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CHAPTER 1  

 

1. Motivation and Problem Statement 
 

1.1 Introduction 
 
Electromyography (EMG) is a technique used to study the activity of muscle through 

detection and analysis of the electrical signals generated during muscular contractions.  

Electromyographic activity is recorded from skeletal muscles to obtain information about 

their anatomy and physiology.  Electromyography, in interplay with various anatomical 

techniques, provides the present knowledge of the structural organization and the nervous 

control of muscle.  EMG is the prime source of information about the status of the 

neuromuscular system, and EMG has developed into a diagnostic tool that allows the 

clinician to follow changes in nerve and muscle caused by neuromuscular diseases. 

 

EMG provides both invasive and noninvasive means for the study of muscular functions 

[1, 2].  It is also useful in interpreting pathologic states of musculoskeletal or 

neuromuscular systems [3, 4].  In particular, EMG offers valuable information 

concerning the timing of muscular activity and its relative intensity [5, 6].  Standard 

EMG is typically recorded from fine wire or two surface electrodes placed at discrete 

sites over a muscle or muscle belly.  Currently surface grid electrode EMG is widely 

used. 

The cell bodies of these neurons reside in the brainstem and spinal cord.  The interfacing 

fiber between motor neuron and muscle is called axon.  At the distal end, an axon divides 
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into many terminal branches.  Each terminal branch innervates a group of muscle fibers.  

When a nerve signal approaches the end of an axon, it spreads out over all its terminal 

branches and stimulates all the muscle fibers supplied by them.  So, all the excited 

muscle fibers contract almost simultaneously.  Since they behave as a single functional 

unit, one nerve fiber and all the muscle fibers innervated by it are called a motor unit 

(MU) [7, 8].  Generally, the muscle fibers of a motor unit are distributed throughout 

muscle rather than being clustered together.  The fine control of the muscle force is 

performed through the intricate mechanism and interaction of the brain and muscle.  

During contraction, these motor units are recruited systematically and the recruited motor 

units discharge in a train of pulses in a complex manner [9, 10].  The recorded EMG is 

the temporal summation of all the recruited motor unit action potential trains.  Because 

movement is controlled by motor unit activity, an understanding of motor unit physiology 

can have a significant impact on the evaluation and treatment of movement disorders. 

 

The neuromuscular system is an intricate physiological organization of brain, nerve and 

muscle.  These neural control properties are not well understood mostly because of the 

experimental difficulties in quantifying the neural input to the muscle.  Moreover, the 

muscle itself is a complex system.  It is necessary to address these complexities as 

accurately as possible.  Understanding of these complex systems facilitates the 

understanding of EMG generation, which is a highly complex signal by itself. 
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1.2  Application of EMG Signal 
 
 
The main reason for the interest in EMG signal analysis is in clinical diagnosis and 

biomedical applications. EMG is used clinically for the diagnosis of neurological and 

neuromuscular problems. The shapes and firing rates of motor unit action potentials 

(MUAPs) in EMG signals provide an important source of information for the diagnosis 

of neuromuscular disorders. The field of management and rehabilitation of motor 

disability is identified as one of the important application areas.  It is used diagnostically 

by gait laboratories and by clinicians trained in the use of biofeedback or ergonomic 

assessment.  EMG is also used in many types of research laboratories, including those 

involved in biomechanics, neuromuscular physiology, movement disorders, postural 

control, physical therapy, and many others.  Electromyography signals can also be used 

for Evolvable Hardware Chip (EHW) development, and modern human computer 

interaction [11].  Moreover, EMG covers nerve conduction studies - testing the electrical 

function of nerves in the limbs.  The most frequent reason for nerve conduction studies is 

to look for evidence of a trapped nerve.  Carpal tunnel syndrome is the type of nerve 

entrapment most frequently seen in clinical neurophysiology.  Nerve conduction testing is 

also used to test for and evaluate a whole range of other nerve disorders.  If a limb is 

injured, this technique can be used to test for nerve damage.  The studies can give 

valuable information about which nerves are involved and how severely they have been 

injured.  Nerve conduction studies are also used in the diagnosis of peripheral 

neuropathies.  This is a group of conditions in which, instead of a single nerve being 

involved, there is a generalised abnormality of the nerves in the limbs.  Nerve conduction 
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studies in these cases may show several types of abnormality - slowing of nerve 

conduction or a decrease in the size of the electrical signals or both.  The exact pattern of 

these abnormalities will help to classify the type of peripheral neuropathy. 

 
 

1.3  Techniques of EMG Acquisition 
 
 
Fine wire needle electrode and surface electrodes are two ways to collect EMG data.  

Fine wire electrodes require a needle for insertion into the belly of the muscle. The 

advantages of fine wire electrodes are an increased bandwidth, a more specific pick-up 

area, ability to test deep muscles, isolation of specific muscle parts of large muscles, and 

ability to test small muscles which would be impossible to detect with a surface electrode 

due to cross-talk.  But there are some disadvantages using the fine wire electrodes.  The 

needle insertion causes discomfort.  This discomfort can increase the tightness or 

spasticity in the muscles.  The electrodes are less repeatable as it is very difficult to place 

the needle in the same area of the muscle each time.  On the other hand, with the surface 

electrodes there is minimal pain with application, they are more reproducible, easy to 

apply, and they are very good for movement applications. The disadvantages of surface 

electrodes are that they have a large pick-up area and therefore, have more potential for 

cross talk from adjacent muscles. Nevertheless the surface grid electrode technology is 

becoming popular now a days. 

 There are two techniques for surface electrode EMG that are widely used.  They are, 

differential electrode and surface grid electrode configuration.  Because the EMG signal 

is low in amplitude with respect to other ambient signals on the surface of the skin, it is 
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convenient to detect it with a differential configuration.  That is, two detection surfaces 

are used and the two detected signals are subtracted prior to being amplified.  In this 

differential configuration, the shape and area of the detection surfaces and the distance 

between the detection surfaces are important factors because they affect the amplitude 

and the frequency content of the signal.  The differential arrangement acts as a comb 

band-pass filter to the electrical signal seen by the detection surfaces.  The Double 

differential technique is widely used to reduce and possibly eliminate crosstalk in the 

EMG signal detected with surface electrodes.  This technique consists of using a surface 

electrode having three detection surfaces equally spaced apart.  Figure 1 shows the 

configuration of a double-differential surface electrode technique.  Two differential 

signals are obtained from detection surfaces 1 and 2, and detection surfaces 2 and 3.  

Then a differential signal is obtained from these two.  Thus, the EMG signal undergoes 

two levels of differentiation.  This procedure has the advantage of decreasing 

considerably the pick-up volume of the three-bar electrode, thus filtering out the signals 

from further distances often corresponding to those emanating from other muscles.   

 

Single Motor unit analysis is a key attraction of multichannel surface grid electrode 

EMG.  Moreover, multichannel EMG allows the construction   of   higher    order    

electrode    montages    for    spatial    filtering, which facilitate the study and mapping of  

muscle’s spatial functional properties [12].  Multichannel surface EMG provides spatial 

or topographical information from a muscle.  A Myoelectric signal recorded over the 

muscle surface changes with the anatomical position of that muscle.  Single-site 

recording thus do not have the complete information of the investigated muscle and
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may lead to erroneous interpretation of the EMG signals and eventually unnecessary 

surgery especially in the case of Carpometacarpal (CMC) degenerative joint disease 

(DJD), which is very common in the aging hands [13].  Thus the multichannel grid 

electrode EMG system has promising future in electro-diagnostic research. 

 
 

1.4 System Development of Multichannel EMG 
 
 
Figure 1.2 shows a block diagram of multichannel EMG acquiring technique.  This EMG 

unit uses a 60-channel configuration for EMG data collection.  EMG signals are on the 

order of milivolt; hence they are vulnerable to many types of electronic noise.  A pre-

amplification stage is necessary to enhance the performance of the filtering stage.  EMG 

data are needed to be amplified and filtered out for further processing.  So a front-end 

instrumentation consisting of an amplifier and a lowpass filter has been designed [14].  

60 steel (6X10grid) pins are inserted into a 8cmX8cm plastic paper so that these pins are 

insulated from each other.  Each individual electrode has a diameter of 1mm and these 

pins are placed 2.5mm apart from each other.  60-channel bus-type ribbon cable is used 

to connect those pins to the front-end instrument.   

 
1.4.1Front-end Instrumentation 

 
A pre-amplification stage is necessary to enhance the performance of the filtering stage.   

For pre-amplification, a power instrumentation amplifier (Burr-Brown’s INA2126) is 

used.  This dual (two amplifier in a single chip) precision instrumentation amplifier is 
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capable of accurate, low noise differential signal acquisition. Its two-op-amp design 

provides excellent performance with very low quiescent current.  This combined with 

wide operating voltage range of ±13.5V to ±18V, makes it ideal for portable 

instrumentation and data acquisition systems.  Gain can be set from 5V/V to 10000V/V 

with a single external resistor Rg using the following gain equation:   

 

ginin

o

R
K

VV
VG 805+=
−

=
−+

             (1) 

 
The gain was set by an external resistor to 120 with common-mode rejection of 94 dB 

and 9 KHz of bandwidth.   

 
1.4.2 Filtering stage 
 
 
An ideal lowpass filter passes all frequencies below its cutoff frequency with a uniform 

gain and phase change.  It also totally suppresses all frequencies above the cutoff 

frequency.  Although the realization of such a filter is impossible, practical filters can be 

designed and implemented to satisfy at least the most crucial design requirements.  A 

filter design, which provides the maximum degree of pass-band flatness is the 

Butterworth design.  The Butterworth filter has a gain characteristic, which rolls off 

slowly near the cutoff, approaching the asymptotic slope only at frequencies well above 

the cutoff.  Moreover, the Butterworth is the design which least affects the phase of those 

signals whose spectral components all fall within the pass-band of the filter.  The Sallen 

and Key circuit whose simplicity, stability and ease of adjustment have made it an 

extremely popular circuit as a basic low-pass filter will be used for this filter design, 
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which is shown in Figure 3.  The operational amplifier in the circuit is actually the pre-

amplification stage described above and thus the filter is designed at the top of the 

amplifier.  The operational amplifier is configured in the voltage-follower configuration, 

which has a closed loop gain of unity, very high input impedance and nearly zero output 

impedance.  For an ideal operational amplifier, the input resistance of its terminals is 

infinite.  Therefore, the sum of the two entering currents at each terminal must be zero.  

The voltage transfer function of this circuit, using the Laplace Transform, can be 

expressed as: 

in

o

V
VsH =)(

1)()(
1

2122121
2 +++

=
RRsCRRCCs

        (2)  

The following nominal values can be calculated for a 2500Hz cutoff frequency: 

 R1=R2=R=100KΩ and       C1=900pf  and C2=450pf 
 
 

The small values of the capacitors C1 and C2 ensure linearity and stability of the filter.  

Since the filter is designed as follower for the pre-amplifier, which has very low output 

resistance (<<1Ω), the value of the resistance R1 is less affected.  Consequently the cutoff 

frequency as well as the performance of the filter is not affected.  Figure 4 shows the 

frequency response of the filter described above. 

 
1.4.3 Building of the Front-end Interface 
 
 
After the pre-signal processing in the front-end instrument, the data are passed through 

the multiplexer.  We  used the  AMUX-64T of  National  Instrument, which is a front-end 

Analog  multiplexer  that  quadruples  the  number  of  analog  input  signals  that  can be  

 10



 
 
 
 
 

+

_

C1

R1 R2

 
 
 
 
 
 
 

C2

Vin

 
 
 

Vo
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.3: A Sallen and Key type Butterworth filter 
 

 11



 
 
 
 
 0

0 500 1000 1500 2000 2500 3000
-35

-30

-25

-20

-15

-10

-5

Frequency, (Hz)

G
ai

n,
 (

 
 
 
 
 
 dB

)

fc

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4: Frequency response of the Butterworth filter 
 
 
 
 

 12



digitized with a National Instruments DAQ board.  The AMUX-64T has 16 separate four-

to-one analog multiplexer circuits and has 64 single-ended or 32 differential channels.  It 

can be powered by the computer through the DAQ board or with a 5V battery. 

 

The Data Acquisition Board used is the National Instrument’s AT-MIO-16E-1 which 

delivers high-performance, reliable data acquisition capabilities to meet a wide range of 

application requirements.  It has a 12- bit resolution with 16 single-ended analog inputs.  

The maximum sampling rate it can provide is 1.5 MS/s.  This device features both analog 

and digital triggering capability, as well as two 12-bit analog outputs, two 24-bit 20MHz 

counter/timers and 8 digital I/O lines.   

 

The whole EMG mapping system circuit board has been developed using the following 

connection between all the modules as shown below.  The EMG signals acquired through 

the grid electrodes are amplified and filtered out by the front-end instrumentation.  These 

analog signals are then received by the DAQ board through the MUX circuitry and 

converted to digital signals to be processed by the computer. 

 

1.5 Review of the Previous Research on EMG 
 
 
A number of investigators worked mostly on the development of generating the single 

muscle fiber action potential.  Several approaches have been presented to simulate the 

extra-cellular potential by volume conduction theory [5, 15, 16].  In 1947, Loerente de 

No [6] first introduced the idea of intercellular and extra cellar potential.  In 1969, Paul 
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Rosenfalck [17] first presented the mathematical analysis of the spread of action potential 

within nerve and muscle fibers.  Based on Maxwell’s field equation, he developed the 

relationship between the extra cellular and intracellular potential.  In 1974, Plonsey [16] 

formulated this relationship as a free space source-sink relationship.  In 1981, Andreassen 

et al [18] extended this model by approximating the muscle structure with an anisotropic 

volume conductor model.  In 1983, Nandedkar and Stalberg [19] introduced a line source 

model with a simplified approach of the transfer function of the medium.  They utilized 

the concept of potential produced by a point source located at the origin of cylindrical 

coordinate system.  In 1990, Gootzen et al [20] reported the influence of the finite 

dimension of volume conductor and fiber length on single-fiber action potential.  Their 

described model is found to be capable of generating a surface motor unit action 

potential, which showed a very good resemblance with measured signal.  In 1999, 

Merletti et al [21] investigated the relationship between the parameters of the active 

motor unit by using mathematical model of surface electromyographic signal.  In 2001, 

Farina et al [22] proposed a new model of EMG signal generation and detection by 

describing the volume conductor as an inhomogeneous and anisotropic medium 

constituted by muscle, fat and skin tissue.  He presented the transfer function in the form 

of two-dimensional filter function.  Later on, most of the modeling studies were focused 

around the precise representation of multiple layer volume conductor model [2,11]. 

 

Not too many researchers worked on the development of the motor unit pool in a muscle 

mostly because there was lack of information about the motor unit physiology although 

there has been an extensive amount of literature devoted to investigating the various 
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properties of a motor unit. These studies have demonstrated that the histochemical, 

morphological and physiological properties of motor units vary across the motor unit 

pool of a muscle (23, 24, 25).  These studies have also found that the properties of the 

motor unit pool vary dramatically between different muscles by their number, size and 

recruitment threshold.  However, the muscle fibers belonging to a motor unit feature 

many common characteristics (23).  The fibers of a motor unit are scattered throughout a 

broad region of muscle and intermingled with fibers belonging to many other motor 

units (23).  Henneman and his colleagues [25] demonstrated that there is a unique 

relationship between motoneuron size and the motor unit’s recruitment threshold, which 

is well known as size principle that states that in a pool of motor units, recruitment occurs 

in the order of increasing size of the motor unit during contractions.  It has been 

demonstrated that variable inputs to the motor unit pool allow the nervous system to vary 

the rate coding and recruitment strategies used during any specific task [24, 26, 27].  

Several investigators have also proposed that the rate coding and recruitment strategies 

used during a specific task can be altered with training (28, 29, 30).  The firing rates of 

earlier recruited motor units are greater than those of later recruited motor units at any 

given force value [31, 32].  However, some others found the opposite characteristics in 

some muscles.   

