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The use of certain surface mining techniques is currently a heavily-debated en-
vironmental issue and one where consideration of non-market values is likely 
to lead to the creation of better public policy. This study uses the hedonic pric-
ing method to investigate the impact that surface coal mines have on residen-
tial property values. The results of this statistical analysis show that as the 
number of surface mines and their average production increases, the median 
value of housing units in a county significantly decreases. In particular, for 
the three model specifications explored, it is estimated that the addition of a 
surface mine to the average county decreases aggregate property values by 
between $7,949,363.77 and $40,146,061.87. 

Introduction

Coal is a leading source of energy in the United States, but a number of negative externali-
ties result from its extraction process. Supporters of coal claim that the benefits of coal 
come in the form of job creation, economic prosperity, and energy security (World Coal 
Institute, 2009). On the other hand, there exist harmful externalities associated with coal 
mining, so the social costs of this practice are generally more difficult to measure. Lower 
water and air quality levels increase healthcare costs, and loss of aesthetic value can lead 
to a decline in recreation-based tourism and lower property values. Fully monetizing the 
costs and benefits associated with a coal mine is necessary for properly determining the 
best public policy options. 

Coal serves as an appealing source of energy for a number of reasons. In 2008, elec-
tricity from coal accounted for 49.5 percent of all electric power generated in the United 
States (U.S. Department of Energy, 2010). Coal mining also supports a large number of 
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jobs, although this number is declining, largely due to higher levels of productivity per 
worker associated with increases in mining technology and new mining techniques. In 
2008, the number of employees in U.S. coal mines amounted to 86,859 (U.S. Department 
of Energy, 2010). According to the World Coal Association, coal is more abundant than 
other non-renewable sources of energy such as oil and natural gas. At current levels of 
production, coal will be available for the next 119 years (2011). In addition, coal prices 
have historically been lower and more predictable than the prices of its nonrenewable 
counterparts.

Although both underground and surface coal mining harm the environment, the ex-
ternalities associated with surface mining are generally greater. Although surface mining 
is only feasible when the coal seams are near the surface, the technique accounts for 67 
percent of coal production in the United States (U.S. Department of Energy, 2010). There 
are various methods for surface mining including area, contour, auger, and mountaintop 
removal mining. Area mining is generally done over broad and shallow areas on flat land. 
Contour mining occurs in more mountainous areas and involves removing a wedge from 
the side of the mountain at the level of the seam. Auger mining occurs on the level surfaces 
created by contour mines and aims to collect the coal that contour mining could not reach. 
Mountaintop removal coal mining involves removing large amounts of “overburden,” or 
rocks located above the coal seam, and then dumping this overburden into an adjacent 
valley (Methods of Mining, 2006). For most surface mining methods, explosives are first 
used to break up the overburden. Large “dragline” shovels are then used to remove these 
materials from the site, exposing the coal seam which is then systematically drilled. A large 
number of trucks are then needed to transport the mined coal to the plant where it will be 
used (World Coal Institute, 2009). 

This entire process is known to have a number of negative environmental conse-
quences. The ecological damage to areas surrounding surface mines is extensive. Because 
surface mines can range in size from several square kilometers to dozens of square kilome-
ters, they require the clearing of large areas of forest. This directly threatens biodiversity 
and disrupts ecological processes such as nutrient cycling, which in turn affects down-
stream food webs. The removal of topsoil and upper layers of rock alters the natural flow 
of water and does not allow for proper ground absorption and filtration. This, added to the 
chemicals released during the breaking up of the coal seams, concentrates downstream 
and “bioaccumulates” in organisms. One example of the impact of this bioaccumulation is 
higher than normal levels of selenium, a chemical released during mining, in certain spe-
cies. High selenium levels cause deformities in fish larvae and result in reproductive failure 
in fish and their predators (Palmer et al. 2010). 

