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A Genetic and Molecular Analysis of Antimicrobial Agent 

Resistance in Staphylococci 

The intention of this paper is to characterize staphylococcal resistance to 

antimicrobial agents on a genetic, molecular, and biochemical level using 

seminal studies from both microbiology and molecular epidemiology as primary 

references. This review is meant to be thorough, but by no means conclusive, 

comprehensive, or fully complete. 

Discussed initially is "classical" resistance, mediated by the enzyme p­

lactamase. This includes enzyme structure, classification, identification, 

mechanisms/kinetics of action, as well as the enzyme variants, extracellularity, 

and genetics of synthesis. 

Secondly, resistance NOT mediate by p-Iactams is covered, commonly 

known as methicillin resistance. Included are the origin and dissemination of the 

mec-resistance determinant, mec-associated DNA, and the core sequence of 

mec determinant, as well as the mec regulon, PBP' function, heterogeneity in 

expression of resistance and external factors affecting resistance. Also 

discussed in detail are chromosomal genes affecting resistance level including 

the femAB operon as well as feme, femD, femE, femF, and 11m genes. In 

addition, a short summary of non mecA-mediated intrinsic resistance to p­

lactams, BORSA and MODSA, is included. 

Lastly, resistance to antimicrobial agents other than p-Iactams is 

discussed. This is primarily limited to antibiotics, although resistance to organic 



cations and inorganic ions as well as antiseptics and detergents has also been 

reported. Focused on are the most commonly known and used antibiotics, 

including aminoglycosides, chloramphenicol, macrolides, lincosamides, 

streptogramins, tetracyclines, trimethoprim and sulfonamides, fluoroquinolones, 

mupirocin, and vancomycin and teicoplanin. 

I. RESISTANCE MEDIATED BY ~-LACTAMASE 

2 

The first ~-Iactam antibiotic, penicillin, was discovered by Sir Alexander 

Fleming in 1929. It was first used therapeutically in 1941, and the penicillins, 

also known as the ~-Iactams, have since been used extensively and successfully 

as antibiotics in the treatment of a wide variety of bacterial infections. However, 

the first report that extracts from bacteria could destroy penicillin was published 

in 1940.1 Strains of S. aureus soon emerged that were resistant to penicillin 

because they were able to produce the enzyme ~-Iactamase, called penicillinase 

until 1960, which converts the penicillin into an innocuous form by hydrolysis of 

the ~-Iactam ring. Today, this form of antimicrobial agent resistance is 

commonplace, particularly in strains isolated from hospital environments: there 

are reports that as many as 93 percent of isolates of S. aureus are resistant to ~­

lactamase-liable penicillins.2 

To overcome the failure of ~-Iactam therapy, an intensive search has been 

underway for ~-Iactams that are not destroyed by this enzyme. This investigation 

was aided by the fact discovery that benzylpenicillin could be enzymatically 

deacylated to produce 6-aminopenicillinanic acid (6-APA). 6-APA was then 
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treated with various acyl halides to produce a variety of semisynthetic penicillins. 

Thus, it was possible to add bulky side chains to 6-APA to give, for example, 

methicillin, which is only slowly hydrolyzed by the staphylococcal ~-Iactamases, 

and cloxacillin, which is stable to acid and so can be given by mouth. Other~­

lactams produced include the carbapenems, such as imipenem. Cephalosporins 

were also developed and some of these compounds such as cefazolin and 

cephalothin are effective against ~-Iactamase-producing S. aureus. An 

extensive search was also mounted for inhibitors of the enzyme that could act in 

synergy with a ~-Iactam antibiotic that would otherwise be destroyed.3 

There has also been much research into the mechanisms by which the 

gram-positive staphylococci have evolved resistance to these antimicrobial 

agents. It is known that gram-negative bacteria produce, between them, a wide 

variety of ~-Iactamases. Evidence indicates that the introduction of modified ~­

lactams into therapy has resulted in the selection of gram-negative bacteria that 

produce mutant forms of ~-Iactamase able to hydrolyze the modified ~-Iactams. 

There is no compelling evidence, however, that S. aureus has followed this route, 

rather they have acquired a modified penicillin-binding protein that renders them 

intrinsically resistant to ~-Iactams such as methicillin, strains that are called 

MRSA. These will be discussed in detail following this first section, resistance 

mediated by ~-Iactamase, which includes accounts of the structure, mechanisms 

of action, and genetics of the staphylococcal enzyme. 