 

During the past century a large number of mathematical models have been developed to 

gain a better understanding of the various neurornuscular factors, which result in the 

mechanical output of muscle.  These models vary widely from models of single cross-

bridge interactions to models of complex kinematical movements involving large 
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numbers of muscles [33].  Kernell [34] employed a relatively simple computational 

algorithm to imitate experimentally-observed recruitment and firing rate behaviors in a 

small pool of motoneurons.  In 1988, Stein et al [35] presented the intrinsic motoneuron 

properties in more mechanistic models.  While reporting on the EMG signal generation, 

some common assumptions were made which seem contrary to the known experimental 

results.  Some [36, 37] researchers assumed the same shape for all motor unit action 

potential whereas others [19,38] thought all motor units discharged in the same 

frequency.  In 1993, Fuglevand et al [31] and Stashuk [32] presented a more realistic 

model than others but did not incorporate the effect of different types of fibers, which 

influence the EMG generation significantly.  Their model also did not consider the 

multilayer model of human muscle. 

 

1.6 Problem Statement 
 
 
An EMG is the recorded electrical signals, which represent the activities of skeletal 

muscle due to the stimulation by nerves.  Muscle fibers are organized into many 

functional units, which are called motor units.  A single-fiber action potential is the 

recorded extra cellular potential due to the propagation of the transmembrane current 

through the muscle fiber.  The motor unit action potential is the summation of all the 

single fiber action potentials belonging to that motor unit.  During contraction, the 

nervous system controls the number and patterns of motor unit recruitment as well as 

their rate and pattern of discharge from a pool of the motor units in a muscle group.  

 16



EMG is the temporal addition of all motor unit potentials at each of the motor unit’s 

recruitment and firing frequency level.  

 

By extensive survey of the current literature of experimental findings on motor unit 

physiology, it becomes necessary to incorporate and utilize all the latest findings in 

developing a muscle model for EMG generation.  A muscle model developed with 

rigorous detail of the physiological behavior will be highly beneficial in clinical 

neuromuscular assessment.  A good amount of research is dedicated to the development 

of EMG signal decomposition techniques.  However without a reliable and a 

comprehensive model of muscle EMG generation, clinical representation of the outcome 

of these researches will not be accurate. 

 

Thus, the main objective of this dissertation is to develop simulation techniques for EMG 

generation using a muscle model.  A muscle model for EMG generation consists of two 

separate models. The first required model is a single-fiber action potential model to 

generate motor unit action potential and the other is a motor unit pool model, which will 

predict the motor unit recruitment and the firing frequency of each of the motor units for 

a certain level of force on the muscle.  So the specific aims for this dissertation are as 

follows: 

1. A single muscle fiber action potential model 

2. Motor unit pool model 

3. EMG generation using the single fiber action potential model and the motor unit 

pool model for various recruitments and firing frequency patterns 
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4. Analyze the generated EMG amplitude and spectrum for change in various 

physiological and recording factors and also for aging 

 

Chapter Two presents a brief discussion about the muscle physiology and the conception 

of motor unit.  For any biological system design, it is critically important to understand 

the physiological behavior of the system.  This is also true for skeletal muscle and its 

modeling.  Different constituent parts of muscle as well as motor unit are described.  The 

distribution and size of motor units inside a muscle and the distribution and size of 

muscle fibers inside a motor unit are also discussed based on recent conceptual 

development of the motor unit physiology, which is the most fascinating and complicated 

issue to describe while developing a muscle model.  This chapter also describes the 

biophysical and bio-chemical phenomena of the generation and propagation of action 

potentials inside a muscle fiber.   

 

To develop a muscle model, it is essential to model a single-muscle fiber action potential 

using mathematical representations of muscle fiber’s intercellular potential and muscle’s 

electrophysiological behavior.  Chapter Three provides an analytical solution of the 

single fiber action potential for muscle in the absence of fat and skin layer and also for 

multilayer model with fat and skin.  The following physiological factors and the factors 

related to the recording of the potential affect the modeling of a single fiber action 

potential: 

 Distribution of diameter of the muscle fibers 

 Distribution of endplate and tendon of the fibers 
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 Finite length of the fiber 

 Thickness of fat and skin tissue layers 

 Spatial configuration and localization of the recording electrodes 

 Distance of the muscle fiber and the recording electrode 

 Sampling frequency  

By considering these factors, a simulation algorithm is developed to generate a profile of 

single fiber muscle action potential using published anatomical and clinical data.   

 

As EMG is the summation of all the recruited motor unit action potentials at their firing 

frequencies, it is necessary to predict each of the motor unit’s recruitment level and 

pattern and the rate at which each of them fires.  Chapter Four describes a motor unit 

pool model, which predicts the motor unit recruitment and the firing rate pattern.  The 

model requires following physiological considerations: 

 Number of motor units in a muscle and the physiological phenomenon of total 

number of fibers innervated by each motor unit 

 Spatial distribution pattern of each motor unit and the fibers inside the motor unit 

 Different types of fiber, their diameter and percentage concentration in a muscle  

 Recruitment pattern of motor units (spatial coding) 

 Firing rate and pattern of each motor unit (temporal coding) 

The related data about the motor unit physiology were collected from published 

experimental medical work.  A general motor unit pool model is developed to 

accommodate any change of above physiological factors.   
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In Chapter Five, models described in chapter three and four are utilized to generate EMG 

signals during voluntary contraction.  The contraction is assumed to rise linearly in one 

second at a particular level and remain at that level for remaining time of the simulation.  

The generated EMG signal is temporal addition of each motor unit action potential trains.  

For a different level of voluntary contraction, the EMG signals are generated to 

investigate the relationship between force and different parameters of EMG signal and its 

spectrum.  Various recruitment patterns and different firing frequency distribution 

behavior are tested using the model for steady-state contraction level.  Results are 

verified with the published experimental results.  

 

Application of the EMG model and the validation of the model with the published 

experimental results are described in Chapter Six.  Neuromuscular system behavior 

during aging is assessed and the muscle model developed in earlier chapter is remodeled 

for the age related alterations in the muscle structure and physiologic behavior.  For 

comparison, both young and elderly muscle of tibialis anterior has been simulated for 

EMG generation.  Changes in the EMG parameters in aging muscle are also analyzed and 

compared with that of young muscle.   

 

In this chapter, a human aging process model is also developed, which shows how with 

age, humans lose the strength.  Using this model, the effects of aging on compound 

muscle action potential (CMAP), which is the addition of all the muscle fiber action 

potential in a muscle group, is analyzed.  Different CMAP metrics such as peak-to-peak 

amplitude, area under the curve, rise time and mean frequency of the CMAP waveform 
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are analyzed and compared between young and elderly persons.  The changing patterns of 

these metrics during aging are investigated.   

 
Finally a conclusion is made in Chapter Seven, which summarizes the work in this 

dissertation and discusses the limitations of this muscle EMG model.  Future 

recommendation is also provided to overcome the shortcomings of this work and a 

discussion is made of the future applications that this model can offer. 
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CHAPTER 2  

 

2.  Muscle Physiology 
 

2.1 Introduction 
 
Virtually all of our dynamic interactions with the environment involve muscle tissue.  

Muscle helps us to posture, to produce force to work in our daily life.  Three types of 

muscle tissues exist in human body.  They are  skeletal striated muscle, 2) cardiac striated 

muscle and, 3) smooth non-striated muscle.  Without these muscle tissues, nothing in the 

body would move.  Skeletal muscle tissue moves the body by pulling on bones of the 

skeleton, making it possible for us to do our daily work. Cardiac muscle tissue pushes 

blood through the circulatory system.  Smooth muscle tissue pushes fluids and solids 

along the digestive tract, regulates the diameters of small arteries, and performs a variety 

of other functions.  In particular, skeletal muscles do the following functions: 

1. Produce skeletal movement 

2. Maintain posture and body position 

3. Maintain body temperature 

4. Support soft tissues  

5. Guard entrances and exits  

Three layers of connective tissue are part of each muscle [39, 40]: (1) an outer 

epimysium, (2) a central perimysium, and (3) an inner endomysium.  These are shown in 

Figure 2.1.  The entire muscle is surrounded by the epimysium dense layer of collagen
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Figure 2.1: Different layers of a muscle [40]. 
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fibers.  The epimysium separates the muscle from surrounding tissues and organs.  The 

connective tissue fibers of the perimysium divide the skeletal muscle into a series of 

compartments, each containing a bundle of muscle fibers called a fascicle.  Within a 

fascicle, the delicate connective tissue of the endomysium surrounds the individual 

skeletal muscle fibers and interconnects adjacent muscle fibers. Scattered between the 

endomysium and the muscle fibers are satellite cells, embryonic stem cells that function 

in the repair of damaged muscle tissue.  At each end of the muscle, the collagen fibers of 

the epimysium, perimysium, and endomysium come together to form a bundle known as 

a tendon.  Tendons usually attach skeletal muscles to bones.  Any contraction of the 

muscle will exert a pull on its tendon and thereby on the attached bone.  Skeletal muscles 

contract only under stimulation from the central nervous system.  Axons, or nerve fibers, 

penetrate the epimysium, branch through the perimysium, and enter the endomysium to 

innervate individual muscle fibers.  Skeletal muscles are often called voluntary muscles, 

because we have voluntary control over their contractions. 

2.2 Muscle Fibers 
 
A muscle fiber is a single cell of a muscle.  Muscle fibers contain many myofibrils, the 

contractile unit of muscles.  Muscle fibers are long and a single fiber can reach a length 

of 30 cm.  Skeletal muscle fibers can be divided into two basic types, type-I (slow-twitch 

fibers) and type-II (fast twitch fibers).  They can also be grouped according to what kind 

of tissue they are found in, namely, skeletal muscle, cardiac muscle and smooth muscle 

[41, 42, 43].  Type-I muscle fibers (slow-oxidative fibers) use primarily cellular 
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respiration and as a result, have relatively high endurance.  To support their high-

oxidative metabolism, these muscle fibers typically have large amount of myoglobin, 

many mitochondria, and many blood capillaries, generate ATP by aerobic system, thus 

known as oxidative fiber.  Type-I muscle fibers are typically found in muscles of animals 

that require endurance. 

 

Type-II muscle fibers use primarily anaerobic metabolism and have relatively low 

endurance.  These muscle fibers are typically used during tasks requiring short bursts of 

strength, such as sprints or weightlifting.  Type-II muscle fibers cannot sustain 

contraction for significant lengths of time and get fatigued faster.  There are two sub 

classes of type-II muscle fibers.  They are type-IIA (fast oxidative) and type-IIB (fast 

glycolytic).  Type IIB tire the fastest and are the prevalent type in sedentary individuals.  

Some research suggests that these subtypes can switch with training to some degree.  

Table 2.1 shows all the properties of different types of fibers. 

 
2.2.1 Endplate 
 
Skeletal muscle fibers contract only under the control of the nervous system. 

Communication between the nervous system and a skeletal muscle fiber occurs at a 

specialized intercellular connection known as a neuromuscular junction (Figure 2.2), or 

myoneural junction.  A single axon branches within the perimysium to form a number of 

fine branches. Each branch ends at an expanded synaptic terminal.  The cytoplasm of the 

synaptic terminal contains mitochondria and vesicles filled with molecules of 

acetylcholine, or ACh.  Acetylcholine  is a neurotransmitter, a chemical released by a 
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Table 2-1: Difference between different types of fibers in a muscle 
 

Muscle Properties Type-I fiber 
 

Type-IIA fiber Type-IIB fiber 

Contraction time 
 

Slow Fast Very fast 

Size of motor 
neuron 

Small Large Very large 

Resistance to 
fatigue 

High Intermediate Low 

Activity used for Aerobic long term Anaerobic short 
term 

Anaerobic 

Force Production 
 

Low High Very high 

Mitochondria 
density 

High High Low 

Oxidative capacity 

 
 

High High Low 
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Figure 2.2: Structure of the muscle endplate 
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neuron to change the membrane properties of another cell.  In this case, the release of 

ACh from the synaptic terminal can alter the permeability of the sarcolemma and trigger 

the contraction of the muscle fiber.  The synaptic cleft, a narrow space, separates the 

synaptic terminal of the neuron from the opposing sarcolemmal surface.  This surface, 

which contains membrane receptors that bind ACh, is known as the motor end plate.  The 

endplate is that specialized region between the motor nerve terminal and the muscle fiber 

that mediates neuromuscular transmission.  Therefore, the endplate region on the muscle 

fiber contains some receptors.  When these receptors are activated successfully, the result 

is an endplate potential.  An action potential is generated right after the endplate potential 

is generated and this action potential spreads down the length of the muscle fiber.  As the 

action potential travels down the muscle fiber membrane, the contractile apparatus is 

activated in turn.  The endplate zone in a healthy muscle is fairly homogeneous in that the 

endplates are usually at the mid portion along the length of the muscle fibers.  This may 

vary depending on the shape of the muscle.  Such positioning of the endplates allows 

greater efficiency in the bidirectional spread of the action potential along the length of the 

muscle fiber membrane.  The mean position of the endplates is defined as a percentage p 

of a basic muscle length L (default values: p = 50%).  Endplates are generally considered 

as scattered and normally distributed around this mean position.  The default distribution 

has been taken as Gaussian with zero mean, SD = 1mm, range = ±3. 

2.2.2 Tendon 
 
A tendon (or sinew) is a tough band of fibrous connective tissue that connects muscle to 

bone.  They are similar to ligaments except that ligaments join one bone to another.   
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Tendons are designed to withstand tension.  Tendons connect muscles to bones.  A 

combination of tendons and muscles can only exert a pulling force.  The distribution of 

the location of tendons at the end of the fiber is homogeneous. 

 
2.2.3 Muscle Fiber Diameter 
 
Different types of fibers have different fiber diameters.  In most of the muscle, 

histochemical analysis showed that type-II fiber diameter is bigger than the type-I fiber 

diameter.  Muscle fiber diameter differs from muscle to muscle as well.  The range of 

fiber diameter varies from 25 μm to 110 μm in different skeletal muscles.  The 

distribution of fiber diameter is Gaussian inside a motor unit [44].  Lange et al. (45.) 

showed that the spread in MFCV followed a normal (Gaussian) distribution in the biceps 

brachii at different contraction levels (0-100% MVC) of short duration (1.5 s). 

 
2.2.4 Muscle Fiber Numbers and Distribution 
 
 
Muscle fiber numbers vary according to the size of the muscle.  The bigger the muscle, 

the bigger the number of fibers in that muscle is.  However type-I and type-II fiber 

number differ in a muscle and differ from muscle to muscle as well.  For example in 

Bicep Brachii muscle group of young adults, 50% of the total fiber is type-I and 50% is 

type-II, whereas in Tibialis Anterior muscle, only 28% of the total number of fibers is 

type-I and the remaining are type-II fibers [46, 47].  Fibers are distributed uniformly 

throughout the muscle cross section. 
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2.3 Nervous System 
 
The nervous system is both the controlling and communications system of the body.  This 

system consists of a large number of excitable connected cells called neurons that 

communicate with different parts of the body by means of electrical signals, which are 

rapid and specific.  The nervous system consists of three main parts: the brain, the spinal 

cord and the peripheral nerves.  The neurons are the basic structural unit of the nervous 

system and vary considerably in size and shape.  Neurons are highly specialized cells that 

conduct messages in the form of nerve impulses from one part of the body to another.  

Neurons are branches into smaller neurons to innervate the muscle fibers. 