 Surface mining has also been shown to have detrimental effects on human health. 
Ground water samples used for residential supply have been found to contain high levels 
of chemicals associated with coal mining such as sulfate, iron, manganese, and aluminum. 
In West Virginia, increases in sulfate levels in major watersheds have been linked to in-
creasing coal mining in the area (Palmer and Bernhardt 2011). Additionally, high levels 
of hazardous, airborne dust have been documented near surface mining operations. As 
the rate of county-level coal production increases, so do the rates of chronic pulmonary 
disorders, hypertension, lung cancer, and chronic heart, lung, and kidney diseases (Palmer 
et al. 2010). 
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Finally, surface mines decrease the amenity value of the landscape. The process 
reduces once-beautiful mountains to barren, grey landscapes. In addition, the effects of 
mining on land are irreversible: it is clear that the deep ecological transformations caused 
by mining cannot be undone using current reclamation and mitigation techniques (Palmer 
and Bernhardt 2011).

Measuring the social cost mining has on the environment is difficult due to the ab-
sence of relevant markets. One approach that can be used to estimate the effects of environ-
mental quality is the hedonic pricing method. Applied to the housing market, the method 
uses variation in housing prices to identify the value of property characteristics such as the 
structural attributes of the house and neighborhood quality. Through statistical modeling, 
at least in a conceptual sense, one can hold all features of a property constant and tease out 
the independent effects of a particular characteristic, such as environmental quality. 

Methods

Literature Review
This methodology has been applied extensively in the fields of environmental economics, 
labor economics, and public economics in order to estimate non-market values such as 
those associated with occupational risk, pollution, and education. It is important to estimate 
non-market values such as those related to the environment, as, otherwise, when assessing 
public projects and policies, environmental values are often not fully integrated into the 
discussion or not placed on equal footing with the more directly measured financial costs 
related to environmental protection. This method has been used successfully to measure 
the economic effects of environmental factors such as water, air, and noise pollution, oil 
and gas facilities, livestock feeding operations, and hazardous waste sites. All of these 
studies were able to focus on a small number of counties and use geographic software to 
estimate the exact distance of a property from a certain undesirable entity. Their results 
consistently show that as a property gets closer to this undesirable factor, the market value 
of the property lowers significantly. These previous studies lend credibility to the hedonic 
pricing methodology, and they show how it is applied to the study of undesirable land uses 
that are similar in nature to surface coal mines.
Study Area
This study uses county-level data from each county in the following states: Alabama, 
Kentucky, Maryland, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia, Illinois, 
Indiana, New Mexico, Texas, and Wyoming (Fig. 1). These thirteen states were chosen 
because they met a certain threshold for high surface coal mining activity. This threshold 
was defined as having a minimum of five active surface coal mines in a state based on 
2005 data. For each state that was chosen, every county within that state was included in 
the analysis, not just those with mining activity. This provides more variation in variables 
of interest related to mining and thus helps to identify the effect of mining operations on 
housing prices. In total, there are 1154 observations (i.e. counties) with available data. The 
average area of the counties is 769.05 square miles, and there are on average 30,446 hous-
ing units per county. The mean value for an owner-occupied housing unit in the study area 
is $76,658.06 (in 1999 dollars).
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Data Acquisition
Table 1 offers a summary of the variables included in the models. This study uses cross-sec-
tion data for counties in the year 2000. The data come from a variety of sources. Structural 
housing characteristics come from the U.S. Census 2000. These characteristics include 
median number of bedrooms, percentage of houses that lack complete kitchen facilities, 
the median age of the home, and the prevalence of certain heating fuel sources. Out of the 
possible fuel sources, including liquid propane (LP) gas, utility gas, electricity, kerosene, 
coal, wood, solar, and other, only LP gas, utility gas, and electricity were included in the 
models because these sources are found in the vast majority of housing units. A variable for 
housing units without any fuel source was also included. “Utility gas” includes gas pumped 
through pipes from a central system, “LP gas” includes liquid propane gas stored in bottles 
or tanks, and “electricity” is generally supplied through above or underground power lines. 
Due to the limitations of county level census data, other seemingly important structural 
variables were not included in the models. The effects of these variables may be captured in 
the magnitudes of the estimated coefficients of structural variables that are included in the 
models. For example, although a variable for average square feet is not available, one for 
median number of bedrooms is included. As the number of bedrooms in house increases, 
one generally expects the square footage to increase. While the estimated magnitude of the 
impact of the bedroom variable may be inflated because it also implies other characteris-
tics, this should not bias the estimated coefficients on non-structural variables, such as the 
number of coal mines in a county, because they are not related. 

