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Abstract

Protein A in Staphylococcus aureus is encoded by the spa (staphylococcal protein A) gene

and binds to immunoglobulin (Ig). The S. aureus strain Wood 46 has been variously

reported as protein A-deficient and/or spa negative and used as a control in animal models

of staphylococcal infections. The results of this study indicate that Wood 46 has normal spa

expression but transcribes very low levels of the srtA gene which encodes the sortase A

(SrtA) enzyme. This is consistent with unique mutations in the srtA promoter. In this study, a

low level of sortase A explains deficient anchoring of proteins with an LPXTG motif, such as

protein A, fibrinogen-binding protein and fibronectin-binding proteins A and B on to the pepti-

doglycan cell wall. The activity of secreted protein A is an important consideration for use of

Wood 46 in functional experiments and animal models.

Introduction

Protein A produced by S. aureus is a potent virulence factor and immune-modulator [1–5].

It is a 40–60 kDa cell-wall protein encoded by the spa gene [6, 7]. It is synthesized by nearly

all S. aureus isolates and binds to the Fc and F(ab)2 regions of immunoglobulins [8, 9], pre-

vents opsonophagocytic killing [1, 10, 11] and serves as a B-cell superantigen [12–14]. Fur-

thermore, marginal zone B cells and B-1 cells undergo, preferentially, induced cell death

with supraclonal depletion and immune tolerance upon exposure to protein A [15]. Thus,

protein A may interfere with vaccine efficacy that depends on opsonophagocytic antibody

production by binding to B-cells and preventing their function. The S. aureus strain Wood

46 had been considered spa negative and protein A-deficient. For this reason, it was used as

a negative control in studies involving S. aureus virulence [1, 16–22]. There is evidence that

Wood 46 produces extracellular protein A during exponential growth phase and steady

state [18]. This has been demonstrated indirectly by immunoglobulin binding experiments

[18]. Extracellular protein A has also been isolated from Wood 46 using IgG Sepharose

chromatography, although the amount of putative protein A recovered from Wood 46 is

lower compared to S. aureus strain Cowan 1, a high producer of protein A [17, 18]. S. aureus
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produces a second immunoglobulin-binding protein (Sbi), which is also capable of binding

to the Fc portion of IgG similar to protein A and protects the bacteria against innate

immune responses [23].

Sortase A (SrtA) is a transpeptidase commonly produced by Gram-positive bacteria. It has

specificity for proteins with an LPXTG motif and cleaves between the threonine (T) and gly-

cine (G) residues to form an acyl enzyme intermediate that is relieved by the nucleophilic

attack of the amino group in the pentaglycine cross bridge of the peptidoglycan precursor[24].

Modified proteins are subsequently incorporated into the peptidoglycan cell wall and dis-

played on the surface [24–30]. S. aureus isolates encode approximately 17–21 surface proteins

with an LPXTG motif [4, 31, 32]. These include protein A, fibrinogen-binding proteins—

clumping factors A and B (Clf A/B) and fibronectin binding proteins (FnBP A and FnBP B)

that function as potent virulence factors [33]. S. aureus mutants lacking SrtA fail to covalently

attach proteins with an LPXTG motif onto their cell wall, and are thus less virulent than their

wild-type counterparts. They do not form abscess lesions in organs or cause bacteremia in

mouse models [32, 34]. In this study, the reason for protein A deficiency on the surface of

Wood 46 was investigated and the defective expression of spa and srtA genes encoding func-

tional proteins was examined as a possible cause.

Materials and methods

Bacterial strains and growth conditions

S. aureus strains Wood 46 (ATCC 10832), Seattle 1945 (ATCC 25923) and Cowan 1 (ATCC

12598) were obtained from the American Type Culture Collection. The S. aureus Newman

strain and its corresponding spa and sbi mutants (Newman WT, Nweman sbi::Emr, Newman

spa::Kar and Newman sbi::Emr spa::Kar) were a kind gift from Drs. Tim Foster and Joan Geo-

ghegan (Department of Microbiology, Trinity College Dublin) [23]. Bacteria were grown over-

night in Trypticase Soy Broth (TSB, Becton Dickinson, Franklin Lakes, New Jersey) at 37˚C in

a shaker incubator and diluted 1:50 in fresh TSB to initiate log-phase cultures.