 
2.3.1 Motor Units 
 
Motor units are the functional block of the muscular system.  The force that a muscle 

produces depends on the percentage of the number of motor units that are active at that 

time.  The motor unit (MU) is a part of the neuromuscular system that contains an 

anterior horn cell, its axon, and all of the muscle fibers that it innervates (Figure2.3), 

including  the  axon's  specialized  point  of  connection  to  the  muscle  fibers,  the 

neuromuscular junction at the endplate.  As motoneuron branches and innervates muscle 

fibers, one motoneuron innervates either type-I or type-II fibers.  Thus motor unit could 

be either type-I or type-II category.  Characteristics of two types of motor units are shown 

in Table 2.2.  All muscles consist of a number of motor units and the fibers belonging to a 

motor unit are dispersed and intermingle amongst fibers of other units.  The muscle fibers 

belonging to one motor unit can be spread throughout part, or most of the entire muscle, 

depending on the number of fibers and size of the muscle.  When a motor neuron is  
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Table 2-2: Characteristics of two types of motor units 

 

Characteristics 
 
 

Type-I motor unit Type-II motor unit 

Properties of neuron cell 
diameter 

Small Large 

Conduction velocity Fast Very fast 

Ease of excitability High Low 

Number of fibers Few Many 

Fiber diameter Moderate Larger 

Force of unit Low High 

Contraction velocity Moderate Fast 

Fatigability Low High 
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Figure 2.3: A complete neuromuscular system 
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activated, all of the muscle fibers innervated by the motor neuron are stimulated and 

contract.  The activation of one motoneuron will result in a weak but distributed muscle 

contraction.  The activation of more motor neurons will result in more muscle fibers 

being activated, and therefore a stronger muscle contraction.  This also result is the ability 

of the muscle to make various patterns of contraction under the control of the upper 

motor neurons in the central nervous system (CNS) [48].  Groups of motor units often 

work together to coordinate the contractions of a single muscle.  The output of a single 

motor unit is referred to as "all or none".  This means that either all fibers in the unit 

contract or none do.  The number of muscle fibers within each unit can vary [Table 2.3].  

The bigger unit of the thigh muscles such as the gastrocnemious muscle can have 

thousands of fibers in each unit whereas eye muscles might have ten.  In general, the 

number of muscle fibers innervated by a motor unit is a function of a muscle's need for 

refined motion.  Muscles requiring more refined motion have motor units that innervate 

fewer muslce fibers.  Motor units are distributed randomly inside the muscle [24].  

Within  a  muscle,  the  ratio  of  the  diameter of smaller and the bigger motor units can 

vary up to 1:10.  The most consistant finding in the motor unit physiology is that motor 

unit properties have skewed nature of distribution [49].  Thus, it can be stated that most 

of the motor units will have smaller diameters and very few will have bigger diameters 

and this relationship can be expressed by the following equation: 

 
i

n
R

i edd
.)ln(

min=             (3)    

where, 

di = diameter of the ith motor unit 
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dmin = diameter of the smallest motor unit 

R = ratio of biggest and the smallest motor unit diameter 

n = number of motor units 

 

2.3.2 Motor Unit Numbers 
 
The number of motor units also varies with the size of the muscle.  In human skeletal 

muscles, motor unit numbers can vary from 50 motor units in smaller muscle to 900 

motor units in the larger muscle groups. 

 

2.3.3 Innervations Ratio 
 
The numbers of fibers innervated by each motoneuron differ from each other in a muscle.  

The innervation ratio indicates the average number of muscle fibers that, under normal 

conditions with respond to the action potential discharged by a single motor neuron.  The 

data suggest that smaller muscles, such as the intrinsic hand muscles, tend to have lower 

innervation ratios.  There is a negative correlation between the values of the innervation 

ratio and how finely movement can be controlled.  In muscles where innervation ratios 

are low, it is possible to produce very fine motion.  This is because each neuron is 

responsible for only a small increment in force.  On the other hand, when the innervation 

ratio is large, each neuron can initiate a very large step in force.  The variation in 

innervation ratios is one of the most significant factors that contribute to differences in 

motor unit force [50, 51, 52].  Such a distribution can be represented as an exponential 

form as [24, 49] (Figure 2.4): 
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where:  yi is the force or innervation number of motor unit i 

            a is the force or innervation number for the smallest unit  

            R is the ratio of the innvervation numbers for the largest and the smallest units 

n is the total number of motor units 

 

Figure 2.5 shows the number of motor units that innervate the different fiber types.  

Although the muscle (for example Tibialis Anterior) is comprised of 70% type-I and 30% 

type-II fibers, 396 motor units are of type-I and only 34 of them are type-II motor units in 

a pool of 430 motor units.  

 

2.4 Biophysical Phenomenon of Action Potential 
 

Each muscle or nerve cell has membranes, which introduces a structural barrier to limit 

the movement of some ions, but permits others to diffuse freely from in and out of the 

cell.  This selective permeability creates a potential difference across the membrane.  At 

resting muscle there are more sodium (Na+) and chloride (Cl-) ions in the extra cellular 

fluid outside the cell than inside the cell and excess amount of potassium (K+) ions and 

proteins in the intracellular fluid within the cell than that of extra cellular medium [53].  

 

At resting potential some potassium channels are open but the voltage-gated sodium 

channels are closed.  Even though no net current is flowing, the major ion species moving 
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Table 2-3: Total number of motor units in different group of muscle and total 
number of muscle fibers in a motor unit. 
 

 

 Name of muscle 
group 

 

Number of motor units Number of fibers/motor 
unit 

 
 Bicep brachii 750 774 
 
 Tibialis Anterior 445 562 
 
 Gastrocnemius 580  1720 

 
First dorsal 
interosseous 

119  
 

340 
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Figure 2.4: Innervation number of the different motor units in a muscle 
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Figure 2.5: Distribution of number of different types of motor units in a muscle 
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across the membrane is potassium, thus pulling the resting potential close to the K+ 

equilibrium potential.  The potential difference that exists across the membrane of all 

cells is usually negative inside the cell with respect to the outside.  The membrane is said 

to be polarized.  The potential difference across the membrane at rest is called the resting 

and is approximately –90 mV in neurons, with the negative sign indicating that the inside 

of the cell is negative with respect to the outside.   

 
 
A local membrane depolarization caused by an excitatory stimulus causes some voltage-

gated sodium channels in the neuron cell surface membrane to open and therefore Na+ 

ions diffuse in through the channels along their electrochemical gradient.  Being 

positively charged, they begin a reversal in the potential difference across the membrane 

from negative to positive-inside.   

As Na+ ions enter and the membrane potential becomes less negative, more sodium 

channels open, causing an even greater influx of Na+ ions.  This is an example of positive 

feedback. As more sodium channels open, the sodium current dominates over the 

potassium leak current and the membrane potential becomes positive inside. 

 

As voltage-gated potassium channels open, there is a large outward movement of K+ ions 

driven by the potassium concentration gradient and initially favored by the positive-

inside electrical gradient.  As K+ ions diffuse out, this movement of positive charge 

causes a reversal of the membrane potential to negative-inside and repolarization of the 

neuron back towards the large negative-inside resting potential.  Figure (2.6) shows an 

action potential and all its phases.  
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Figure 2.6: Different phases of an action potential generated inside the fiber 
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CHAPTER 3  
 
 

3. Muscle Computer Model 
 

3.1   Introduction 
 
The quantitative description of intracellular and extracellular fields of a single circular 

cylindrical fiber, resulting from the propagation of an action potential is of obvious 

interest in electro-physiology.  A mathematical analytical model of muscle fiber action 

potential is the first step in the modeling of the muscle and thus simulation and analysis 

of EMG signals.  The analytic modeling technique enhances the application of EMG 

signal, reduces the complexity of performing tedious and expensive experimental 

measurements.  Analytical solutions are valuable to determine the theoretical dependence 

of the solution on specific parameters of the system.  It reduces the computational time 

and thus accelerates the development of different DSP algorithm for post processing of 

measured signals.   

 

3.2   Muscle Modeling 
 
Electromyography (EMG) provides noninvasive means for the study of muscular 

functions during biofeedback training, activities of sports or daily living.  It is also useful 

in interpreting pathologic states of musculoskeletal or neuromuscular systems.  Surface 

myoelectric signals (SEMG) are recorded in motor nerve conduction studies, fatigue 

studies and in kinesiologic studies.  A surface motor unit action potential (MUAP) is the 

summation of the spatially and temporally dispersed action potentials of individual 
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muscle fibers belonging to the motor unit within the uptake area of the recording surface 

electrode [19, 55].  Compound muscle action potentials (CMAPs) represent the 

summation of a number of motor unit action potentials [56].  For modeling the motor unit 

action potentials, it is essential to simulate a single fiber action potential [19,57].  Several 

approaches have been investigated and documented.  Models based on the mathematical 

expression describing the single fiber action potential using volume conduction theory 

are very complex and computationally time consuming [58, 59].  In simplified models, 

the transmembrane current have been approximated as dipole or tripole sources 

propagating from the neuromuscular endplate toward the tendons [20].  The dipole model 

generated only biphasic potentials, whereas the transmembrane current profile is usually 

triphasic.  The tripole model is found to be unsuitable when the electrode is very close to 

the muscle fiber.  Nonetheless, the later model has been used in larger muscle models 

considering the transmembrane current as discrete point sources along the axis of the 

muscle fiber for a finite fiber within a finite volume conductor [20].  The influence of the 

finite dimensions of the volume conductor, however, has small effects on the amplitudes 

of SMUPs.  The volume conductor discrimination diminishes when motor units are 

farther from the detecting electrode [20].  Consequently, a less computationally 

demanding model, which consists of a line source model within a finite fiber length and 

an infinite homogenous volume conductor, is used in this study.  Figure 3.1 shows a 

muscle model where fibers are randomly distributed inside motor units.  The fibers are 

assumed to lie inside the motor unit as parallel to the surface of the muscle.  The isotropic 

layers of  fat  and  skin  tissues  lie  above the  anisotropic layers of muscle.  The size and 
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Figure 3.1: A single fiber action potential model 
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distribution of individual muscle fibers are adapted from anatomical and clinical data.  

The assumptions used in deriving a single fiber action potential are as follows: 

 Muscle is infinitely extended radially 

 Muscle Fiber is cylindrical  

 Radius of the fiber is much smaller than the length of the fiber 

 There is no capacitive effect on the volume conductor 

 Muscle fibers lie parallel to the surface of the muscle  

   

The time-varying fields associated with electromyographic currents are considered low- 

frequency fields, and thus, the wavelength of the harmonic fields is considerably larger 

than the dimensions of human muscles.  The electrical field distribution can be 

approximated by a static field satisfying the time-varying boundary conditions.  For a 

region with homogeneous conductivity σ the relationship between field potential, ϕ  and 

volume source density, IV can be stated using Poisson’s equation as: 

 VI−=∇∇ )..( ϕσ          (5) 

 ie.
σ

ϕ VI
−=∇2        (6) 

Where 2
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=∇  is a three dimensional differential operator. 

A linear differential equation written in the general form is as follows: 

)()()( xfxuxL =            (7) 

where L(x) is a linear differential operator,   
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and u(x) is the unknown function and f(x) is a known non-homogeneous term.  

Solution of equation (8) can be written as: 

)()()( 1 xfxLxu −=          (9) 

where L-1 is the inverse of the differential operator L.  Since L is a differential operator, it 

is reasonable to expect its inverse to be an integral operator and the usual properties of 

inverse hold,  

ILLLL == −− 11           (10) 

where I is the identity operator.  More specifically we define the inverse operator as: 

∫== − ')'()';()( 1 dxxfxxGfLxu         (11) 

where the kernel G(x; x′) is the Green’s function associated with the differential operator 

L.  

Let  , a three dimensional differential operator.  So the potential of the Poisson’s 

equation  (6) can be written as: 

2∇=L

  )(1

σ
ϕ VIL −= −            (12) 

So by using equation (12), we can write:  

          (13) ∫= )'()'()';()( pdVpIppGp Vϕ

So Green’s function gives the potential at the point p due to a point charge at the point p′ 

based on the assumption of quasi-stationary condition, which means that wave 

propagation effects, capacitive effects and inductive effect can be ignored in the 

calculation of potential.   
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An important special case of Poisson’s equation occurs when the source density IV is zero 

everywhere in a region of interest i.e. sources lie outside or at the boundary of this 

identified region.  In the case of muscle fiber, the sources are concentrated on the 

membrane of the active fiber, and in this case Poisson’s equation becomes Laplace’s 

equation, which is: 

                        (14) 02 =∇ ϕ

  i.e., 0),,(),,(),,(
2

2

22

2
=

∂
∂

+
∂

∂
+

∂
∂

z
zyx

y
zyx

x
zyx ϕϕϕ       (15) 

This equation can be written in cylindrical coordinates as: 
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Assuming rotational symmetry, we get: 
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where  22 yxr +=  

 

Taking Fourier Transform of Equation (17) only along the z-axis, we get: 
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Here Φ is the notation for Fourier transforms of extracellular field φ and ω is the spatial 

angular frequency corresponding to z-axis.  The spatial angular frequency is related to the 

angular frequency k by: 

  kπω 2=            (19)  
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The boundary condition to be satisfied by φ is given by the membrane current im: 
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The general solution of the Equation (14) can be represented by Bessel function as shown 

by [60]:  

  )().()().(),( 0201 ωωωωω rKCrICr +=Φ        (21) 

where In and Kn are modified Bessel functions and C1(ω) and C2(ω) are functions to be 

determined from the boundary conditions.  The solution of the equation can be found 

utilizing the properties of Bessel functions.  Before proceeding towards the solution of 

Equation (21), the field of isotropic extracellular medium, it is important to address the 

anisotropic behavior of the extracellular medium or the volume conductor of the muscle.  

Muscle fibers are separated by thin layers of extracellular fluid and each fiber is 

surrounded by a membrane.  Extracellular fluid has high conductivity compared to the 

conductivity of the membranes.  As a result, action potential currents running 

perpendicular to the fibers are forced to flow mainly in the narrow extracellular space 

between the fibers.  Consequently, the extracellular medium is not adequately described 

by a uniform conductivity σe.  An exact calculation of the potential around a muscle fiber 

in situ would require calculation of the currents in the narrow interstitial spaces 

surrounding the fiber and the currents in the membranes of the nearby fibers, taking 

electrical properties of passive membranes into account.  This is only possible when 

numerical methods are employed.  It is too complicated geometrical to be tractable by 

analytical methods.  However, an approximate solution can be obtained if the 

extracellular medium is considered homogenous but anisotropic, i.e., with different 
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conductivities in parallel and perpendicular directions, which are σz and σr respectively.  

Thus the conductivity of anisotropic extracelllular medium can be written as: 

                       (22) 
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Thus Laplace’s equation for the single fiber field calculation can be rewritten as: 
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Let 
r

zP
σ
σ

= , the ratio of longitudinal and radial conductivity.  Transferring Equation (24) 

in the cylindrical co-ordinate system as: 
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Taking Fourier transform along z-axis to represent Equation (25) in the spatial frequency 

domain, we get: 
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This is similar to equation (18) and the solution of which can be given again using the 

modified Bessel function as follows [60]: 

  ( ) ( ) ( ) ( ) ( )zzzzz PrKCPrICr ωωωωω 0201, +=Φ     (27) 

The potential distribution is a continuous decay function with respect to the radius of the 

cylindrical volume and it approaches to zero at ∞→r . Since  for ∞→0I ∞→r , the 
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general solution turns into, 

( ) ( ) ( )zzz PrKCr ωωω 02, =Φ       (28)  

At the interface of intracellular and extracellular medium i.e., at ar = , membrane current 

Im flows in radial direction and thus can be used as a boundary condition to solve 

Equation (24) for field potential and can be expressed by membrane current, Im to get the 

solution of field potential: 
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Differentiating Equation (28) and applying the boundary condition, we get: 
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where ar = and .  Thus, 10 KK −=′
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Using Equation (31), the solution of extracellular potential for an infinite volume 

conductor can be written in the spatial frequency domain as [60]: 
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Taking the inverse Fourier transform of the Equation (32), the extracellular potential 

distribution in space domain can be expressed as: 
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Equation (33) can be solved by evaluating Bessel’s function, K0 and K1 and discrete 

Fourier transform of the membrane current Im.  Moreover, the FFT can be applied directly 

to Equation (32) to solve the inverse Fourier transform to get φ(r,z).  Although this 

technique can readily be applied, it is important and handy to derive a straight-forward 

and simple expression for the extracellular field potential for better understanding.  For 

this purpose, we can write the Equation (32) as: 

              ( ) ( ) ( )zmzz IrWr ωωω ⋅=Φ ,,                                                                 (34)    
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Using the Inverse Fourier Transform and the convolution property on Equation (34) we 

find [60,19]: 

∫
∞

∞−

−== dsszrwsizizrwzr mm ),().()(*),(),(ϕ       (36) 

where, ‘*’ denotes the convolution operator and w(r,z) is called the weighting function or 

the transfer function of the volume conductor.  This function is similar to the Green’s 

function in Equation (13).   