Variables describing coal mining activity come from the “Coal Industry Annual 
2000” report compiled by the Energy Information Administration. This reports the number 
of active underground and surface coal mines by county for a particular year. It also reports 
county-level information on the production of these mines in thousand short tons of coal. 
Since counties vary in size, a variable for number of mines per 1000 square miles was cre-
ated. Because data on the size of each individual mine was not available, evaluating the 

Figure 1: Study Area
Source: “Map-Maker” Utility < http://monarch.tamu.edu/~maps2/us.htm>
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number of mines and their average production provides an alternative way to measure the 
impact of surface coal mines in a particular county. 

Additional information including median housing value, median income, median 
age, housing density, and transportation and commuting information was obtained from the 
U.S. Census 2000. A variable that ranks a county’s proximity to an urban center was taken 
from the Urban Influence Codes compiled by the United States Department of Agriculture’s 
Economic Research Service. This variable helps describe how much access a county has to 
a metropolitan area, which is an indicator of access to other amenities. Other variables that 
describe socioeconomic characteristics of the counties were taken from the 2004 Typology 
Codes published by the United States Department of Agriculture’s Economic Research 
Service. They are variables that indicate low education levels, recreation activity, low em-
ployment levels, persistent child poverty, and whether or not a county is a retirement des-
tination. These variables describe county characteristics that may or may not be appealing 
to homebuyers, so they are expected to have some impact on the median housing price for 
a given county. Additional environmental characteristic variables were included because 
they are also expected to affect the appeal of living in a certain county. Their addition al-
lows for a more complete assessment of how much people are willing to pay for environ-
mental quality, a fundamental aspect of this study. 

 Climatic information such as average temperature in July and mean sunlight and 
humidity was obtained from the Area Resource File compiled by the Department of Health 
and Human Services’ Health Resources and Services Administration. Finally, regional to-
pology was controlled for using a scale that comes from the 1970 U.S. Geological survey. 
This measure was included because different topologies might be associated with differ-
ent levels of aesthetic beauty, e.g., people may prefer a view of a mountainous landscape 
over flat plains. Overall, a considerable amount of data has been obtained in an attempt to 
adequately model the key determinants of housing prices. 

Theoretical Framework

The construction of a linear regression model makes it possible to disentangle the various 
effects that structural, neighborhood, and environmental characteristics have on property 
values. Hedonic pricing analysis works conceptually by comparing the prices of houses 
that are otherwise statistically identical except for the existence of a particular environ-
mental amenity or nuisance. For example, if a researcher can compare the market value of 
two physically identical houses, one located near a busy airport and the other located in a 
quieter area, the difference in prices suggests the approximate price homeowners are will-
ing to pay to avoid the noise pollution caused by the landing and departure of airplanes.

Rosen (1974) established a theoretical framework for analyzing hedonic prices. 
He defines hedonic prices as “the implicit prices of attributes” that are revealed through 
“observed prices of differentiated products and the specific amounts of characteristics as-
sociated with them.” Each property can be viewed as a product that has a price p that is 
determined by a set of attributes z= (z1, z2, ..., zn), of n different characteristics with known 
values. The function p(z)= p(z1, z2, ..., zn) defines the implicit effect that any variable zl has 
on the price of the commodity. By analyzing how p changes with respect to a change in 
zl, keeping all other variables constant, the impact of zl can be isolated. So, extending this 
framework to this study in particular, p is the median value of an owner-occupied hous-
ing unit in a given county and z is the set of all the relevant characteristics that determine 
p. This framework can also be applied to commodities other than houses. For example, 
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consider automobiles of the same make and model, one with a sun roof and the other with-
out. The market price for these two vehicles will be different, and that difference in prices 
reveals the value that the consumer places on having the sunroof.

Freeman (1979) provides a framework under which the price of a housing unit is a 
function of certain structural, neighborhood, and environmental characteristics. Following 
this framework, the objective of this analysis can be stated as estimating the unknown pa-
rameters in the following linear equation:
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where β0, β1, β2, and the γj, αk, δm are parameters to be estimated; sij is the set of j structural 
characteristics for county i; Nik is the set of k neighborhood characteristics for county i; Eim 
is the set of m environmental characteristics for county i; SMAi is the number of active 
surface mines per 1000 square miles in county i; PSMi is the average production of each 
mine in county I; and ε is a random error term.