DNA extraction and conventional PCR

Bacterial DNA was extracted from overnight cultures using a commercial kit (MoBio Ultra

Clean DNA Isolation Kit, MoBio, Carlsbad, CA) according to the manufacturer’s protocol.

PCR for spa, srtA and the -35 regulatory regions was performed using primers listed in

Table 1. The following cycling conditions were performed: initial denaturation at 95˚C for 90s,

annealing at 55˚C for 30s, extension at 72˚C for 1min (30 cycles) and a final extension at 72˚C

for 5min. PCR products were sequenced at the Genomics Core Facility (University of Tennes-

see, Knoxville) and the sequences of spa, srtA and the -35 regulatory region were aligned and

compared using Geneious (version 9.1.6) (Biomatters, Auckland, New Zealand).

RNA extraction and quantitative real-time PCR

Total RNA was extracted from log phase bacterial cultures using a commercial kit (MoBio

Ultra Clean RNA Isolation kit, MoBio, Carlsbad, CA) according to the manufacturer’s proto-

col. Quantitative Real-Time PCR (qPCR) for spa and srt A were performed using the TaqMan

RNA-to-CT 1-Step kit on an ABI StepOne PCR System (Applied Biosystems, Foster City, CA).

The primers and probe used for the qPCR are listed in Table 1. The following cycling condi-

tions were performed: 48˚C for 30min, 95˚C for 10min, 95˚C for 15s, 60˚C for 1min (40

cycles). qPCR data were analyzed by the ΔΔCT method and normalized against 16S rRNA as

the endogenous control as previously described [35].

S.aureus Wood 46 protein A anchoring
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Protein A ELISA

Secreted protein A in bacterial culture supernatants was measured using an antigen capture

ELISA. Briefly, 96-well Costar plates (Corning Inc, Corning, NY) were coated with 1μg/ml of

mouse monoclonal anti-protein A antibody clone SPA-27 (Sigma-Aldrich, St. Louis, MO) in

PBS pH 7.2. Bacterial supernatant was added and incubated at 37˚C for 1 hour. Bound antigen

was detected using a 1:500 dilution of HRP-conjugated chicken anti-protein A antibody (Gal-

lus Immunotech, Cary, NC) followed by addition of 100μl/well of tetramethylbenzidine

(TMB) substrate (Sigma-Aldrich, St. Louis, MO). Plates were washed in between each step

with PBS containing 0.05% polysorbate-20 using an ELX405 auto plate washer (BioTek Instru-

ments Inc., Winooski, VT). The reaction was stopped by adding 50μl/well of 0.18M sulfuric

acid. The optical density was measured at 450nm using an ELX800 Universal Microplate

Reader (BioTech Instruments Inc. Winooski, VT). Commercially available S.aureus Protein A

(Thermo Scientific, Rockford, IL) was used to generate the standard curve.

Flow cytometry to measure cell wall-associated protein A, fibrinogen-

binding protein and fibronectin-binding protein

One milliliter of log phase bacterial cells were washed and incubated with either no conjugate

(NC, negative control), 2μg/ml of chicken anti-protein A FITC conjugate (Gallus Immuno-

tech, Cary, NC), 1μg/ml human fibrinogen FITC conjugate (Zedira GmbH, Darmstadt, Ger-

many) or 1μg/ml bovine fibronectin HiLyte Fluor TM 488 conjugate (Cytoskeleton Inc.,

Denver, CO) for 30 min at room temperature in the dark. Excess conjugate was removed by

washing and the amount of binding determined by measuring fluorescence using an Attune

acoustic focusing cytometer (Applied Biosystems, Foster City, CA) at excitation/emission

wavelengths of 488/519 nm.

Statistical analysis

A one-way ANOVA and multiple comparisons using Tukey’s honest significant difference

were performed to test if there was a significant difference in the expression of spa and srtA
among bacterial isolates, and also to determine if there was a significant difference in the

amount of surface-expressed protein A, fibrinogen-binding protein and fibronectin-binding

protein. Each experiment was repeated at least three times and a p-value of<0.05 was

Table 1. List of primers used in this study.