 

Thus the extracellular potential φ(r, z) can be calculated by convolving the weighting 

function h(r, z) with the membrane current im(z).  As the radial distance r is increased the 

weighting function gets broadened and diminished in amplitude with the effect that the 

extracellular potential also is broadened and diminished in amplitude.  The weighting 

function W in Equation (35) can be redefined by introduction of an approximation to the 
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weighting function.  Transmembrane current flows due to the intracellular potential 

generated between inside and outside the cell.  In human muscle, it is found that the 

intracellular potential is a low frequency field, which is less than 10 KHz in frequency 

domain.  This frequency is equivalent to 2500 cycle/m in spatial frequency domain.  

Thus, 

2500.22 ππω ≤= kz  rad/sec.        (37) 

The average diameter of human muscle fiber is 55 μm or radius a = 28 μm, which gives: 

 610.28.2500.2 −≤ πωza  

i.e., 44.0≤zaω         (38) 

Thus the intercellular potential or the membrane current is zero for frequency more than 

10 KHz or  

0)( ≅zmI ω for 44.0>zaω        (39) 

Introducing this condition, the weighting function can be approximated as:  
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where Paa ='  and Prr =' .  From the behavior of the first-order modified Bessel 

function it is found that the value ( ) 1'' 1 →zz aKa ωω for 0' →za ω .  For 44.0=zaω , 

( ) 86.0'' 1 =zz aKa ωω .  So, ignoring around 14% error it can be assumed that 

( ) 1'' 1 ≈zz aKa ωω for 44.0' ≤za ω .  This approximation turns the weighting function 

as: 
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Thus we finally get the equation for the extracellular potential from Equation (45): 
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The denominator of Equation (43) can be identified as the distance R between the 

integration point on the fiber axis and the observation point (Figure 

3.2), i.e., 
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Thus Equation (46) can be written as: 
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From the line source model, we know that total membrane current for a section of the 

fiber can be denoted as a point source.  Again, the potential V (p) from a point source i0 at 

the point P′ in an infinite volume conductor with conductivity σe is: 
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Accordingly, the potential φ(r,z) from a line source on the center of the fiber is: 
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which is same as Equation (45).  Thus Equation (45) is equivalent to concentrating the 

membrane current as a line source on the center of the fiber.   

 
3.2.1 Analytical Expression of the Transmembrane Current Source 
 
 
The ionic currents in the membrane create electrical potentials inside and outside the 

membrane.  The transmembrane current is usually considered as the bioelectrical source 

of SFAPs.  In an approximating description, the current can be represented by a current 

tripole along the fiber axis [61].  Alternatively, the shape of the intracellular action 

potential (IAP) can be approximated by a synthetic Gaussian curve [62] or a quasi-

continuous function [19, 63].  A discrepancy is always seen between the actual 

experimental action potential and the simulated one.  One of the origins of discrepancy 

might be an erroneous description of the source.  Benno K. van Veen et al [64], studied 

different sources.  First, an analytical description of the intercellular action potential was 

used.  Furthermore, an experimental intercellular potential, a special experimental surface 

action potential, and a measured transmembrane current scaled to their experimental 

situation were applied.  The results for the experimental IAP were comparable to those 

with the analytical IAP.  The best agreement between experimental and simulated data 

was found for a measured transmembrane current as source, but differences are still 

apparent. 

  

The core conductor model applies to a situation where a cylindrical fiber is surrounded by 
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a cylindrical conductor.  If a and b are the radius of the muscle fiber and the surrounding 

medium respectively, then the resistance per unit length r is given by: 

       2
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r
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i πσ
=                                                                                             (49)   

Applying Ohm’s law to a cross section of the fiber (Figure 3.2) gives: 
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Kirchhoff’s law applied to a cross section of the fiber gives: 
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Thus the transmembrane current is then calculated as the second derivative of the 

intercellular potential.  The extracellular action potential from a single muscle fiber is 

generated by the depolarized and repolarized transmembrane current [61, 65].  The 

extracellular field can be described either by the intercellular potential or the 

transmembrane current.  Andreassen and Rosenfalck have suggested a mathematical 

representation of the intercellular action potential from a precise experimental setup.  If 

the muscle fiber is parallel to the z axis and the neuromuscular endplate is located at z = 

0, then the intracellular potential Vm at a particular point z and time t is given by [65]: 

                                                                 (52)  BezAzV z
m −= −λλ 3)()(

Where  is the profile of the intracellular action potential along the length of the muscle 

fiber in the z direction, and A=96, a suitable constant to fit the amplitude of the action 

potential  and B  is  the  resting  potential of –90mV and λ = 1.  Thus  the  transmembrane 

mV
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Figure 3.2: A muscle core conductor model 
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potential becomes: 

9096)( 3 −= −z
m ezzV           (53) 

Modification of Rosenfalck's model by dividing the time scale by two (or λ = 2) 

enhanced the peak-to-peak voltage of the transmembrane current (proportional to the 

second derivative of the intercellular potential).  After this transformation, the simulated 

data of Nandedkar and Stalberg [19] matched the experimental data.  Their empirical 

equation was: 

90768)( 23 −= − z
m ezzV         (54) 

However, after this transformation, their intercellular potential had a duration that was 

never obtained from experiments  [64].  Nevertheless, in this study, Rosenfalck’s 

empirical model of intercellular potential will be used to derive the transmembrane 

current for the source description of the surface EMG.  As described earlier, the 

transmembrane current is proportional to the second derivative of the intracellular 

potential: 
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where σi is the intracellular conductivity, a is the muscle fiber radius.  In the particular 

case where the extra-cellular medium is considered infinite with cylindrical anisotropy, 

the potential recorded at the surface of the model when a current source travels along the 

muscle fiber from the neuromuscular endplate toward the tendons can be approximated 

as: 
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3.2.2 Effects of Endplate and Tendons 
 
At the neuromuscular endplate and muscle fiber endings, the transmembrane current is 

constrained by the excitation and extinction principles.  To account for the finite 

dimensions of muscle fibers and volume conductor distortions, the excitation and the 

extinction of the action potential are described as current sources at the neuromuscular 

endplate and fiber endings.  These compensating current sources are calculated such as 

the total current is zero over the active part of the fiber. 

   (57) ∫ =
fiber

m 0dz)t,z(i

The model is described by a fiber with length L and diameter d which is located at a 

depth of ye from the surface of the skin.  The endplate is located at the center of the fiber 

with normal distribution with the innervation zone with a radius of re.  Similarly the 

tendons, which are located at the two ends of the fiber, are also distributed uniformly 

within a radius of rt.  The conduction velocity, vc, for each fiber is calculated as a linear 

function of the fiber diameter d (μm), by the empirical formula [19]: 

 )25(05.02.2 −+= dvc   (58) 
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3.3 Algorithm Used for SFAP Modeling 
 
 
Following are the steps that are utilized to model a single fiber action potential. 

1. Select a sampling frequency, fs usually 25khz.  

2. Spatial frequency is deduced from fs using 

      1000*
s

c

f
v

z =Δ  [Δz is in mm], vc is the conduction velocity of the action potential     

in the muscle fiber which is related to the fiber diameter by Equation (58). 

3. Thus for a length of ‘L’ fiber, total numbers of points Npt needed for the action 

potential [these points are from endplate to one side of tendon] is calculated as  

z
LNpt
Δ

=
*2

 

4. Total number of points to generate the action potential in the endplate zone is Nev. 

As Plonsy has shown that it takes 5ms for an action potential to generate before it 

starts propagating.  Thus Nev is calculated as 

     
dt

Nev
5

=     

      where 
1000*
1

sf
dt =  (dt in ms) and Nev is rounded towards zero.   

5. A coordinate system is chosen with center of the coordinate system located at the 

center of the endplate location of the fiber.   

6. Recording electrode position is selected as (xe, ye, ze) where the user selects the 

position of the electrode.                           
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7. The next step in SFAP modeling is to define the action potential source as 

transmembrane current im(z).  The samples of im(z) is obtained from the analytic 

model of intracellular potential derived by Rosenfalk which is  

       9096)( 3 −= − z
m ezzV

      where d = diameter of the fiber, σi & σr  are the intercellular and radial 

conductivities of the muscle 

8. Volume conductor calculation: transfer function of volume conductor depends on 

the distances between the action potential source location and electrode positions.  

Transfer function of the volume conductor is  
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Action potential recorded at point (xe, ye, ze) is due to two currents flowing from 

the endplate towards the tendons in ±z direction.  Thus Transfer function for both 

side of the endplate needs to be calculated separately. 

9. The extracellular potential V1 is calculated as the convolution of the 

transmembrane current and the volume conductor transfer function h.  The 

number of discrete values in h is Npt. The length of discrete convolution is (Npt + 

Nev –1).  Another way of simulating extra cellular action potential is to take 

product of Fast Fourier transform of im (z) & h (x,y,z,t) and taking the inverse FFT 

gives the generated extra cellular potential due to the propagation of action 

potential. 
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10. Compensation of endplate and tendon effect: generations of action potential at 

endplate and extinction at tendons have effects on recorded potential at electrode. 

To eliminate these effects, im (z) at each step (from 1 to Npt) are multiplied by h(x, 

y, z) and   h(x, y, z0 +,Npt  Δ z) to get compensation  at endplate V2 and at tendon 

V3  respectively so the final single fiber action potential (SFAP) is:                     

                     132 VVVVsfap −+=   

 
 

3.4 Results and Discussion 
 
 
In this section, a single fiber action potential model has been described using the finite 

length and radially-infinite volume conductor.  A single fiber action potential has been 

simulated using the techniques described above.  The volume conductor is assumed only 

conductive and any capacitive or inductive effects of the volume conductor are neglected.  

The simulation parameters used for the generation of the single fiber action potential is 

shown in Table 3.1.  A single fiber action potential and its spectrum are shown in Figure 

3.3 for the electrode position at xe = 0, ye = 10mm and ze = 20mm.  A 3-D figure of the 

action potential is also shown in Figure 3.4.  The surface action potential (SFAP) can be 

biphasic or triphasic and it depends on the position of the recording electrode as will be 

discussed next.  The magnitude of a single fiber action potential is in the range of 

microvolt and has power signal component not more than 500 Hz. It is of practical as 

well as simulation concerns to consider the distance of the source fiber and the recording 

electrode and also the effect of the volume conductor on the shape and behavior of the  
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Table 3-1: Simulation parameters used for modeling single fiber action potential 
 

Simulation Parameters Values Used 
 

Sampling frequency 
 

25 KHz 

Fiber length 
 

150mm 

Fiber diameter (d) 
 

Variable, mainly from 50-80 μm 

Endplate location and distribution 
 

At the middle of the fiber with a radius 
of 5mm 

Tendon location and distribution 
 

At the end of the fiber with a radius of 
5mm 

0.33 Sm-1σz 

 

0.063 Sm-1σr 

 

1.01 Sm-1σi 

 

Conduction velocity 
 

 

)25(05.02.2 −+= dvc  
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Figure 3.3: An extracellular action potential 
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Figure 3.4: A 3-D representation of the extracellular action potential 
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recorded action potential.  Both needle electrode and surface (either monopole or 

differential or grid electrode) electrode can be simulated using the model.  Distances 

close to the muscle fibers can only be accomplished through the use of needle and fine 

wire electrodes.  To see the effect of depth of fiber from the surface, the action potential 

is generated for fibers at different depth from the surface where the electrode is placed at 

(xe,ze) = (0,10mm) ie, a monopolar electrode 10mm away from the origin which is also 

the intersecting point of the endplate zone.  At large distances from the muscle fibers, the 

effects of the neuromuscular endplate and the fiber endings alter the shape of the 

simulated action potential generated at the surface of the muscle fiber.  At closer 

distances from the muscle fiber, the effects of the volume conductor are minimized since 

the filter function of the volume conductor approximates the impulse function.  Figure 

3.5 shows the impulse response of the volume conductor.  Figure 3.6 and Figure 3.7 show 

respectively the volume conductor effect on the shape of recorded potential very close to 

the fiber located at a distance from 4mm to 10mm and further away from the fiber such 

as from 15mm to 30mm from the muscle surface.  It is visible that the closer the 

recording electrode is, the bigger the amplitude of the action potential and the amplitude 

diminishes as the electrode moves further away from the source fiber.  Also it is 

noticeable that the shape changes from triphasic to biphasic when the fiber-electrode 

distance increases.  Thus, the recording electrode cannot detect signals after a certain 

fiber-electrode distance where the detected signal amplitudes are close to the system 

noise level.  Figure 3.8 shows the diminishing peak to peak amplitude as fiber electrode 

distance  increases.  At  this  point  of  discussion,  the  model is described without fat and 
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Figure 3.5: Impulse response of the volume conductor 
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Figure 3.6: SFAPs at different depth from the recording surface 
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Figure 3.7: SFAPs at different depth from the recording surface. (ye=15-30mm) 
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Figure 3.8: Effects of fiber to recording electrode distance on the peak to peak 
amplitude of SFAPs 
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skin and we will see later that this fat and skin will further deteriorate this signal pick up 

for the fiber-electrode distance.  

 

EMG signals are not only affected by the fiber-electrode distance or the depth of the fiber 

from the surface, but also by the spatial position of the electrode on the surface.  

Simulations have been performed for electrodes in different positions along the z-

direction  while the  fiber is at a  constant depth from the  surface and xe = 0.  Results are  

 shown in Figure3.9.  It has been found that, the further the electrode from the origin of 

the recording surface, the smaller the peak to peak of the action potential becomes or in 

other words the smaller the energy of the detected signal becomes.  But not until a certain 

position, does the detected signal amplitude become larger again.  Because, the behavior 

of the volume conductor transfer function is parabolic with the increasing ze.  Moreover, 

the switch from biphasic to triphasic in the shape of the action potential is also seen as the 

electrode moves away from the origin of the recording surface.  Another significant 

phenomenon is the shift in the peak of the action potential towards right as it occurs when 

the electrode moves further from the origin. Another set of simulation is performed for 

the electrodes that are moving further out in the x-direction on the surface while keeping 

the depth of the fiber and the z-directional position of the electrode constant.  Figure 3.10 

illustrates the behavior of this action potential with the changing position of the electrode 

in the x-direction.   

 

As expected, the magnitude of the signal diminishes when the electrode is further away 

from the origin of the measuring surface.  One significant attribute is that the peak of the 
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Figure 3.9: Effects of recording electrode distance in the z-direction on SFAPs 
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Figure 3.10: Effects of recording electrode distance in the x-direction on SFAPs 
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 signals at different xe does not move to the right as was seen in the z-directional change.  

Change in phase, that is change from tirphasic to biphasic is also seen when xe increases. 

 

Next phase of simulation has been done to see the effect of fiber diameter in the shape of 

recorded action potential.  Figure 3.11 depicts the behavior of the peak to peak amplitude 

of the SFAP with the increase of fiber diameter.  As conduction velocity is linearly 

proportionate to the fiber diameter and SFAP is also proportionate to the conduction  

velocity, it turns out that peak to peak amplitude varies linearly with the increasing fiber 

diameter.  Figure 3.12 shows the change in shape and magnitude of the SFAP with the 

changing fiber diameter.  As stated earlier, peak to peak amplitude increases linearly with 

the increase of diameter and also spatially gets tightened with the increase in diameter.  

No change in phase is observed due to the change in diameter. 