In their meta-analysis, Smith and Huang (1995) found that the estimated impact of 
environmental quality in a hedonic analysis can vary widely due to differences in the as-
sumed functional form of the hedonic equation. For this reason, three different functional 
forms were explored to test the sensitivity of the results. In addition to testing the linear 
model, a semi-log model using the natural log of the dependent variable was tested, as well 
as a quadratic model using the square of the SMA variable. The semi-log form is typical 
for hedonic price analyses.

Results
The hedonic equation was estimated using Ordinary Least Squares (OLS), a method com-
monly used in economics and other fields for estimating unknown parameters in linear 
regressions, and the results are presented in Table 2. For all three specifications, the hy-
pothesis that the model errors are homoskedastic was rejected on the basis of the White 
Test (p<0.01 in all cases). As such, this study reports heteroskedasticity-robust standard 
errors, and for the purpose of hypothesis-testing employ t and F tests that are robust to 
heteroskedasticity. The R2 value reported for the semi-log model suggests that 86.4 percent 
of the variation in ln(medianvalue) is explained by the variation in characteristics. This 
suggests that the model has good overall fit. The linear and quadratic models also exhibit 
good overall fit, with 81.2 percent of the variation in medianvalue explained by the varia-
tion in characteristics.

Many of the variables in the models are statistically significant at the 10% level and 
better. However, the variables house, perpov, perchldpov, commutetime, meanhumidity, 
and lackkitchen are only statistically significant in the semi-log model. On the other hand, 
the variables Psm and lpgas were significant in the linear and quadratic models, while not 
significant in the semi-log model. Thus, when evaluating the total cost of a surface mine to 
a county, this production variable was only included for those two models.

The signs of the coefficient for most of the statistically significant variables were 
as predicted, but there were some exceptions. For example, the signs for the coefficients 
on meantempjuly and meanhumidity were wrongly predicted. This is most likely due to a 
misunderstanding of people’s preferences, in this case preferences related to climate.
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The signs of the other estimated coefficients are consistent with expectations. When 
evaluating the effect with the semi-log model, the coefficient multiplied by 100% is ap-
proximately equal to the expected change in housing price associated with a one-unit in-
crease in the housing characteristic. For example, the semi-log regression suggests that a 
one unit increase in the number of bedrooms increases the median housing value by 42.81 
percent, ceteris paribus. The coefficients in the linear model are interpreted as the expected 
change in housing value associated with a one-unit increase in the housing characteristic. 
From the linear model, one additional bedroom is expected to increase median housing 
value by $49,098, ceteris paribus. It is likely that the variable bedroom may be accounting 
for other structural characteristics not available in the data set such as average square feet, 
and this would explain why the magnitude of the estimated effect is larger than one might 
expect.

Table 3 presents estimates of the total cost stemming from the presence of an ad-
ditional surface mine to the average county. In the semi-log model, sma is significant 
at better than a 99 percent confidence level. The coefficient for Psm is negative but 
not significant, so it cannot be used to explain loss in housing value. sma’s coefficient 
suggests that a one unit increase in sma causes median housing value to decrease by 
.262 percent, ceteris paribus. To put this effect into proper perspective, for a county 
of 1000 square miles with a median price of $76,658, the addition of one surface mine 
decreases housing value by $261.10. Evaluating this at the average sized county of 
only 769.05 square miles increases the effect by the same magnitude as the decrease 
in county size, which is about 23 percent. Therefore, the overall loss to the average 
sized county with 30,446 housing units would amount to $7,949,359.26. This amount 
changes when counties with higher or lower median housing values are examined, be-
cause the coefficient given by the semi-log model indicates an expected percent change 
in housing value.

The estimated impact given by the linear model is similar. In this model, both SMA 
and PSM were statistically significant, so both were used to derive the total cost to an aver-
age county. The coefficient on PSM reveals the estimated change in housing value as the 
average production of a surface mine increases by 1000 short tons. Multiplying this effect 
by 968.3, the mean production of all the mines in the data set, yields an estimation of the 
effect of adding a single surface mine to a county. The SMA and PSM effects were added 
together to show the total impact of an additional surface mine. The result is that, at any 
level of housing value, the linear model estimates the total loss to an average county to be 
$35,630,985.55.