Gene Primers Reference

spa (conventional PCR) F 5’-ATCTGGTGGCGTAACACCTG-3’
R 5’-CGCTGCACCTAACGCTAATG-3’

This study

srtA (conventional PCR) F 5’-AAGCGTTTCGTTATTTGAATGC-3’
R 5’-TCGTCATTGCTACCTCATACC-3’

This study

spa (qPCR) 5’-/56-FAM/TTTGTCAGC/ZEN/AGTAGTCGCGTTTGC/3IABkFQ/-3’
5’-ATGTCGTTAAACCTGGTGATACA-3’
5’-GGTTTGCTGGTTGCTTCTTATC-3’

This study

srtA (qPCR) 5’-/56-FAM/AGCAAGCTA/ZEN/AACCTCAGATTCCGAAAGA/3IABkFQ/-3’
5’-GAACAGGCGAGTAAAGACAATAAG-3’
5’-GGTCCTGGATATACTGGTTCTTT-3’

This study

16S (qPCR) 5’-/56-FAM/CCGGCAGTC/ZEN/AACTTA/3IABkFQ/-3’
5’-CACCTTCCTCCGGTTTGTCA-3’
5’-CCCTTGAACTTAGTTGCCATCATTC-3’

[35]

https://doi.org/10.1371/journal.pone.0183913.t001
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considered significant. All analyses were conducted using the IBM SPSS Statistics for Win-

dows, Version 22.0 (IBM Corp, Armonk, NY).

Results

Wood 46 expresses lower amounts of cell wall-associated protein A

The S. aureus isolate Wood 46 had been reported as spa-negative and protein A-deficient

although there have been other studies that demonstrated that it binds small quantities IgG

suggesting that it may have a low density of protein A on its surface [16–22]. Flow cytometry

using chicken anti-protein A antibody was performed to determine the amount of cell wall-

associated protein A. The amount of binding was normalized against Seattle 1945 which

showed maximum binding in this assay (assigned 100% binding). Wood 46 bound lower

amounts of the antibody (about 19%) relative to Seattle 1945. The Δsbi, Δspa and Δsbi-Δspa
mutants bound 76%, 27% and 9% of the antibody respectively. In contrast, Cowan 1 and the

Newman WT isolate, both reported to be high producers of Protein A bound 69% and 83%

respectively (Fig 1), indicating that Wood 46 may have lower amounts of cell wall-associated

protein A compared to the control strains used in this study.

Secreted protein A in culture supernatant of Wood 46

S. aureus releases protein A during the exponential growth phase [36, 37]. To confirm this in

Wood 46, a protein A-capture ELISA was used to measure the amount of protein A secreted

into culture supernatant. Culture supernatants from bacteria grown to log phase were tested.

Wood 46 secreted 12.42ng/ml of protein A into the culture supernatant compared to Seattle

1945 which secreted the highest amount of Protein A (22.56ng/ml) during log phase. The

Cowan 1, Newman WT and the Δsbi produced 16.68ng/ml, 18.78ng/ml and 17.97ng/ml of

protein A (Fig 2). These data indicate that Wood 46 produces and secretes protein A, although

the amount is lower compared to Seattle 1945 or wild-type Newman isolates. The lower limits

of detection and quantification of the assay were 0.125ng/ml and 0.3ng/ml respectively.

Gene sequence analysis of spa, srtA and regulatory region of srtA

It was hypothesized that if the spa gene in Wood 46 contains a mutation, it may lead to a trun-

cated or non-functional protein. In order to test this hypothesis, the spa gene in Wood 46 and

control S. aureus isolates was amplified using PCR and the products were sequenced and ana-

lyzed. Results from the PCR and DNA sequence analysis of the spa gene showed that Wood 46

not only possesses the full-length spa gene, but also the sequence of the spa gene is in agree-

ment with those of Cowan 1, Seattle 1945 and Newman WT. Therefore, mutation in the spa
gene was ruled out as the possible cause for lower expression of Protein A in Wood 46.