 

Another important aspect of the surface action potential is of the combination of 

electrodes that are used for the EMG recording.  As described in chapter one, differential 

electrodes are widely used for surface EMG recording.  In Figure 3.13, a differential 

SFAP is recorded for two electrodes situated at ze = 10 and ze = 20mm with other 

parameters kept constant.  As shown in Figure 3.14, the differential SFAP is the 

difference between the signals recorded at the two electrodes.  Interesting feature of this 

simulation is that, although the signal in each electrode is biphasic, the differential signal 

has turned out to be triphasic or it could be vice versa as well.   
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Figure 3.11: Relationship between peak to peak amplitude of SFAPs with the fiber 
diameter 
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Figure 3.12: Effects of fiber diameter on SFAPs 
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Figure 3.13: A differential SFAP derived from two monopolar SFAPs 
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3.5  Effect of Fat and Skin 
 
Surface EMG is widely used because of its ease of operation and also its usefulness of 

acquiring global information from the surface of the muscle.  In surface EMG it is 

essential to take consideration of the effect of fat and skin on EMG measurement and also 

in the modeling of EMG generation.  In between muscle fibers and the surface electrodes, 

there are two additional tissue layers- fat and skin exist.  Though the fat and skin layers 

are two different tissues and have different conductivity, both mediums are isotropic.  

The effects of highly resistive skin and adipose fat tissues can be simulated to depict the 

influence of each physiological parameter on the surface EMG signals.  These 

subcutaneous tissue layers of fat and skin cause attenuation and spatial widening of the 

surface EMG signals.  In this section, the volume conductor model that is described in the 

previous section will be extended to incorporate fat and skin layers at the top of muscle 

tissue and the potential distribution on the top of skin surface will be calculated following 

the procedure described in [66] and [67]. 

 

Figure 3.14 shows a Four-layer concentric cylindrical model that represents a large inner 

cylinder of muscular anisotropic tissue, an intermediate layer of subcutaneous fat and an 

outer layer of skin, both as an isotropic medium.  The complete muscle structure is 

situated in the medium of air.  It is assumed that the muscle and the fat tissue has 

interface at y = 0, fat and skin has at y = y1 and skin and air at y = y2.  To develop the 

simulation  model  the  position of  muscle  fiber is considered parallel along z-axis in the  
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Figure 3.14: Four-layer concentric cylindrical model 
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superficial area of muscle.   As shown earlier, the potential in the anisotropic muscle 

medium can be expressed using the Laplace equation as:   
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However, for the fat and skin medium, rz σσ = .  Thus Laplace equations for fat and skin 

layer can be written as: 
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In the multiple layer muscle model, current can be considered continuous along y 

direction and electric field can be considered continuous along x and z direction at the 

interface of two different layers.  As shown in Figure 3.14, muscle layer and fat and skin 

layer has a boundary at y = 0.  Thus at the boundaries, the following conditions hold: 
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Taking the two dimensional Fourier transform of the Equations (59), (60) and (61) in x 

and z direction, we get: 
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Let 22
zxya Pωωω += and 22

zxyi ωωω += , thus the above Equations become: 
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Solutions of the above ordinary differential equations can be given as: 
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Boundary conditions in the spatial frequency domain can be expressed as: 
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Thus the six coefficients of the above potential solutions can be evaluated from the six 

boundary conditions described above.  Substitution of these coefficients provides the 
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potential distribution for each layer.  At those layers, potential distribution in 2D spatial 

frequency domain can be expressed as: 
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where α1 and α2 for a specific value of frequency are, 
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The above three potential equations will provide the potential distribution on various 

region of the multi-layer model.  The transfer function of the isotropic layers of fat and 

skin can be obtained by dividing the potential at the top of skin by the potential of the 

muscle region.  In other words, the total transfer function of the intermediate tissue layers 

is a cascade of transfer function of anisotropic and isotropic medium.  Thus, the transfer 

function of the fat and skin layer can be written as: 
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Where xx fπω 2= and zz fπω 2= are the spatial angular frequency in x (perpendicular to 

the fiber) and z (parallel to the fiber) directions, 22
zxy ωωω += in the direction of 

distance between muscle and electrode,  is the conductivity ratio between skin and fat, 

 and  are thickness of fat and skin respectively.  The solution of potential distribution 

in the space domain can be obtained by taking the two dimensional inverse Fourier 

transform.  So the final action potential equation will be the inverse Fourier transforms of 

the product of H

cR

ft st

fat&skin and Φ (r,ω). 

                                                        (81)    )).,(( &
1

skiinfattotal HrF ωϕ Φ= −

 
 

3.6 Results 
 
The existence of these subcutaneous layers substantially effect the potential profile 

generated by an excited muscle fiber.  So while using surface electrodes, it is essential to 

take consideration of the effect of fat and skin.  The effects of subcutaneous fat and skin 

on the recorded surface action potential can be analyzed by simulating the potential 

distribution at different layers.  Figure 3.15 shows the two-dimensional potential 

distribution in spatial domain at muscle and at the skin surface from a fiber parallel to 

skin at a depth of 2 mm in the muscle.  Thickness of fat and skin are assumed to be 3mm 

and 1mm respectively.  From the comparison of Figure 3.15a and Figure3.15b it can be 

stated that the isotropic layers cause attenuation and spatial widening of the signal.  

Figure 3.16 shows the characteristics of simulated potential in two-dimensional spatial 
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Figure 3.15: Two dimensional potential distribution in spatial domain at a) muscle and b) at skin 
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Figure 3.16: Two dimensional potential distribution in spatial frequency domain at 
a) muscle and b) at skin 
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frequency domain.  Isotropic fat and skin layer behaves as a low pass filter obstructing to 

pass any high frequency component that might be with the generated action potential.  

Figure 3.17 shows the comparison of the simulated action potential at muscle and at skin, 

which shows clearly the reduction in signal amplitude.  The variation in thickness of fat 

and skin layer, which is expected among different people, also has effect on the surface 

action potential.  Figure 3.18 shows the spatial characteristics of the fat and skin layer 

transfer function along z direction with the variation of fat thickness, tf form 3 mm to 9 

mm while skin thickness is 1mm.  The location of the source and other 

electrophysiological parameters are kept unchanged.  Increase in fat thickness decreases 

the cutoff frequency of the low pass volume conductor of the fat and skin layer.  Also 

seen from the figure is the attenuation that is increased when the fat thickness increased.   

 
 

3.7 Conclusion 
 
 
In this section, first a single fiber action potential model is described and its analytical 

solution for calculating the potential due to the propagating action potential in the fiber is 

given.  The solution is based on line source model representation of the transmembrane 

current.  The fiber is assumed parallel to the skin surface although in reality the fiber 

might be curve shape.  An algorithm to simulate SFAP is given and the effects of 

electrode to fiber distance and electrode orientation on the SFAP measurement have been  

discussed.  In the second part of this chapter, a multi-layer muscle model is described 

which includes muscle as well as fat and skin tissues as concentric cylinder.  Effect of 

these two isotropic mediums on SFAP has been illustrated by generating the potential 
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Figure 3.17: Two-dimensional potential distribution in spatial domain at a) muscle 
and b) at skin 
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Figure 3.18: Effects of different depth of fat on volume conductor 
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distribution on each medium.  Spatial widening and signal attenuation of the SFAP are 

the two distinct effects that took place while fat and skin layers are incorporated to the 

single fiber action potential model.  
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CHAPTER 4  
 
 

4. The Motor Neuron Pool Model 
 

4.1    Introduction 
 
 

There is a huge collection of literature on motor unit physiology and its behavior, which 

underscores the variability of motor unit functions during voluntary contraction.  

Nonetheless, some principles have emerged that have enabled us to reduce the observed 

variability and to examine the mechanisms used by the nervous system in the control of 

movement.  The central nervous system (CNS) can increase the strength of muscle 

contraction by the following:  

• Increasing the number of active motor units (i.e., spatial recruitment)  

• Increasing the firing rate at which individual motor units fire to optimize the 

summated tension generated (i.e., temporal recruitment or rate coding) 

The nervous system acts in a complex fashion to control the force generated by our 

skeletal muscle by using intricate and systematic procedure of recruiting a number of 

motor units and controlling their corresponding firing frequencies.  Functionally, the 

critical point in the modulation of motor-neuron recruitment and discharge is whether a 

given synaptic input generates sufficient current at the soma to recruit the cell.  This has 

been called the effective synaptic current.  During muscle contraction, these effective 
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synaptic current inputs from various sources of nervous system activate the required 

motor units.  Firing frequency or the frequency of activation of the motor units depends 

on the amount of force needed to produce and also dependent on the type of contractions.  

The behavior of the motor unit recruitment and the firing frequency is not yet well 

understood among the physiologists for various muscle activities.  Nevertheless, this 

chapter tries to use the current available published rules of motor unit behavior during 

constant voluntary contraction.  Using these experimental results, a motor unit pool 

model has been developed here.  A motor neuron pool model predicts the number of 

motor units that is recruited from a pool of motor units in a muscle as a function of force 

and recruitment threshold and also the pattern of recruiting as the force increases and 

remains constant at certain amount of maximum voluntary contraction. The model also 

incorporates a firing frequency for each of the motor unit as a function of force as well.  

It also limits each of motor unit’s minimum and maximum firing frequency and the 

variation in the steady state firing frequency.  This model does not predict the recruitment 

and firing frequency for fatiguing contraction or the transient behavior of the contraction.   

 

4.2 Motor Unit Distribution 
 
 

As described in Chapter two, motor units are distributed randomly inside the muscle.  In 

this chapter, a generic motor unit pool model is developed.  If muscle radius, number of 

motor units, number of fibers per motor unit, different fiber concentration and fiber 

diameter is known, then muscle cross sectional surface is divided into number of small 

square areas whose one side is equal to the maximum fiber diameter and total number of 
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areas are equal to total number of fibers in that muscle.  Each square area is numbered as 

‘1’ or ‘2’ as type-I and type-II fiber respectively.  Motor unit center point is randomly 

selected inside this cross sectional surface and each motor unit is filled with the required 

number of fibers using the equation described in Chapter Two (Equation 4).  Figure 4.1 

shows the random distribution of the motor units inside a muscle.  To analyze the effect 

of random distribution of the motor units, compound muscle action potential (CMAP, 

discussed in detail in Chapter Six), which is the summation of all the single fiber action 

potential in a muscle, is simulated for 50 trials for tibialis anterior muscle.  Results show 

that, different metrics of CMAP such as peak to peak amplitude, area under the curve and 

rise time are differently affected [68].  Table 4.1 shows these metrics as mean and 

standard deviation.  

As muscle in a motor unit is comprised of many motor units with different diameters, 

conduction velocities differ among the muscle fibers in a motor unit.  A Gaussian 

distribution of the fiber diameter is assumed within a motor unit [44].  The last two 

variations factor will not be used in the simulation of the single fiber action potential.  

They will be used while motor unit pool as well as motor unit action potential model is 

developed. 

 
 

4.3 Motor Unit Recruitment 
 
 
Recruitment is defined as the successive activation of the motor units with increasing 

strength  of  voluntary  muscle  contraction.  It  is  a complex process that is under central 
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Figure 4.1: Motor unit distribution inside a muscle with 100 motor units. Type-I are 
blue and Type-II are red 
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Table 4-1: Simulated CMAP metrics in 50 trials for anterior tibialis muscle 
 
 
 
 
 

Area under the 
curve Peak to peak Muscle Rise time (mV) (mV.ms) 

 Tibialis 
Anterior 

16.19 1.23 1.39 
 (SD = 0.72) (SD = 0.14) (SD = 0.03) 
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nervous system control.  Motor unit recruitment results in a strong efficient muscle 

contraction.  Patterns of recruitment may differ between various types of motor 

activation.  But for most of the cases, the recruitment order follows the ‘size principle’, 

which states that, smaller motor units will be recruited earlier than the larger motor units 

[69, 70, 71].  The size principle refers to alpha motoneuron size relative to its order of 

recruitment in a population of motor units that comprises the fundamental organizational 

units of a muscle.  The soma of alpha motoneurons varies in size, accounting for some of 

the differences between type-I and type-II motor unit.  Dendritic volume (i.e. number of 

excitatory synapses on the neuronal soma) is constant in the two types of alpha 

motoneurons.  Therefore, smaller type-I motoneurons have relatively greater excitatory 

input given their smaller membrane size.  In contrast, type-II alpha motoneurons have a 

larger membrane, but given the same number of excitatory inputs, they have a lower 

excitatory potential.  When the muscle is activated initially, the first motor units to be 

recruited are small in size and weak in the degree of tension they can generate.  Starting 

with the smallest motor units, progressively larger units are recruited with increasing 

strength of muscle contraction.  The result is an orderly addition of sequentially larger 

and stronger motor units resulting in a smooth increase in muscle strength.  The 

recruitment sequence is thus to begin with slow type I motor units, to progress to type II 

units that first include moderate type IIA and to end with fast type IIB, which are active 

only at relatively high force output. 
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4.3.1 Relative Threshold of the Motor Units 
 
 
An individual motor unit is not active until the level of muscle contraction or the 

excitatory input current to the motoneurons is above some minimal level, which is termed 

its recruitment threshold.  Once a motor unit is active it remains active throughout a 

contraction as long as the force created remains above its recruitment threshold.  In 

accordance with the ‘size principle’, the earlier recruited motor units will have smaller 

recruitment threshold and later recruited motor units will have larger threshold.  In other 

words, smaller motor units need smaller excitatory synaptic input currents than the larger 

ones.  As suggested by Fuglevand [31], a Poisson distribution of recruitment thresholds 

similar to the distribution of motor unit territories adequately reflects the distribution of 

thresholds of the motor units and the size principle suggested by Henneman [72].  For 

ease of simulation procedure if the recruitment thresholds are assigned in the unit of 

percentage of maximal voluntary contraction (MVC), then the exponential equation that 

describes the Poisson distribution of recruitment thresholds is as follows [32]: 

i
n
R

i e
.)ln(

minηη =            (82)  

where,  

ηi    is the recruitment threshold of the ith motor unit in units of %MVC 

ηmin is the minimum recruitment  threshold  

R is the ratio of the maximum to minimum recruitment threshold 

n is the total number of motor units in the muscle 
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This equation will result in many motor units having a relatively smaller recruitment 

threshold and fewer motor units having larger recruitment thresholds. ηmin is arbitrarily 

set at 1.  Thus any voluntary contraction that produces a total synaptic excitatory current 

of Ii, the motor units, which have thresholds greater that Ii will not be activated.  The 

range or the ratio (R) of recruitment threshold is chosen from published physiological 

condition of the muscle and the desired level of voluntary contractions.  Figure 4.2 shows 

the relative recruitment thresholds for 200 motor units in an arbitrary muscle where the 

recruitment threshold range is 60. 

 
 

4.4 Motor Unit Firing 
 
 
The rate at which motor units produce action potentials during contraction is called the 

firing frequency.  Motor unit firing or the rate coding is one of the two neural methods 

that the nervous system adopts during contraction of the muscle.  Motor units have been 

found to modulate their firing rates in unison and simultaneously.  The firing rate of 

motor units is not constant, even during constant force contractions rather it fluctuates.  

The firing rates of earlier recruited motor units are greater than those of later recruited 

motor units at any given force value [31, 32].  At a force reversal, the firing rates of high 

threshold motor units reduce their firing rates before the low threshold motor units.  The 

fluctuations in a force output of a muscle during a constant-force contraction are caused 

by the fluctuations in the firing rates of the motor units.  The firing rates of the motor 

units decrease during a constant-force isometric contraction.  These phenomena suggest 
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Figure 4.2: Relative recruitment thresholds for 200 motor units in an arbitrary 
muscle 
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that the motor units have a net excitation, which acts through a common input.  The most 

likely location of this common input is the anterior horn cell.  The control to the muscle is 

not designed to generate constant-force contractions.  Motor unit firing frequency is 

characterized by four parameters, namely, minimum firing frequency, peak firing 

frequency, force and firing frequency relationship and interpulse interval of the firing 

action potentials.  In the human body, smaller muscles are generally involved in 

performing accurate movements.  Such movements require small incremental changes in 

force.  In contrast, large muscles are generally involved in either producing large forces 

or in controlling posture.  Large muscles generally do not require finer force gradation to 

accomplish their task.  Thus, the firing rates of such muscles do not require continual 

regulation and do not possess the highly dynamic characteristics seen in smaller muscles. 