From the results of the quadratic model, the effect of sma and sma2 on median 
value can be determined by taking the derivative of the model with respect to sma. When 
this effect is added to the effect of PSM, the addition of one surface coal mine to an average 
county is expected to result in a total loss of $155,661,333.15.

For each of these models, this study examined the marginal effect of a surface mine 
in the average county. It may be more relevant to look at how the estimated parameters 
affect the average county with surface mines. As shown in table 3, the average costs to a 
county increase significantly when the average of counties containing at least one surface 
mine is assessed. Note that the first column estimates the cost of the addition of 1 surface 
mine while the second column measures the cost of 4.84 surface mines because this is the 
average number of surface mines in the set of counties with at least one mine. The numbers 
in the second column are much larger and give a better idea of the aggregate impact on a 
county that allows surface coal mining.
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Conclusion

The results clearly show a negative relationship between proximity to surface mines and 
property values. Statistically significant parameters across all three models give informa-
tion on the marginal affects of surface mining, and extrapolating these affects to the county 
level reveals considerable monetary losses. 

Nevertheless, this study has certain limitations, and they may affect the estimated 
parameters. The use of county level data does not give exact information on how much 
prices change as the distance from a mine decreases; it only shows the aggregate impact. 
Obviously, the impact of a surface mine would be expected to be much higher if a property 
is located within one mile of a mine than if the property is located much further away. In 
some counties, the housing units in one county may be located closer to mines on average 
than the housing units in another county, and this is not accounted for in this study. In ad-
dition, other regressions were calculated that included a variable for the number of under-
ground coal mines in a county. Surprisingly, underground mines were not found to have a 
statistically significant impact on housing values. This finding suggests that the aesthetic 
characteristics of surface mines are responsible for a large portion of the negative impacts 
on housing value. Taking these findings into consideration, the estimated effects of mining 
operations on housing values presented in this study represent lower bounds on the actual 
social costs. Investigating how the magnitude of the impact changes with different levels 
of income would be an interesting addition to this study.

The results of this study have significant implications for regional economics asso-
ciated with coal mining. Although this study provides only a cross section of information, 
the loss in property values affects a county government year after year in the form of lower 
tax revenue. Additional costs to a county come in the form of increased health care costs 
and lower worker productivity associated with worsened health outcomes, lower potential 
future benefits from recreation and tourism due to a permanent loss of natural beauty, and 
depreciation of public infrastructure from heightened truck traffic to and from the mine. In 
conclusion, the decision to grant a permit for an additional surface mine should take into 
account all of the costs and benefits involved, recalling that the costs estimated in this study 
are certainly a lower bound of the total social costs associated with surface coal mining.
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Table 1: Variable Definition and Descriptive Statistics
Variables
(predicted sign)

 
Description

 
Mean

Standard 
Deviation

lnmedianvalue Natural log of the median owner-occupied housing value 11.1716 .3858589

medianvalue Median owner-occupied housing value in 1999 dollars 76,658.06 31996.14

structural Housing characteristics (Percentage terms multiplied by 100)

yrmoved (+) Median years owner has lived in unit
(2000 – the median year moved into the unit

10.60 2.69

withtelephone (+) Percentage of housing units with active phone lines 97.31 2.46

medianyr (+) Median age of structure (2000 – the median year the 
structure was built)

30.41 9.06

Utilitygas (?) Percentage of housing units that use utility gas as their 
main heating fuel source

38.99 23.76

lpgas (?) Percentage of housing units that use lp gas as their main 
heating fuel source

15.49 11.92

electricity (?) Percentage of housing units that use electricity as their 
main heating source

33.47 17.32

nofuelused (-) Percentage of housing units without a main heating 
source

0.212 0.250

bedrooms (+) Median number of bedrooms 2.65 .163

lackplumbing (-) Percentage of housing units without attached plumbing 
facilities