Sequence analysis of the srtA gene in Wood 46, however, showed that it has a 12bp deletion

at the 3’ end of the gene that results in a four amino acid difference in the protein compared to

S. aureus Cowan 1, Seattle 1945 and wild-type Newman (Fig 3A). Also, analysis of the

upstream promoter and regulatory region showed that Wood 46 contains mutations in both

the -10 and -35 regions (Fig 3B). These mutations likely adversely affect RNA polymerase

binding and transcription as mutations in the upstream promoter and regulatory regions have

been associated with reduced gene expression [38–40].

mRNA levels of spa and srtA in Wood 46

If the transcription of spa is adversely affected, it could lead to lower expression of protein A

on the bacterial surface. Reverse transcriptase qPCR was used to analyze the expression of spa

S.aureus Wood 46 protein A anchoring
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in S. aureus isolates. The results showed that Wood 46 transcribes spa mRNA although the lev-

els were lower compared to Cowan 1 which was assigned as the calibrator strain for this exper-

iment (Fig 4A). The expression levels of spa in Seattle 1945, Newman WT and Δsbi were 0.74

fold, 3.9 fold and 4.18 fold respectively. As expected, the Δspa and Δsbi-Δspa mutants did not

produce detectable spa mRNA. This suggests that inefficient spa transcription was not the rea-

son for low surface expression of Protein A in Wood 46.

Conversely, the expression level of srtA mRNA in Wood 46 was below the limit of detection

of the assay. Cowan 1 was assigned as the calibrator strain for this experiment. The expression

Fig 1. Cell wall-associated protein A. Protein A expressed on the surface of S. aureus strains Cowan1, Seattle 1945 (25923), Wood 46, Newman

WT and its corresponding deletion mutants, Δsbi, Δspa and Δsbi-Δspa, as measured by flow cytometry with chicken anti-protein A antibody. The

values represent the average from three independent experiments. (*P<0.05, **P<0.02, ***P<0.01, ****P<0.001).

https://doi.org/10.1371/journal.pone.0183913.g001

S.aureus Wood 46 protein A anchoring
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levels of Seattle 1945 and Newman WT were 0.26 fold and 0.28 fold relative to Cowan 1, while

that of the deletion mutants Δsbi, Δspa and Δsbi,Δspa were 0.14 fold, 1.03 fold and 0.51 fold

respectively (Fig 4B). Taken together, the results suggest the lack of sortase A could be respon-

sible for the deficient anchoring of protein A in Wood 46. The spa and srtA expression levels

were normalized against 16S rRNA as the endogenous control and the results were expressed

as fold change in mRNA levels using the ΔΔCT method. To ensure equal amplification efficien-

cies of the target and control genes, four 10-fold serial dilutions of the target RNA were tested.

The efficiencies of both the target gene and the endogenous control were comparable.

Fig 2. Production of extracellular protein A in S. aureus. The amount of secreted protein A was measured using an antigen-capture ELISA.

Commercially available protein A from S. aureus was used to generate the standard curve. The values represent the average from three

independent experiments. (*P<0.05, **P<0.02, ***P<0.01, ****P<0.001).

https://doi.org/10.1371/journal.pone.0183913.g002

S.aureus Wood 46 protein A anchoring
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Wood 46 expresses lower amounts of the LPXTG motif-containing

fibrinogen-binding protein and fibronectin-binding protein

Sortase A is responsible for anchoring proteins with an LPXTG motif on to the peptidoglycan

cell well [24, 27, 28, 30, 41]. If lack of this enzyme is indeed the reason for low surface density

of protein A in Wood 46, there should be a global decrease in the expression of all surface pro-

teins that bear the LPXTG motif. In order to test this hypothesis, two well-studied proteins

with LPXTG motifs were chosen. Fibrinogen-binding protein (Clf A and B) and fibronectin-

binding protein (FnBP A and B) are anchored on the bacterial surface and known immune

evasion factors in S. aureus. A binding assay was performed with FITC-labeled human fibrino-

gen to detect surface-expressed fibrinogen-binding protein, and HiLyte Fluor TM 488 conju-

gated bovine fibronectin to detect surface-expressed fibronectin-binding protein. Flow

cytometry results showed that Wood 46 bound only 0.49% of labeled fibrinogen on its surface

Fig 3. (A) Amino acid composition of sortase A. The amino acid sequence of sortase A in Cowan 1, Seattle

1945, Newman and Wood 46 were aligned. Amino acids from position 155 to the end of the protein are shown.