 
4.4.1 Minimum Frequency 
 

The motor units with a low threshold in sustained contraction had a low minimum 

frequency.  The higher the threshold of the unit in sustained contraction, the higher was 

its minimum frequency.  However, when excited simultaneously, all motor units will 

have the same minimum firing frequency irrespective of their threshold excitation.  When 

the exerted force remains at the threshold level for any motor unit, then that motor unit 

will fire in the minimum frequency.  For most of the human skeletal muscle the minimum 

frequency is found in between 7 to12 Hz.  
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4.4.3 Force-Firing Frequency Relationship 
 

The steady state injected current to the motoneurons and its firing frequency shows a 

linear relationship.  The gain of this linear relationship is constant for all motor units in a 

muscle and independent of motor unit recruitment threshold.  Therefore, if the excitation 

current exceeds the motor unit threshold, the motor unit firing will be linearly 

proportionate to the applied current.  However, this frequency for a particular motor unit 

does have saturation at its peak frequency (which will be discussed next) from where the 

firing frequency does not increase with the increase of the input excitation.  The firing 

rate can be modeled to increase linearly with the increased force above the recruitment 

threshold for a particular motor unit.  The equation can be written as follows [31]: 

)( ii VCmmffFF η−+=                      (83) 

where, mff = minimum firing frequency 

            VC = voluntary contraction level in %MVC 

 ηi    is the recruitment threshold of the ith motor unit in units of %MVC 

m is the rate at which the firing rate changes with changes in simulated level of  

contraction 

The value of m can be chosen from the experimental result.  Usually the value of m of 

0.75 is used to simulate the firing behavior of smaller muscles while a value of 0.25 is 

typically used to simulate larger muscles [32].  
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4.4.4 Peak frequency 
 
In voluntary contraction, it was found that, after a certain force exerted to a muscle, the 

firing frequency does not increase [73].  This saturation in firing frequency is called the 

peak or maximum firing frequency.  It was also found that earlier recruited motor units 

have higher peak frequency than the later recruited motor units.  However there are 

contradictory findings too where higher threshold units had higher peak frequency than 

that of the lower threshold motor units.  In the literature, the reported peak frequency is 

20-50 Hz, although some researchers even found 100 Hz of peak frequency [74].   The 

peak firing rate has been modeled as an inversely proportionate to the recruitment 

thresholds [31]: 

max
(max)max η

ηi
i RFFFF −= `          (84) 

where, FFmax = maximum or peak firing frequency 

            FFi(max) = peak firing frequency of the first motor unit 

 R = Difference in peak firing rates between the first and last units recruited 

 ηi = recruitment threshold for the ith unit 

            ηmax = recruitment threshold of the highest or the last motor unit 
 
 
4.4.5 Variation of Inter-pulse-interval (IPI) 
 
 
Interpulse interval (IPI) is the time difference between two successive action potentials. 

IPI variation expresses the pulse-to-pulse variation.  At constant force, the firing 

frequency of a motor unit varies around a mean value with a fixed covariance.  This 
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variation varies with age and muscle although for a muscle, this value is constant for all 

the motor units in that muscle.  Analysis of motor unit discharge trains has indicated that 

IPIs resemble a random process with a Gaussian probability distribution function where 

the mean and the standard deviation of IPI distributions are related in such a way that the 

coefficient of variation remains relatively constant with changes in mean IPI [25, 71, 75, 

76, 77, 78, 79].  For a given motor unit, the variation of IPIs was observed to increase 

with decreasing firing rate.  Equation (83) can be written as: 

)(
11

1,,
ii

jiji VCmmffFF
ttIPI

η−+
==−= −        (85) 

 

To simulate the stochastic nature of motoneuron discharge, the IPI predicted by the above 

equation can be assumed equivalent to the mean IPI (IPImean).  In a normally distributed 

population, the deviation from the mean can be expressed as: 

σ
meanIPIX

X
−

=                                 (86) 

where, X can be represented as the value of IPI in a train of action potentials with a 

standard deviation of σ.  Equation (86) can be written as: 

IPIXIPIX mean =+= .σ                     (87) 

So the equation (87) becomes: 

XIPIttIPI meanjiji .1,, σ+=−= −         (88)  

i.e,   XIPItt meanjiji .1,, σ++= −                                (89)  

As the coefficient of variation (cv) remains constant and  
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μ
σ

=cv  or cv.μσ = , where μ is the mean.  Equation (89) becomes 

XcvIPIIPItt meanmeanjiji ..1,, ++= −                              (90)  

 

For each discharge, X has randomly selected from a Gaussian distribution with known 

mean and standard deviation using Box-Muller transformation method.  It allows us to 

transform uniformly distributed random variables, to a new set of random variables with 

a Gaussian (or Normal) distribution.  The most basic form of the transformation looks 

like:  

     )22cos()1ln(2(1 xxy π−=                                            (91)  

             )22sin()1ln(2(2 xxy π−=                                            (92)  

where x1 and x2 are derived from a uniform distribution of [0 1].  The polar form of the 

Box-Muller transformation is both faster and more robust numerically.  The algorithmic 

description of it is:  

1. Generate two uniformly distributed random numbers x1 and x2. 

2. Add the square of each of the random numbers until the sum w, is less than or 

equal to 1. 

3. )/))ln(.2(( www −= . 

4. The new Gaussian distributed number is wxy *11= . 
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where random numbers are uniformly distributed in [0,1].  Substituting the value of y1 

for X in equation (90) will give the interpulse interval between two successive action 

potentials.  The equation can be solved recursively to get all the interpulse intervals in a 

train of action potentials.  Figure 4.3 shows the IPI variation for five different motor units 

in a motor unit pool of 200 for a force of 30%MVC.   

 

4.5 Recruitment and Firing Frequency Interaction 
 
Considerable anatomical and functional coupling exists among the motor units within a 

muscle.  This behavior has been studied extensively in animals as well as in humans by 

providing external electrical and mechanical stimuli to sensory receptors in the muscle. 

The force produced by a muscle during a voluntary contraction depends on the number of 

active motor units and the rate at which those units discharge action potentials.  This  

interaction between recruitment and firing rate provides an apparently simple strategy for 

providing smooth force output.  Upon recruitment of a new motor unit it may be desirable 

to produce an increase in muscle force, which is less than the minimal incremental 

contribution of the new motor unit.  One way to achieve this goal is to decrease the firing 

rates of the motor units, which are already active, so as to diminish their contribution to 

the total force output when the new motor unit is recruited.  Thus, compensatory 

decreases of the firing rates of previously activated motor units will enable the muscle to 

produce a smoother force output during recruitment.  This effect becomes more important 

as  the  newly  recruited  motor units provide an increasingly stronger twitch contribution.  
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Figure 4.3: IPI variation for five different motor units in a motor unit pool of 200 
for a force of 30%MVC 
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Thus, in general, motor units recruited later should have a stronger effect on the firing 

rates of previously-activated motor units. 

 

The distribution of net synaptic input currents on a motor neuron pool varies as a function 

of task.  Thus it means that the nervous system determines a priori whether a contraction 

will involve shortening or lengthening of a muscle and develops appropriate commands 

by varying the pattern of synaptic inputs [24].  The relative contribution of motor unit 

recruitment and firing frequency to increase force varies across the working range of the 

muscle.  Recruitment dominates at low forces, whereas rate coding is more significant at 

high forces.  For most muscles, the recruitment of motor units continues up to forces of 

around 80% of maximum contraction, which means that the remaining 20% is achieved 

solely by variation of discharge rate of the motor unit action potential [24, 80, 81, 82, 83].  

Thus in the initial force build up, recruitment is the primary process that a muscle 

undertakes, whereas, when the force reaches its maximum, discharge rate becomes 

important to maintain the force.   
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CHAPTER 5  
 

5. EMG Generation 
 

5.1 Introduction 
 
 
Electromyography (EMG) signal is the summation of all activated motor unit action 

potential trains for a given force applied to the muscle.  Both single fiber action potential 

model and motor neuron pool model are required to be utilized to develop EMG signal 

for any type of contraction and force level.  Figure 5.1 shows a block diagram of the 

EMG generation using the developed models.  Motor unit activation and firing pattern 

depends on the applied task on the muscle.  The tasks can be voluntary isometric (when 

tension develops but load does not move and muscle does not shorten), voluntary isotonic 

(when muscle shortens and load moves) or electrically elicited contraction when all the 

motor units in a muscle are activated synchronously.  In this study, only the voluntary 

isometric contraction has been considered with a ramp contraction.  A motor unit pool 

model will predict the number and timing of the motor unit recruitment.  A single fiber 

action potential model will be utilized to find each activated motor unit action potential, 

which, is the summation of all the single fiber action potentials belonging to that motor 

unit.  Finally the motor unit pool model will predict the firing frequency and the variation 

of that frequency for each activated motor unit.  Table 5.1 shows the comparison of the 

distinct features of this EMG generation model with that of Fuglevand’s model. 
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Figure 5.1: A block diagram of the EMG generation 
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Table 5-1: Comparison of different model parameters of Fuglevand’s model and the 
model developed in this study. 

 
 
 

Modeling Parameters 
 

 
Fuglevand’s Model 

 
New Model 

Modeling of current 
source 

Dipole representation Line source current 
representation 

Multilayer volume 
conductor model 

No Yes 

Motor unit type 
distribution 

All same type Distributed as Type-I and 
Type-II motor units 

Muscle excitation Excitation synaptic currents Force as a voluntary 
contraction 

Recruitment range Narrow range (< 50%) and At 60% MVC 
Broad range (>70%) of 

excitation 
Minimum firing rate Constant for all motor units Increased linearly with 

force 

ISI variability Constant for all motor units Decreased linearly with 
force 
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5.2 Methods 
 
 
Using the single fiber action potential model and the motor unit pool model, any human 

skeletal muscle can be simulated for EMG generation.  In this study, tibialis anterior 

muscle will be used for simulation.  The size and length of this muscle for average young 

person have been collected from [84].  Fiber diameter range and distribution for different 

types of fiber and fiber type concentration have been shown in Table 5.2.  Number of 

motor unit and average number of fiber per motor unit are shown in Table 2.2.  All other 

required parameters have been adopted from the published journals and applied to the 

models that have been developed in this work for EMG generation.  As stated earlier, a 

ramp voluntary contraction has been applied as a force or excitation for the motor neuron 

pool model, which increases to the level of simulated %MVC in one second and stays at 

that level for another three seconds without getting fatigued.  As it is not the intent to 

analyze the effect of fatigue in this dissertation, it is assumed that maximum voluntary 

contraction for the simulated period of time will not cause any fatigue in the muscle.   

Figure 5.2 shows the ramp force and its constant stay at contraction level.  Thus the 

developed EMG signal is constant force EMG without consideration of fatigue.  The 

muscle is simulated for 5%, 10% and for every 10% increment until the maximum 

voluntary contraction or 100%MVC.  Recruitment level is set at 60%MVC, which means 

that all motor units in the muscle will be activated when the contraction reach at 60% of 

MVC.  In other words, at 60% of MVC the highest threshold motor unit will be recruited.  

Thus the range for the recruitment threshold has been set from 1 to 60.  The first or the 

lowest threshold motor unit will have threshold limit of 1%MVC and the last or the
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Table 5-2: Different types of fiber and fiber type concentration for both young and 
old 

 
 

Young subjects Old subjects 

Type-I Type-IIA Type-I Type-IIA 

Muscle 
Type 

% d 
μm  

% d 
μm 

 

% d  
μm 

% d  
μm 

Bicep 
Brachii 

 

45.0 
±3.0 

65.4 
±7.0 

31.0 
±3.4 

71.5 
±7.0 

48.0 
±5.0 

58.4 29.0 
±5.0 ±7.0 

60.9 
±5.0 

Tibialis 
Anterior 

76.0 
±7.0 

70.9 22.7 98.9 84.1 71.8 15.2 80.0 
±6.5    ±7.0 ±7.8 ±5.0 ±6.6 ±3.0 ±4.0 
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Figure 5.2: Simulated applied force to the muscle in %MVC 
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highest threshold motor unit will have threshold limit of 60%MVC.  Thus at 50%MVC, 

for example, the number of recruited motor units can be found using the Equation (80), 

which is calculated as 411 or more than 95% of the total motor units.  Figure 5.3 shows 

the distribution of the recruited motor units for various input force levels.  Both unipolar 

and bipolar differential electrode has been simulated.  The unipolar electrode is situated 

10mm away from the center of neuromuscular endplate of the muscle in the z-direction 

on the surface whereas two electrodes 10mm and 20mm away from the endplate were 

simulated for differential setting.  EMG signal will be simulated and analyzed for the 

case when there are no subcutaneous tissues in the model (mimicking needle electrode 

EMG) and also when fat and skin layer lies above the muscle tissue (surface EMG). 

 

EMG signals are random in nature.  A raw EMG burst cannot be reproduced a second 

time by its precise shape.  Four parameters of the EMG signal and its spectrum are 

usually used to describe the content of EMG signals.  These are root mean square value 

(RMS) and average rectified value (ARV) for the time varying signal and mean and 

median frequency for the power spectrum of the EMG signal.  The mean value of the 

rectified EMG over a time interval T is defined as average rectified value (ARV) and is 

computed as the integral of the rectified EMG over the time interval T divided by T.  

ARV relates to information about the area under the selected signal epoch.  RMS reflects 

the mean power of the signal.  The equations used for the calculation of RMS and ARV 

are described below: 

 ∫=
T

dttx
T

RMS
0

2 )(1                                                                              (93)
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Figure 5.3: Distribution of the recruited motor units for various input force levels 
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 dttx
T

ARV
T

.)(1

0
∫=             (94) 

where x(t) is the time varying EMG signal for a time T.  The mean frequency estimates 

the mean of frequencies in the frequency spectrum of the EMG signal.  Median frequency 

is defined as the frequency that divides the power spectrum in two regions having the 

same amount of power or area under the power spectrum.  Following are the equations 

used to calculate the mean and median frequency: 

 

∫

∫
∞

∞

=

0

0

).(

.).(

dffP

dfffP
fmean      (95) 

Median frequency, fmed when                                                  (96) ∫ ∫
∞

=
med

med

f

f

dffPdffP
0

)()(

where P(f) is the spectral density function which is the Fast Fourier Transform (FFT) of a 

epoch of the EMG signal x:  

     (97)  2)]([)( xFFTfP =

In this study, EMG signals are generated and analyzed for the muscle model considering 

1) muscle in the absence of fat and skin layer and 2) muscle with subcutaneous fat and 

skin layer. 

 

5.3 Results and Discussion 
 
 
EMG signal is the result of many physiological, anatomical and technical factors.  To use 

the signal effectively, it is first necessary to understand as much as possible the sources 
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of, and the influences on, the signal, which have somewhat been discussed in part in the 

previous chapters.  Figure 5.4 and Figure 5.5 show respectively the EMG signal for 2 

seconds recorded in the monopolar electrode at 20 %MVC when there are no external fat 

or skin tissues and when the subcutaneous fat and skin layer exists on the top of the 

muscle.  These figures show the initial build up of the EMG amplitude as the force in 

ramp builds up in one second.  Figure 5.6 and Figure 5.7 show the frequency spectrum of 

the EMG signal at 20% MVC for the above two cases.  

 
5.3.1 EMG Force Relationship 
 
 
Figure 5.8 illustrates the behavior of the RMS values of the EMG signal generated for 

various levels of voluntary contraction.  In both cases of the model, the relationship is 

curvilinear although until 60% of MVC, EMG RMS magnitude increases linearly with 

the increase in input contraction with a slope higher than the slope by which the RMS 

amplitude increase from 60% to 100% of MVC.  Behavior of average rectified value 

(ARV) with force is also similar to that of the RMS of the EMG, which is shown in 

Figure 5.9.  For first linear increment (0-60%MVC) of the EMG force curve, the 

explanation could be as follows: When a motor unit is recruited, it contributes quanta of 

force to the muscle contraction.  However, the contribution to the EMG signal amplitude 

is  dependent  on  the  proximity  of  the  detection surfaces of the electrode to the nearest 

fibers of the recruited motor unit - the nearer the fibers, the greater the contribution [85].  