02.41 02.74

lackkitchen (-) Percentage of housing units with kitchen facilities 02.43 2.50

multiunitaverage (-) Average number of units in multi-unit structures 9.61 4.24

Neighborhood Characteristics

averagefamilysize (+) Average family size 3.02 .160

medianage (-) Median Age 37.21 3.45

urbinf2003 (-) Urban Influence Code (1-12, 12 being most rural) 4.73 3.22

loweduc (-) Low-education county indicator. 0=no 1=yes .264 .441

house (-) Housing stress county indicator. 0=no 1=yes .092 .289

Lowemp (-) Low-employment county indicator. 0=no 1=yes .176 .381

perpov (-) Persistent poverty county indicator. 0=no 1=yes .127 .333

poploss (-) Population loss county indicator. 0=no 1=yes .176 .381

retire (+) Retirement destination county indicator. 0=no 1=yes .117 .322

perchldpov (-) Persistent child poverty county indicator (0=no 1=yes). 
This code identifies counties in which the poverty rate for 
related children under 18 years old was 20% or more in 
1970, 1980, 1990, and 2000.

.245 .430

hurban (+) Percentage of housing units that are in an urban area 41.81 30.74

hoccupied (+) Percentage of housing units that are occupied 87.10 08.18

mediantaxes (-) Median annual property taxes 751.47 503.77

hdensity (-) Housing units per square mile 96.51 299.92

hsecond (+) Number of housing units used seasonally or recreationally 
per square mile

1.368 3.41

pubtrans (+) Percentage of workers who use public transportation to 
commute to work

73.43 1.72

commutetime (-) Average commute time to work 35.37 2.35



70 WIllIams  [Vol. 3:1 

Pursuit: The Journal of Undergraduate Research at the University of Tennessee

Table 1: Variable Definition and Descriptive Statistics (continued)
Variables
(predicted sign)

 
Description

 
Mean

Standard 
Deviation

Environmental Amenities/Disamenities

SMA (-) Number of active surface coal mines per 1000 square 
miles in 2000

1.12 5.27

(SMA)2 28.96 274.61

PSM (-) Average production of surface coal mines (thousand short 
tons) 

123.34 981.65

areawater (+) Percentage of area covered in water 3.22 9.19

rec (+) Nonmetro recreation county indicator. 0=no 1=yes .051 .220

meansunlightjan (+) Mean hours of sunlight in January 146.46 32.71

meantempjuly (+) Mean temperature in July 77.14 4.37

meanhumidity (-) Mean percent humidity 57.36 11.83

topography (+) Topography Index (1-21, 1 denoting flat plains and 21 
denoting high mountains)

9.374 6.521

Table 2: Estimated Models
Functional Form Variable Semi-log Linear Quadratic

medianage 0.0043
( 0.0037)

444.0283 
( 414.7073)

442.3667 
(414.7175)

averagefamsize -0.0459 
(0.0777)

-10357.26 
(7977.115)

-10362.2 
(7975.201)

urbinf2003 -0.0140*** 
(0.0022)

-792.9691*** 
(165.021)

-803.9273*** 
(165.5227)

house 0.0425* 
(0.0243)

4129.135 
(3040.406)

4139.028 
(3042.519)

loweduc -0.0944*** 
(0.0134)

-4413.927*** 
(1059.716)

-4425.635*** 
(1058.602)

lowemp -0.1024*** 
(0.0165)

-7354.024*** 
(1429.006)

-7282.371*** 
(1429.83)

perpov -0.0375* 
(0.0197)

774.2805 
(1425.461)

712.8252 
(1426.04)

poploss -0.0881*** 
(0.0143)

-3611.463***
(1150.058)

-3548.95*** 
(1153.338)

retire 0.0779*** 
(0.019)

4113.66* 
(2209.802)

4120.807* 
(2210.321)

perchldpov -0.0348** 
(0.0152)

-1706.735 
(1150.48)

-1650.114 
(1153.431)

bedrooms 0.4281*** 
(0.0668)

49098.09*** 
(7665.924)

48994.06*** 
(7670.649)

mediantaxes 0.0002*** 
(0.000)

21.76041*** 
(2.223831)

21.77649*** 
(2.225826)

hdensity 0.0001 
(0.000)

0.6004672 
(6.060686)

0.5144152
(6.068895)

multiunitaverage -0.0003 
(0.0014)

