Molecular Barcoding of Eupatorieae of Tennessee

Magen Poindexter
Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996

Introduction
- Eupatorieae: tribe of plants within Asteraceae family
- 150+ genera, 2400+ species worldwide
- Many common wildflowers (joe pye weed, blazing star)
- Popular sugar substitute, Stevia rebaudiana
- 8 genera native to Tennessee
- Both sexual reproduction and apomixis
- Hybridization is common
- Goal: obtain molecular barcode data for each of the Tennessee native species
- Barcode marker: nuclear DNA marker ITS
- Purpose: facilitate identification, detect hybrids

What is ITS?
- Internal Transcribed Spacer of the nuclear ribosomal DNA
- Commonly used barcode in plants
- Always present in high copy number
- Flanked by highly conserved 18S and 28S regions in plants (Figure 1)

Methods
- Hypothesis: Each species of this tribe in TN will have a distinctive ITS sequence that will allow identification
- Obtained ITS sequence for each native species
- Extracted DNA using Qiagen extraction kit
- PCR amplified ITS region with ITS4 and ITS5 primers
- Cleaned amplifications with Exosap
- Sequenced in UT genomics core by Joe May
- Analysis done on Sequencher and BioEdit
- Maximum Likelihood Tree obtained using RAxML in Geneious (Figure 2)

Results and Discussion
We found that the ITS sequence can be used to identify this tribe to the genus level. It can also be used for identification at the species level for some, but not all. Ageratina shows no differences in the ITS region in any of the three native species. This could be due to recent divergence. Liatris and Eutrochium show ITS variation in some, but not all species. Eupatorium shows distinct ITS regions in all Tennessee species, and nearly every other species of this genus worldwide. This makes this molecular barcode an important tool in Eupatorium identification since hybridization is common in this genus. Eupatorium leucoplepis samples from Tennessee appear to be of hybrid origin with E. semiseratrum as the other parent. While E. semiseratrum is known to hybridize frequently, this is the first time it has been seen to hybridize with E. leucoplepis.

Summary
Molecular analysis has become a popular method used to help characterize the complex biodiversity of our world. Our goal for this project was to add to the understanding of the biodiversity of Tennessee by obtaining molecular barcodes for all species of the Eupatorieae tribe native to this state. We did this by sequencing the ITS region of each species. These sequences will be submitted to GenBank, and will facilitate quick and easy identification of unknown specimens. We found that the ITS region can be used to identify this tribe to the genus level, and not all, but some of these genera can be identified to the species level with this barcode.

Eupatorium in Tennessee
Eupatorium is the most abundant and diverse genus of the Eupatorieae tribe found in Tennessee. This genus reproduces sexually and through apomixis and contains nine species, plus several hybrid variants. One species, E. leucoplepis, is currently recognized as a state endangered plant, occurring in only one county, hundreds of miles away from any other of its species. However, our molecular analysis suggests the Tennessee plants identified as E. leucoplepis are actually of hybrid origin.

How the new hybrid was found
DNA was extracted from two TENN herbarium specimens collected in Tennessee and identified as E. leucoplepis. The sequences were analyzed using Bioedit and Sequencer software to identify single nucleotide polymorphisms (SNPs) and length polymorphisms. Due to the length polymorphism present in these sequences (Figure 3), BLAST results showed no close matches. The sequences were compared to a known Eupatorium sequences and were found to most closely resemble E. leucoplepis in the region preceding the length polymorphism. However, the sequences also contained SNPs where the sequences matched both E. leucoplepis and E. semiseratrum (Figure 4). This, in combination with the length polymorphism allowed us to identify these samples as a hybrid.

References