Training Patterns 150

Number of Hidden Nodes 15

Training Standard Deviation 6.58 X 10-3
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Table B.6: ANN Model for Downcomer Temperature

Input Signals Coolant Temperature

Drum Water Temperature

Number of Training Patterns 150

Number of Hidden Nodes 15

Training Standard Deviation 2.06 X 10-2

Table B.7: ANN Model for Drum Water Temperature

Input Signals Coolant Temperature

Downcomer Temperature

Number of Training Patterns 150

Number of Hidden Nodes 15

Training Standard Deviation 1.27 X 10-2
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