Wood 46 contains a 12bp deletion at the 3’ end of the srtA gene that leads to a corresponding loss of four amino

acids at the C-terminus of the protein. (B). Promotor and upstream regulatory region of srtA in Wood 46.

Consensus promoter and upstream regulatory sequence from Cowan 1, Seattle 1945 and Newman was aligned

with that of Wood 46. The boxes highlight regions with mutations. The transcription start site ATG is indicated as

+1.

https://doi.org/10.1371/journal.pone.0183913.g003

Fig 4. Expression levels of spa and srtA. Quantitative real-time PCR was used to measure the amount of

(A) spa mRNA and (B) srtA mRNA in log phase bacterial cells. Relative gene expression was calculated using

the ΔΔCT method and expressed as fold change. 16S rRNA was used as the endogenous control. The

amount of srtA mRNA in Wood 46 was below the detection limit of the assay. The values represent the

average from three independent experiments. (*P<0.05, **P<0.02, ***P<0.01, ****P<0.001). ND- not

detected.

https://doi.org/10.1371/journal.pone.0183913.g004

S.aureus Wood 46 protein A anchoring
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compared to the Δspa isolate which bound the highest amount of fibrinogen in this study (Fig

5A). Also, Wood 46 bound only 11.4% of the labeled fibronectin relative to Cowan 1 (consid-

ered as 100%) and Seattle 1945 (31.2%) (Fig 5B). The Newman isolate and its corresponding

deletion mutants were not tested in the fibronectin-binding assay because they have trunca-

tions in both FnBP A and FnBP B [42]. These data suggest that lack of sortase A in Wood 46

likely results in lower amounts of not just protein A, but other proteins that contain the

LPXTG motif.

Discussion

S. aureus produces a number of virulence factors including secreted toxins, enzymes and cell

wall-associated proteins that bind to and interact with host extracellular matrix [43]. In an in
vitro environment, the production of virulence factors is growth-phase dependent [44]. The

secreted proteins are produced during post-exponential (stationary) phase wheras the cell

wall-associated proteins are predominantly produced during the logarithmic growth phase

[45, 46]. Many of the known virulence factors such as protein A, fibrinogen-binding proteins

like clumping Factors A and B, fibronectin-binding proteins A and B are synthesized and

anchored onto the peptidoglycan cell wall by the transpeptidase enzyme, sortase A [27, 30, 41,

47].

The S. aureus isolate Wood 46 has played an important role in studies designed to examine

the biological function of protein A and its role in pathogenesis and virulence. There have

been contradictory reports on the production, display and secretion of protein A [18, 48]. The

results have either been ambiguous or lacked definitive experimental data. Wood 46 has been

described as a spa-negative and protein A-deficient strain although there is evidence that

Wood 46 expresses low amounts of protein A on its surface as evidenced by its ability to bind

low amounts of IgG [18, 49]. It is also reported that Wood 46 secretes small amounts protein

A into the culture supernatant during exponential growth phase [17, 18]. Recently, several

mutant strains have replaced Wood 46 as the preferred choice for negative control in both in
vitro and in vivo studies. However, the mechanism for low expression of protein A on the sur-

face of Wood 46 had not been previously investigated.

Cell wall-associated protein A binds to IgG via its Fc region, thereby preventing it from

opsonization and phagocytosis [50]. In this study, it was observed that Wood 46 had a lower

density of protein A on its surface, and secreted less protein A compared to the Cowan 1, Seat-

tle 1945 or Newman isolates. It was observed that even the Δspa isolate bound some anti-pro-

tein A antibody. This could be due to the ability of the antibody to react with other

immunoglobulin-binding proteins, such as Sbi, on the surface of the bacterium. Secreted pro-

tein A functions as a superantigen (SAg) [13]. It binds to VH3-clan B-cell receptors and limits

their abilities to produce antibody. Also, marginal zone B-cells and B1-cells undergo apoptosis

upon exposure to protein A [13–15, 29, 51, 52]. There have been reports of secreted protein A

in Wood 46 activating human B-cells in a mechanism that is different from that seen in

Cowan 1 [53]. Therefore, it is important to consider the toxic effects of secreted protein A, if

Wood 46 is used as a control in animal models to test vaccine efficacy.