Thus, the vector representing the incremental increase may increase or decrease the 

instantaneous slope of the force-EMG signal relationship.  For the second part of the 

linearity (60-100%MVC), the EMG amplitude is increased slightly as at 60% MVC all
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Figure 5.4: EMG signal for 2 seconds recorded in the monopolar electrode at 

20 %MVC when there are no external fat or skin tissues 
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Figure 5.5: EMG signal for 2 seconds recorded in the monopolar electrode at 

20 %MVC when there are external fat or skin tissues 

 

 

 

 

 

 

 

 

 117



 

 

Figure 5.6: EMG signal spectrum recorded in the monopolar electrode at 

20 %MVC when there are no external fat or skin tissues 
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Figure 5.7: EMG signal spectrum recorded in the monopolar electrode at 20 
%MVC when there are external fat or skin tissues 
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(b) 

Figure 5.8: Relationship between EMG RMS value with the level of force generated. 
a) in muscle b) on skin 
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Figure 5.9: Relationship between EMG ARV  with the level of force generated. a) in 
muscle b) on skin 

 

 121



of the motor unit in the muscle were recruited and no other motor units are recruited after 

that.  Thus the muscle maintains that EMG amplitude and increases by the increased 

firing frequency of the recruited motor units due to the increased level of contraction 

(motor unit firing frequency increases linearly with the applied force).  

 
Most of the practical observation is that the amplitude of the EMG signal generally increases as 

the force and/or contraction velocity of the muscle increases [85].  Figure 5.10 illustrates the 

experimental result of the RMS-force relationship of first dorsal interosseous muscle.  In fact 

this relationship is not rigid for all muscles and there are many factors that cause the 

relationship to be nonrigid.  As the amplitude of the surface EMG signal is a random variable, 

the instantaneous value of the amplitude is not monotonic with respect to the force value.  

Furthermore, the estimate of the signal amplitude will vary as a function of force due to 

intrinsic anatomical and physiological factors.  The detection electrode size and placement 

plays an important role on the amplitude of the EMG signal.  If the newly recruited motor unit 

is located close to the electrode, then the relative increase of the EMG signal will be greater 

than the corresponding increase of the force because the new MUAP will contribute more than 

an average unit of energy to the EMG signal.  However that is not the case when newly 

recruited motor unit is located far away from the electrode.   The control strategy, described in 

terms of firing rate dynamics and recruitment range used by the central nervous  system  (CNS)  

to  control  different  muscles  can  also  affect  the  EMG-force relationship.  In the case of 

surface electromyography, cross talk, which is unwanted signal from the neighboring muscles 

can contaminate the recorded signal for a specific muscle and thus affect the force EMG 

amplitude relationship. 
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Figure 5.10: Experimental result of the RMS-force relationship of first dorsal 
interosseous muscle [85] 
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4.3.2 Force EMG-Spectral Relationship 
 
Figure 5.11 and Figure 5.12 depict the relationship between the contraction force and 

mean and median frequency respectively for muscle in the absence of fat and skin.  

Figure 5.13 and Figure 5.14 show the relationship between the force and mean and 

median frequency respectively when a subcutaneous layer of fat and skin exists.  Mean 

and median frequency increase linearly until 60%MVC of voluntary contraction.  After 

that level both mean and median frequency of the simulated EMG fluctuates from the 

value at 60%MVC.  In practical situations, it is also found that, mean and median 

frequency increase with the increase of force. 

 

There are two main properties of the EMG signal that can affect the frequency spectrum: 

1) the firing behavior of the motor units, and 2) the shape of the motor unit action 

potential (MUAP).  The dominant effect of the firing rate of the motor unit is limited to 

the frequency neighborhood of the value of the average firing rate (15 to 25 Hz). The 

second harmonics of the firing rates are considerably smaller than the first harmonics and 

they occur at double the frequency of the first harmonics, where they are overwhelmed 

by the energy of the MUAP shapes [85].  The variance of the firing rates will determine 

the broadness of the frequency peak representing the firing rate, therefore, any influence 

will be limited to the same region.  However, the shape of the MUAP is the determining 

factor of any change in frequency spectrum of the EMG signal.  In chapter three, 

different parameters involving the change in MUAP are described.  If the isometric 

contraction is maintained at constant force, recruitment of the motor units is unlikely to 

occur and the average size of the active muscle fibers remains constant.  Thus, for a 
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constant-force isometric contraction, the only factors that affect the MUAP are the 

conduction velocity and the depolarization zone of the muscle fibers.  The conduction 

velocity of the muscle fiber is proportional to its diameter.  Therefore, muscles with 

larger diameter fibers, such as those generally belonging to higher threshold motor units, 

will have greater average conduction velocities which, in turn, will shift the frequency 

spectrum towards the high frequency range and consequently increase the value of the 

median frequency.  Both mean and median frequency increases linearly until 60% of 

MVC due to the increase in higher threshold motor units and consequently Type-II motor 

units recruitment.   

 
The amount of subcutaneous (fatty) tissue between the electrode and the active fibers 

determines the amount of spatial filtering to which the signal is subjected.  The greater 

the thickness of the tissue, the greater is the low-pass filtering.  Thus, additional 

subcutaneous tissue reduces the value of the median frequency.  Simulated results justify 

this statement, as the subcutaneous layer reduces the mean and median frequency (some 

%) from that of the muscle without fat and skin. 

 

Moreover it is important to note that, electrode location and orientation, electrode 

configuration are also important factors influencing the EMG spectrum.  The distance 

between the electrodes determines the bandwidth of the filtering characteristics of the 

differential electrode configuration.  Therefore, when the frequency spectrum parameters 

are compared among contractions, the same electrode configuration and dimensions must 

be used.  
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Figure 5.11: Relationship between the contraction force and mean and frequency 
when no fat and skin lies above the muscle 
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Figure 5.12: Relationship between the contraction force and median frequency 
when no fat and skin lies above the muscle 
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Figure 5.13: :  Relationship between the contraction force and mean frequency 
when fat and skin lies above the muscle 
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Figure 5.14: Relationship between the contraction force and median frequency 
when fat and skin lies above the muscle 
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CHAPTER 6  
 

6. Age Related Muscle Remodeling 
 
 

6.1 Introduction 
 
Since impairment of skeletal muscle function leads to disability and loss of 

independence, it is important to understand the basic cellular mechanism underlying 

muscle dysfunction in the elderly.  This knowledge is essential to optimize rehabilitation 

and preventive strategies for this population, which by the year of 2030 will increase by 

107% for the age group of 65 years and 133% for the age group of 85 years as predicted 

by the US Census Bureau [86].  In addition, the percentages of older people with 

disabilities in activities of daily living and of older people requiring institutionalization 

for disabilities are expected to remain similar to current levels over the next 30 years, 

although these statistics vary by ethnicity.  This means that the number of people 

requiring institutionalization for disabilities will increase substantially.  As humans grow 

older, their skeletal muscles loose the strength and the capacity to generate force due to 

skeletal muscle mass reductions. This is known as sarcopenia [87, 88].  Some 

investigators have suggested that the loss of muscle mass is primarily due to the loss in 

the number of muscle fibers and to a lesser extent, a reduction in muscle fiber size [89, 

90].  Most researchers, however, reported that age related muscle atrophy results from 

fiber atrophy rather than a loss of muscle fibers [91,92,93,94,95].  In addition to the 

decrease in skeletal muscle mass due to the atrophy of the muscle fibers, the muscles of 
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elderly subjects (65-83 years of age) contain less contractile tissues (Type-II) and more 

noncontractile tissues (Type-I) when compared with the skeletal muscle of younger 

subjects (26-44 years of age).  Consequently, elderly people may lack strength and force 

production.  In recent reviews, it is also found that the size of Type-I fibers does not 

change substantially with age, but Type-II fibers undergo selective atrophy [86,87,96]. 

 

In attempt to understand the aging skeletal muscle, this section investigates the effects of 

the physiologic changes that occur during aging on computer generated compound 

muscle action potentials (CMAPs) of Bicep Brachii muscle group.  CMAP are used in the 

motor conduction studies.  Figure 6.1 shows different parameters of the CMAP wave 

shape.  These parameters are: 

(a) Latency:  Latency is the time delay for the CMAP to rise to its peak.  Latency can also 

be expressed as rise time, which indicates the rise of the CMAP from 5% to 95% of its 

peak amplitude.   

(b) Amplitude: The amplitude of the evoked motor response carries important 

information.  Amplitude is dependent on the number of axons that conduct impulses from 

the stimulus point to the muscle, the number of functioning motor endplates and muscle 

volume.  Peak to peak amplitude is often calculated which is the summation of the 

positive and negative peaks. 

(c) Area under the curve:  Area represents a combination of amplitude and duration.  It 

reflects the number and synchrony of the muscle fibers activated.  A prolongation of the 

duration can cause a decrease in the amplitude and may be misinterpreted as a conduction 

block.  Area under the curve is calculated as total area of the CMAP on the time scale.
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Figure 6.1: Different parameters of the CMAP wave shape 
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(d) Duration:  The duration reflects the synchrony of individual muscle fiber discharges.  

If there is a significant difference in the conduction velocity among nerve fibers, the 

duration will be prolonged.  Mean frequency is also used as a CMAP parameter instead 

of duration, which describes the mean of the frequency content in the CMAP spectrum. 

 
6.1.1 Clinical Importance of CMAP Parameters 
 
 
Amplitude: Some neuromuscular disease such as axonal neuropathies, which affect 

repiratory function may cause a reduction in the amplitude of the CMAP.  Therefore 

quantification of amplitude of the CMAP is sometimes more relevant than measuring the 

phrenic nerve conduction.  Area under the action potential will also be used instead of 

amplitude only.  

 

Duration and latency:  Duration in the measured CMAP can indicate the muscle slowing 

or nerve conduction block.  In the nerve conduction of thener muscle, it is found that 

thener muscle with degenerative joint disease (DJD) in the hand of elderly people shows 

larger duration in the CMAP than those of healthy hand of the elderly. 

 

The nonlinear behavior of the physiologic changes during aging is adapted from the work 

of Robert Schwartz on Sarcopenia and physical performance in old age [97] which is 

shown if Figure 6.2.  Behavior of CMAPs and its metrics such as peak to peak amplitude, 

area under the curve, rise time and mean frequency during aging have been computed and 

analyzed.  The physiologic data such as the number of motor units in a muscle group,  
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 Figure 6.2: Behavior of change in strength during aging process 
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number of fibers per motor unit, diameter, length and percentile concentration of different 

types of fiber in a motor unit were adapted from the published clinical data [98, 99]. 

Hypothesis: 

1. Most of the researchers said that type-I fiber diameter does not change 

substantially. 

2. Almost every researcher agreed that type-II fiber diameter decreases substantially 

during aging. 

3. Almost every researcher agreed that type-II fiber concentration decreases in old 

people. 

4. Some researchers said type-I concentration remains same whereas some said it 

increases during aging. 

5. Some researchers said number of fibers does not change substantially during 

aging whereas some said it decreases during aging 

 
 

6.2  Muscle Simulation and Data Analysis 
 
 
Muscle fiber action potentials and surface electrodes were simulated to describe the 

physiological changes that occur during aging.  The characteristics of simulated 

composite action potentials (CMAPs) metrics for Bicep Brachii muscle group were 

investigated.  Table 6.1 shows the documented percentile concentration of Type-I and 

Type-II fibers and their corresponding diameters for this muscle group for both young 

(age 22-44) and old (age 65-83) population for bicep brachii and also for tibialis anterior.  
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Table 6-1: Diameter and fiber type concentration for Bicep Brachii for both young 
and old 

 

Young subjects Old subjects 
Type-I Type-IIA Type-I Type-IIA 

% d 
μm  

% d 
μm 

 

% d % d  
μm μm 

45.0±3 65.4±7 31.0±3.4 71.5±7 48.0±5 58.4±5 29.0±7 60.9±5 
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The muscle model consisted of Type-I, Type-IIA and Type-IIB fibers, which were 

distributed randomly inside the muscle model.  We assumed that Type-IIA and Type-IIB 

had same percentile concentration.  Fiber diameters were generated randomly using their 

corresponding mean and standard deviation values.  A linear relationship described in 

Equation (57) was used to calculate the conduction velocity for each fiber.  Two surface 

electrodes, 10 and 20 mm away from the muscle motor point, were simulated to record 

the monopolar as well as differential CMAPs at a sampling frequency of 25 KHz.  

Simulations for bicep brachii muscle group in young subjects were performed in 50 trials 

to investigate the effects of uniform random distribution of the fibers within the cross 

section of the muscle model.  To observe the effects of physiological changes on the 

CMAPs during aging, simulations were also performed when fiber diameter, Type-I and 

Type-II fiber concentration and total number of fibers in bicep brachii muscle changed 

from the values of young subjects (20 years) to that of elderly subjects (80 years) using 

the nonlinear curve of physiological changes described in [97].  In attempt to simulate 

this aging behavior, it is required that the aging curve is described by an empirical 

equation.  For this, the aging curve is fitted using MATLAB (Figure 6.3).  First of all, the 

aging curve behaves as a sigmoid function as follows: 

xe
y

−+
=

1
1                                                                                             (98) 

The shape of the sigmoid function is shown in Figure 6.3.  The coefficients of this 

sigmoid function are derived while fitting the curve exactly.  The equation that describes 

the aging curve is as follows: 
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Figure 6.3: a) A sigmoid function, b) Curve fitting of the aging process 
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where, the coefficients are: 

075.0
0.2
18.5
33.10
4.27
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=
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6.3 Results 
 
 
CMAPs were simulated for both young and elderly subjects using physiologic data for 

Bicep Brachii muscle group.  Peak to peak amplitude, area under the curve, rise time, and 

mean frequency of these CMAPs have been calculated.  Table 6.1 shows the mean and 

standard deviation values of these CMAP metrics, which were calculated from 100 trials 

for the three different muscles of young subjects for single electrode position.   

 

Figure 6.4 shows the CMAP plots of bicep muscle during aging.  The CMAP wave 

shapes for young and elderly subjects are shown in this figure for visual comparison.  

Figure 6.5 illustrates the changes in the CMAP peak to peak amplitude during simulated 

aging.  Peak to peak amplitude of the CMAP decreased in the same fashion as the 

nonlinear aging curve.  Figure 6.6 and figure 6.7 shows the area under the curve and 

mean frequency of the CMAP of bicep, which also decreased in the same fashion.  Rise 

time  was  calculated  as the  time  for  CMAP  to increase from 5% to 95% of its positive 
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Table 6-2: CMAP metrics simulated for 50 trials for three different muscles 
 

CGAP Metrics 
 

Bicep Brachii Vastus Leteralis Tibialis Anterior

Peak to Peak 
Amp 
(mV) 

23.85±0.21 31±0.41 18±0.16 

Area under the 
Curve 

(mVms) 

2.12±0.04 3.24±0.02 1.68±0.02 

Rise Time 1.1±0.01 1.03±0.01 0.93±0.01 
(ms) 

Mean Frequency 91.80±0.08 84.88±0.07 
(Hz) 

59.36±0.04 
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Figure 6.4: CMAP wave shapes during aging 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 141



 
 
 
 

12
14
16
18

10 20 30 40 50 60 70 80 90

Age, (Years)

Pe
ak

 to
 p

ea
k 

a 20
22
24
26
28

m
pl

itu
de

 (m
V

)  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 6.5: CMAP peak to peak amplitude during aging 
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 Figure 6.6: CMAP area under curve during aging 
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Figure 6.7: CMAP mean frequency during aging 
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Figure 6.8: CMAP rise time during aging 
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peak amplitude.  Figure 6.9 shows the rise time of CMAP, which increases, in the 

opposite pattern of the nonlinear aging curve during aging. 