-183.8308 
(125.3423)

-181.4202 
(125.2022)

hsecond 0.0068** 
(0.0033)

1279.904*** 
(476.116)

1283.473*** 
(477.0053)

pubtrans 1.4470** 
(0.594)

249636.1*** 
(82313.31)

248803.9*** 
(82422.56)
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Functional Form Variable Semi-log Linear Quadratic

commutetime -0.0075** 
(0.0032)

-480.9568 
(297.5946)

-470.7546 
(298.0907)

rec 0.1492*** 
(0.0347)

11115.37*** 
(3767.916)

11097.99*** 
(3769.386)

meansunlightjun 0.0006** 
(0.0003)

85.74775*** 
(31.91855)

83.88674*** 
(31.99138)

meantempjuly -0.0234*** 
(0.003)

-1926.48*** 
(569.5452)

-1923.309*** 
(569.5783)

meanhumidity 0.0021** 
(0.0009)

66.01063 
(121.2604)

66.01124 
(121.2415)

topographyscale 0.0007 
(0.001)

-22.71876 
(106.0935)

-11.8279 
(107.0773)

SMA -0.00262*** 
(0.0008)

-151.3041** 
(71.73426)

-310.1191** 
(156.319)

SMA2 3.180568 
(2.220739)

PSM -0.00000183 
(0.00000367)

-0.7734457*** 
(0.2940602)

-0.7346433** 
(0.2986165)

withtelephone 0.0036 
(0.0056)

253.2251 
(360.5779)

244.0537 
(359.7755)

hurban 0.0010*** 
(0.0003)

115.7853*** 
(30.47541)

115.5976*** 
(30.47198)

hoccupied 0.0042*** 
(0.0014)

415.4373*** 
(146.2556)

414.8725*** 
(146.2862)

utilitygas -0.0017*** 
(0.0005)

-46.22617 
(48.23904)

-46.76733 
(48.2288)

lpgas 0.0005 
(0.0007)

152.4441** 
(62.42661)

148.6893** 
(62.40292)

electricity -0.0016* 
(0.0008)

38.88532 
(130.0477)

36.21042 
(129.9611)

nofuelused 0.0146 
(0.0314)

1166.423 
(2982.391)

1183.708 
(2976.569)

lackplumbing 0.0123 
(0.0083)

-843.3022 
(1121.125)

-897.7498 
(1125.883)

lackkitchen -0.0288*** 
(0.0098)

1119.594 
(1179.344)

1170.905 
(1183.074)

areawater 0.0012** 
(0.0006)

98.40562* 
(55.30375)

98.49913* 
(55.35375)

medianyr -0.0084*** 
(0.0012)

-770.052*** 
(101.0962)

-769.5062*** 
(101.0693)

yrmoved -0.0112*** 
(0.0037)

-826.6547*** 
(287.5181)

-807.7528*** 
(288.9943)

constant 11.5853*** 
(0.6868)

61760.27 
(75487.15)

62660.93 
(75478.26)

Observations 1154 1154 1154

R2 0.864 0.812 0.812

F-statistic (p value) 180.55 (0.000) 112.97 (0.000) 110.34 (0.000)

Note: ***, ** and * indicate the estimated coefficient is statistically significant at the 1%, 5% and 10% level, respec-
tively. Robust standard errors are in parentheses.

Table 2: Estimated Models (continued)
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Table 3: Estimated Total Costs for Average Counties
Mean County
(95% Confidence Interval)

Mean County with Surface Mine
(95% Confidence Interval)

Area (square miles) 769.05 893.50

Number of Housing Units 30,446 27,752

Median Housing Unit Value $76,658 $64,380

Semi-Log -$7,949,363.31

(-$3,090,239.31, -$12,779,057.37)

-$27,187,743.14

(-$43,705,853.60, -$10,568,975.72)

Linear -$35,630,985.55

(-$63,314,339.60, -$7,947,621.18)

-$145,102,579.90

(-$257,839,458.57, -$32,365,659.50)

Quadratic -$40,146,061.87

(-$52,724,337.86, -$27,620,290.85)

-$155,661,333.15

(-$310,583,468.56, -$2,532,468.62)

All prices in 1999 Dollars
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