Conventional PCR and sequencing showed that Wood 46 possesses the spa gene with a

complete open reading frame. The gene sequence is in agreement with that of Seattle 1945,

Cowan 1 and Newman. qPCR for spa expression showed that Wood 46 does transcribe spa
mRNA but at lower amounts compared to that of Cowan 1, Seattle 1945 and Newman isolates.

Because this did not explain the low surface levels of protein A, the transpeptidase enzyme sor-

tase A responsible for anchoring surface proteins on the peptidoglycan cell wall, was examined.

Conventional PCR with srtA-specific primers showed that Wood 46 contains the srtA gene

S.aureus Wood 46 protein A anchoring
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with a complete open reading frame. However, it harbors a 12bp deletion at the 3’-end of the

gene resulting in a corresponding loss of four amino acids at the N-terminus of the protein

sequence. It is not known if the loss of the amino acids affects the function of the protein in

any way. Further analysis of the upstream region of the srtA gene shows mutations in the -10

and -35 regions of the promoter and regulatory that would be expected to adversely affect

binding of RNA polymerase and transcription. The functional effects of these mutations are

yet to be evaluated and may be pursued at a later stage. Promoter site mutations have been

associated with impaired transcription and in turn affect protein expression [38–40, 54–57].

These mutations could affect the expression of srtA which in turn may be responsible for the

low surface density of protein A. If this is true, there should be a decrease in the expression of

other surface proteins that harbor the LPXTG motif. This was confirmed by examining the

surface expression of two known LPXTG proteins, fibrinogen-binding protein (Clf A and Clf

B) and fibronectin-binding protein (FnBP A and FnBP B). Both these proteins in S. aureus are

virulence factors similar to protein A [24, 27, 29–31, 58]. Wood 46 expressed very low amounts

of both fibrinogen-binding protein and fibronectin-binding protein on its surface suggesting

that it may express lower amounts of all surface proteins that have an LPXTG motif. Previous

studies have shown that a portion of SpA is released into the supernatant with an intact sorting

signal, and release of SpA was reduced when the native sorting signal of SpA was replaced with

the corresponding region of another sortase-anchored protein, namely, SdrE [59]. Since

replacing the native sorting signal and determining its effects on secreted protein A were

beyond the scope of this study, we instead addressed this concern by examining the sequence

of secreted protein A in Wood 46 and one of the control strains, Cowan 1 by mass spectros-

copy. In both Cowan 1 and Wood 46, we found peptide hits that matched with the LPETG

motif suggesting that it is indeed the low level of sortase A in Wood 46 that is responsible for

the low surface level of LPXTG proteins in this strain (S1 Fig). The protein abundance from

mass spectrometry in each strain showed that Cowan 1 had a higher amount of protein A in

the supernatant compared to Wood 46 (S1 Table) which could be correlated to the ELISA

data. LytM triggers polypeptide release from the bacterial envelope. These released proteins

have a modified anchor structure [36]. If LytM is inhibited, then there should be lower

amounts of released proteins with the modified anchor structure. We confirmed this by mass

Fig 5. Fibrinogen-binding and fibronectin-binding assay. The amount of sortase A-anchored, LPXTG-

motif containing fibrinogen-binding protein (A) and fibronectin-binding protein (B) was measured by flow

cytometry using FITC-conjugated fibrinogen and HiLyte Fluor TM 488-conjugated fibronectin respectively. The

percentage binding was determined relative to highest value obtained for that experiment. The values

represent the average from three independent experiments. (*P<0.05, **P<0.02, ***P<0.01, ****P<0.001).