 
 
In the elderly subjects, the simulated CMAPs had reduced amplitude, area under curve 

and mean frequency as compared to that of young subjects, whereas rise time, of the 

compound action potential were higher in elderly than those of the young population.  

These CMAP metrics were investigated when the number of Type-I muscle fiber 

increased from the corresponding values of young subjects to those in elderly subjects.  

 

It was found that, peak to peak amplitude decreased with aging.  This was expected as 

amplitude of CMAP depends on the fiber diameter.  With age both Type-I and Type-II 

fiber suffer atrophy, which lead to reduction in diameter and size of the fibers.  As we 

assumed linear conversion of Type-II fiber to Type-I during the aging process, amplitude 

decline of CMAP followed the same pattern of the nonlinear aging curve.  Area under the 

curve is the area under the CMAP plot and therefore it also decreased in the same 

fashion. 

 

For the investigated muscle group, rise time increased with age.  This result is consistent 

with the pathological changes that occur during aging as Type-II fiber, known as fast 

twitch fiber, concentration decreases during aging.  Mean frequency varies linearly with 

the conduction velocity.  During aging process, Type-II fiber, which has bigger diameter 

than that of Type-I fiber, decreased.  As fiber diameter is proportional to conduction 

velocity, the mean frequency decreased during the aging process.
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Figure 6.9: Tibialis Anterior muscle 
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6.3  Conclusion 
 
 
The objectives of this study were to investigate the effects of physiological changes on 

the computer generated composite action potentials in the aging skeletal muscles.  The 

aging process was simulated as the change of fiber diameter, total number of fibers and 

Type-I and Type-II fiber concentration changes from the values of young subjects to that 

of elderly subjects using the nonlinear physiological changes described by Robert 

Schwartz.  The computer muscle model designed in this study allowed to simulate this 

aging process successfully.  CGAPs of elderly subjects produced smaller peak to peak 

amplitude, area under the CGAP curve and mean frequency and substantially higher rise 

time of the CGAPs than those of young subjects.  The results found in this study illustrate 

the implications of the physiological changes that occur in the aging skeletal muscles. 

 
 

6.4  Effects of Aging on EMG Signal Generation 
 
 
In the previous section, the pathological changes that occurred during aging of human 

muscles have been described.  As CMAP is the summation of all the muscle fiber action 

potentials in a muscle group at one sudden instance of muscle excitation, the simulation 

for the aging process above did not consider the motor unit function such as recruitment 

and firing frequency during aging.  However, in voluntary contraction, it is necessary to 

consider motor unit remodeling during aging process.  The vast bulk of research in this 

area has been done on identifying the changes in the morphological [100], physiological 

[101], and histochemical [102] properties of the motor unit (MU) with age.  Zeynep Erim
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et al [103] described three novel observations regarding the firing behavior of aged motor 

units.  

1) Among elderly subjects, there is a decrease in the common fluctuations of firing 

frequency i.e. IPI variation that are observed among the firing rates of motor units in the 

young. 

2)  The linear relationship observed between the firing rate and recruitment threshold of 

young subjects is also seen in the elderly.  In young subjects, at any point in a given 

submaximal contraction, earlier recruited motor units have higher firing rates than later-

recruited units.  But in aged subjects this dependency of firing rate on recruitment rank is 

compromised.  

3)  The progressive decrease observed in the firing rates of concurrently active motor 

units in constant-force contractions in the young is not seen in the aged.  

In addition to these findings, EMG of the muscle of elderly people has 

 decreased average firing rates probably reflecting the slowing of the muscle,  

 decreased number of motor units or α-motoneurons  

 a shift in recruitment thresholds toward lower force levels in line with the shift toward 

type I fibers, and 

 multiphasic action potential shapes which indicates the reinnervation process that 

takes place during aging.  

Taken as a whole, these findings indicate significant age-related modifications in the 

control properties of human motor units.  Although the number of α-motoneurons 

decrease and as a result number of motor units decrease, the muscle fibers belonging to 

the deceased motor unit are often reinnervated by one of the existing motor units [86, 
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104].  Therefore, although there is a reduction in the number of motor units, some motor 

units specially the low force type-I units become larger.   This reorganization probably 

impairs the ability of elderly persons to perform finely controlled tasks, including 

maintaining steady submaximal forces [24, 105, 106].  The reinervation of denervated 

type-II muscle fibers by neighboring type-I motor units has also been implicated in the 

increase co-expression of type-I and type-II myosin heavy chain iso-forms observed in 

the skeletal muscle of older individuals [86].  In the light of the significant changes in the 

properties of the elements of a motor unit, it can be hypothesized that the control aspects 

of the motor unit would be modified as an adaptive or compensatory mechanism to 

preserve force production.  EMG signals from young and elderly are expected to be 

significantly different due to pathological changes and changes in motor unit functioning 

strategy.  In this section, EMG signals will be generated for both young and elderly using 

the model described in Chapter Four.  The purposes of these simulations are to utilize the 

developed EMG model on describing aging effect on the EMG signals and verify the 

result with the published data on EMG for both young and old people. 

 

6.5 Methods 
 
 
Tibialis Anterior muscle group has been selected for the simulation of EMG generation 

for both the young and the elderly.  Figure 6.9 shows the tibialis anterior muscle group 

located  at  the right  below  the knee and thus an important muscle group for posture and  

balance control.  Aging people are vulnerable to falling due to the lack of balance control.  

Thus Tibialis Anterior muscle has always been an object of interest for the clinicians and 
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gerontologists.  The physiological data, such as number of motor units, number of fibers 

per motor unit, percentage of fiber types and their diameter for both the young and the 

elderly are collected from the published data [47, 84, 107].  Motor unit firing and 

recruitment properties for young and old have been adopted from the work of Connelly 

D.M et al [108].  The average age group for the young is 20 years and for the elderly it is 

80 years.  It has been found that, even in aging muscle, recruitment order follows the size 

principle during voluntary contractions [47, 109, 110].  The force-firing rate curve is 

redrawn from [108] which is shown in Figure 6.10.  Minimum firing rate in the elderly 

decreased from 8.14 Hz of young to 4.18 Hz.  The slope of the linear curve for the young 

is 0.3 and for the elderly is 0.27.  As stated earlier, variation in the inter pulse interval 

(IPI) of the firing frequencies is less in the old than in the young.  The covariance of the 

IPI variation is estimated as 0.25 for young and 0.20 for elderly [108].  It is estimated in 

[111] that about 60% motor neuron die out at the age 80 years and older.  Out of these 

neurons, type-II motor units are vastly affected.  All these physiological changes are 

incorporated in the model developed in Chapter Four and applied in Chapter Five.  In this 

section, simulation has been performed for both young and elderly for 5% to 100% of the 

maximum voluntary contraction.  Only a monopolar electrode, which is situated 10mm 

away from the center of the endplate zone, has been simulated for EMG generation for 

both populations.  Also in simulation, only muscle with fat and skin has been considered.   
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Figure 6.10: Force firing frequency relationship in both young and elderly, redrawn 
from [25] 
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6.6 Results and Discussion 
 
The purpose of these simulations is to verify the proposed model with the published 

experimental data and also describe the effect of aging on the EMG signals.  Because of 

the motor unit distribution effects described in Chapter Five, all simulations have been 

performed 10 times.  Figure 6.11 shows the generated EMG signal for the elderly along 

with the signal for the young at 100% MVC.  The frequency spectrum for both these 

signals are shown in Figure 6.12 for visual comparison.  These figures show that, for 

elderly, the EMG signal has less high frequency contents than that of young, mainly 

because elderly has fewer fast type-II fibers, which has smaller duration of the action 

potential than the type-I.  On the other hand, in the EMG of elderly, the magnitude of the 

lower frequency contents in the range of 30-40Hz is larger than that of the young.  The 

muscles of elderly has more type-I motor units of bigger size due to the re-enervation of 

the muscle fibers, which fires more frequently than the type-II motor units that is seen in 

larger amount in the muscle of young.  Thus the magnitude of the frequency content in 

the range of 30-40 Hz, which is the average peak firing frequency of type-I motor units, 

is higher in the tibialis anterior muscle of elderly.  

 

Force-EMG relationship of the anterior tibialis muscle of elderly is also similar to that of 

young, although the slope of this linear force EMG behavior is bigger in the muscles of 

young than that of elderly.  Figure 6.13 depicts this behavior.  This behavior is expected 

as during aging, muscle fibers are lost mostly of type-II, which are bigger size than that 

of type-I and which produces larger force.  Figure 6.14 shows the comparison of different 
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Figure 6.11: Generated EMG signals for a) young and b) elderly at 100% MVC 
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Figure 6.12: Generated EMG signal spectrum  for a) young and b) elderly  at 100% 
MVC 
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Figure 6.13: Normalized EMG-force relationship for both young and elderly in 
tibialis anterior muscle 
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time variable parameters of EMG between young and elderly tibialis muscle.  Mean and 

median frequency of the EMG signals for both young and elderly are compared in Figure 

6.15. 

 

To verify the simulation results, experimental work of Yamada et al [112] on young and 

elderly is adopted.  Although the exact experimental parameters were not known, the 

different physiological parameters for young (20 year old) and elderly (80 year old) are 

for the average young and old subjects that were adopted from the published data 

described in this chapter and the earlier chapters.  Figure 6.16 illustrates the simulated 

average rectified value (ARV) and the experimental value for young and elderly subjects 

respectively at the maximum voluntary contraction.  Comparison and statistical analysis 

shows that simulated and experimental results are not significantly different ( 05.0<p , 

two tailed, paired).  Similarly, median frequency for both young and elderly are 

compared in Figure 6.17 for simulated and experimental results.  These results also show 

that there is no significant difference ( 05.0<p ) between simulated and the experimental 

results. 
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Figure 6.14: Comparison of a) ARV and b) RMS of the EMG for young and elderly 
at 50% MVC 

0

100

200

300

400

500

uV

Young

Elderly

0

100

200

300

400

500

uV

Young

Elderly

 158



 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 

Figure 6.15: Comparison of a) mean and b) median frequency of the EMG for 
young and elderly at 50% MVC 
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Figure 6.16: Comparison of ARV of the simulated and experimental EMG of a) 
young and b) elderly at 100% MVC 
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Figure 6.17: Figure 6.17: Comparison of a) median frequency of the simulated and 
experimental EMG of a) young and b) elderly at 100% MVC 
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CHAPTER 7  
 

7. Conclusion and Recommendations For Future Work 

 

7.1 Conclusion 
 

An EMG generation algorithm has been developed in this study using two separate 

models.  The first model describes an extracellular single fiber action potential 

calculation and thus motor unit action potential, which is the summation  of all the single 

fiber action potential in a motor unit.  The second model is a motor neuron pool model 

which is a mathemetical description of brain muscle interaction.  This model describes 

the nature of motor unit recruitment and their discharge rate during contraction.  

Although these two models were not necessarily original in design, the techniques 

followed to develop the motor neuron pool model algorithm using the  accurate and most 

up to date motor unit physiology will facilitate the application of this model in several 

areas of  biomedical research.  One of the application of this EMG generation model has 

been shown in remodeling of human muscle during aging.  

 

Difference between most of the single fiber action potential generation technique lie in 

the representation of the membrane current in different mathemetical forms.  In this 

study, line source model which considers the transmembrane current as discrete point 

sources along the axis of the muscle fiber for a finite fiber  was utilized to derive the 
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analytical solution of extracellular action potential.  The effects of anisotropic muscle 

volume conductor were investigated for fibers located in different distances from the 

recording surface.  These findings show that, muscle volume conductor attenuate and can 

also shift the phase of the recorded potential.  Moreover different electrode orientations 

have been simulated to analyze their effects on extracellular action potentials.  A 

multilayer model, which includes fat and skin at the top of the muscle, described by 

Farina [66], was also incorporated in the model of single fiber action potential.  These 

isotropic mediums act as low pass filter and cause further attenuation of the signal that 

was recorded at the muscle with the increasing fat and skin layer.  This single fiber model 

readily provides the motor unit action potential, which is the summation of all the muscle 

fiber action potentials innervated by the motor unit. 

 

Motor units are mostly two types: type-I and type-II and they have structural and 

functional differences.  In the motor unit pool model, these two types of motor units are 

distributed randomly inside a hypothetical muscle and each of them were assigned a 

motor unit diameter and total number of fibers innervated, based on some rules from the 

published experimental findings.   The percentage of different types of motor units in a 

muscle differ from muscle to muscle and this difference depends on the functionality of a 

specific muscle.  Some rules have been reported in the earlier work about the recruitment 

order of motor units and the discharge behavior and pattern of the recruited motor units.  

Recent experimental findings validate some of the earlier concept and at the same time 

invalidate some of the hypothesis regarding motor unit physiology that were used in the 

EMG simulation by some researchers.  In this study, a unique algorithm has been 
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presented which incorporates motor units as two different types of motor units rather than 

assigning the same diameter for all the motor unit fibers that was used in the earlier EMG 

simulation.  Excitation input currents to the population of motoneurons are simulated in 

the form of voluntary isometric contraction to the muscle, and all the muscle input output 

relationships are described in the form of voluntary contraction as input and generated 

EMG signals as output.  Simulation was performed for the tibialis anterior muscle to 

generate EMG signal when the input contraction is increased linearly until the simulated 

level of contraction in one second and stayed in that contraction level for remaining three 

seconds without fatigue.  Temporal and spectral behavior of simulated EMG signals for 

various input forces were investigated.  The experimental finding of the force-EMG 

magnitude (RMS and ARV) relation is linear for most of the muscle atleast until 80% of 

maximum voluntary contraction (MVC).  Similar results were also found in the 

simulation results which showed the linear force-EMG relation until the highest 

recruitment threshold level that was set 60% MVC for this simulation.  Thus this 

simulation supports the agreement between the researchers that recruitment thresholds are 

spread in a broader range of muscle contraction.  Mean and median frequency were also 

found increasing with the increasing force although there is not unique relationship 

between them.  These results are also in agreement with the experimental findings.  All 

these simulation results suggest that overall, the model produces simulated EMG signals 

which closely resemble the real signals. 

 

The utility of an EMG signal model is dependent on the degree of rigor and detail it 

possesses.  As the model developed in this study is based on recently found physiological 
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behavior, it will be useful to address many neuropathological situations that undergo 

subtle pathological changes.  One of the major pathological changes is seen in the muscle 

of elderly people.  Thus the developed model was utilized to address these changes and 

their effects on the EMG signals.  Tibialis anterior muscle was selected for the simulation 

of both young and elderly muscle using the published pathological data for both groups.  

Simulation showed significant changes between temporal and spectral parameters of the 

EMG signal of young and elderly.  The results were verified with the published 

experimental data for both population.  An aging process model was also developed in 

this study, which describes the pattern of changes in the compound muscle action 

potential (CMAP) wave shape and different metrics of CMAP during aging. 

 

7.2 Future Recommendations 
 

EMG signal in this study was developed for isometric voluntary contraction in which, 

muscle length does not change with the contraction.  There are not enough data available 

about the physiological behavior of the muscle when the length of the muscle changes.  

Moreover, very little is known about the motor unit recruitment and firing rate in the high 

level of tension to the muscle.  These information are necessary to model the EMG 

generation technique for its general use.   

 

Recorded EMG signals are decomposed in its constituent parts to analyze the signals.  

Many researches are underway to develop techniques to decompose the EMG signals.  

The EMG model developed in this study provides the expected output signal for various 
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input force to the muscle thus can be easily employed to assess the qualitative and 

quantitative reliability of the decomposition techniques.   

 
In this study only one application has been shown of this EMG model.  Several other 

neuromuscular conditions such as muscle fatigue, Parkinson desease, Cerebral Palsy and 

many others can easily be modeled using the model described in this dissertation.  

 

The EMG model described here can also be improved by modeling the single fiber action 

potential for actual shape of the muscle rather than considering all fibers parallel to the 

surface of the muscle.  
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