(Since the Newman isolate has truncations in both FnBP-A and FnBP-B, it was not tested in the fibronectin

binding assay).

https://doi.org/10.1371/journal.pone.0183913.g005
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spectrometry. We obtained peptide hits to protein A with an LPETG motif both in Cowan 1

and Wood 46 suggesting that it was indeed low amounts of sortase A in Wood 46 that is

responsible for defective anchoring of protein A on the bacterial cell wall (S2 and S3 Figs). N-

acetylglucosamine is a known inhibitor of LytM [60]. If LytM was inhibited, there would be

decrease in the amount of secreted protein A in bacterial culture supernatants. In order to test

this, bacterial strains Cowan 1 and Wood 46 were grown to mid log-phase in the presence and

absence of 10mM N-acetylglucosamine. The amount of secreted protein A was measured by

capture ELISA. It was found that although there was a slight reduction in the amount of pro-

tein A produced in each strain, the difference was not significant. If murein wall hydrolases

were responsible for defective anchoring/secretion of protein A, there would have been a sig-

nificant difference in the amount of cell wall-associated and secreted protein A in both Cowan

1 and Wood 46. Since this was not the case, it was concluded that the low level of sortase A in

Wood 46 is responsible for defective anchoring of protein A on the surface of Wood 46. Taken

together, the results strongly suggest that low amounts of sortase A are responsible for

impaired surface expression of proteins with an LPXTG motif.

The complete coding sequence of the Wood 46 srtA gene along with the upstream promoter

and regulatory region has been deposited in GenBank (accession number: KY514391). The

whole genome sequence of Wood 46 has been determined and deposited in GenBank (acces-

sion number: MTFQ00000000, version MTFQ00000000.1). This could provide a wealth of

information about other immunoglobulin- binding proteins with or without an LPXTG motif.

It will also help identify novel genes whose products may be involved in immune evasion.

Sequence information about promoters and regulatory elements of virulence genes could help

explain why some strains of S. aureus are innately less virulent compared to other highly viru-

lent strains.

In conclusion, the results from this study suggest that defective expression of srtA in Wood

46 accounts for the failure of protein A anchoring to its surface with the majority of the protein

A being secreted. This may be accompanied by deficient anchoring of all LPXTG-bearing sur-

face proteins. The Wood 46 promoter at both the -10 and -35 regions contained mutations

compared to the control strains used in this study. Promotors that vary from consensus

sequences generally are associated with decreased gene expression [54, 55, 57]. Understanding

the nature of surface protein expression and its role in virulence is crucial towards successful

vaccine development against S. aureus.

Supporting information

S1 Fig. Median-centered protein abundance distributions between strains as assessed by

LC-MS/MS-based proteomics. Protein abundance values follow a log-normal distribution

and thus were transformed (log2) prior to normalization and median-centering. Protein A

abundance was denoted (orange dotted line) in each sample. Protein A exhibited a consistent

abundance across technical replicates but varied widely across strains. Though it was detected

in Wood 46 supernatant, the protein was only 0.46% of the abundance observed in Cowan

where it was one of the most abundant protein observed.

(TIF)

S2 Fig. Sequence coverage of IgG-binding protein A. Identified peptides were mapped onto

the FASTA sequence of protein A to show its overall sequence coverage. Red M’s represent

oxidized methionine residues. The number of underlines indicate peptide overlap and thus

overall regional sequencing depth. The LPXTG region is highlighted in yellow and was identi-

fied by one peptide per Cowan replicate LC-MS/MS run.

(TIF)
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S3 Fig. MS/MS spectrum identifying the peptide containing the LPXTG motif. The large,

multiply charged peptide: VVDKKQPANHADANKAQALPETGEENPFIGTTVF (+4) was

identified only in Cowan supernatant. The intact peptide mass measured was -0.0030 Da from

the peptide’s theoretical mass (-0.83 ppm) with matching fragment ions to confirm its identity.

Matching b and y-ions (major series) are shown in (A) while matching a- and x-, b- and y-,

and c- and z-ions (complete series) are shown in (B).

(TIF)

S1 Table. Protein abundance from mass spectrometry in Cowan 1 and Wood 46 culture

supernatant. Protein A was readily detected in the culture supernatant of both Cowan 1 and

Wood 46 but at higher abundance in Cowan 1.

(PDF)
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