There are two main systems for classifying the ~-Iactamases. One is 

based on amino acid sequence similarity and places the staphylococcal enzyme 
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in Group A, along with many other ~-Iactamases from both gram-positive and 

gram-negative bacteria.4 The second system is based on the catalytic properties 

of the enzyme and placed staphylococcal ~-Iactamases in group 2a on criteria 

that include the ability to more rapidly hydrolyze penicillins than cephalsporins. 

Dendrograms have been constructed on the basis of sequence comparisons, 

and group 2a enzymes also appear as closely related in this system; 

consequently, the two distinct classification systems are seen to produce similar 

groupings.5 

There are four main ways to estimate the activity of the ~-Iactamases. 

The first is useful, as it can be used with crude preparations and with whole 

colonies of bacteria. Iodine is used because it reacts with penicilloic acid, the 

compound resulting from the cleavage of the penicillin ~-Iactam ring, but not with 

the penicillin. Secondly, a pH change that results from the action of the enzyme 

can be observed, which is a good assay for purified enzyme and therefore for 

detailed kinetic studies. The third method uses nitrocefin as a substrate, and 

observes a color change. This method, however, is not a very good substrate for 

the staphylococcal ~-Iactamase. Finally, differences in the absorbance between 

the ~-Iactam and its hydrolysis products can be measured. These and other 

methods have been reviewed, but it is rare for laboratories in hospital or health 

care settings to need to carry out direct testing on staphylococci for ~-Iactamase 

production.6 

Studies of the structure of ~-Iactamases effectively began with the 

determination of the arnino acid sequence of the extracellular ~-Iactamase 
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purified from S. aureus PC1. This form of the enzyme consists of 257 amino 

acids with a molecular weight of 28.8 kDa. The sequence has been compared 

with that of several other staphylococcal ~-Iactamases and shown to possess 

four motifs that are characteristic of many enzymes interacting with ~-Iactams. 

The PC1 enzyme has been crystallized and the structure determined to 2.0 A. All 

four common motifs are found at the presumed active site and their relative 

positions have been deterrnined by x-ray diffraction studies. There is an active 

serine protease at position 70, and it is this serine that is thought to act as the 

acceptor residue during the reaction. From these crystal structures and other 

evidence, it is predicted that ~-Iactamases behave like other serine proteases, 

such as trypsin and chymotrypsin. In serine proteases, the oxygen of the 

substrate peptide bond is in contact with the main chain-NH-groups of the two 

amino acids, which, as part of the mechanism, help create an oxyanion hole. 

The active site-serine is in contact with a histidine that acts as a general base to 

group the serine's acylation by the -C=O group of the peptide bond. Therefore, 

the peptide bond is split and an acylated enzyme is formed as an intermediate. 

The histidine then acts as a general base to activate the water molecule that 

hydrolyzes the serine ester to regenerate the deacylated enzyme. The two 

peptide bonds are consequently released.7 

The kinetics of action of ~-Iactamases have also been studied in depth. 

When discussing this, two of the most pertinent parameters of an enzyme are kcat 

and kcat I Km of kcat is a measure of the maximum number of times that an 

enzyme molecule catalyzes the reaction in a unit of time, and the Michaelis 



6 

constant (Km) is the substrate concentration at which one-half of the enzyme 

molecules have substrate bound at any given time. Thus, the value of kcat / Km is 

the best measure to use in comparisons of the enzyme's ability to attack 

particular penicillins or cephalosporins - the higher the value, the more rapidly 

the enzyme is likely to destroy the substrate. These parameters have been 

determined for ~-Iactamases for many substrates, and are regularly used to type 

the variants of the enzyme, as will be discussed later. 

Variants of staphylococcal ~-Iactamases have been classified into types A, 

B, C, and D on the basis of their interaction with an antiserum prepared against 

purified PC1 enzyme. Types A and C are generally produced in large amounts 

by S. aureus of phage-typing groups I and III, while type B is associated with 

phage group II isolates. Type D was discovered to be produced by strains also 

resistant to fusidic acid. The original antiserum made stimulated the activity of 

type A enzymes, but is was used up, and scientists have not been able to 

produce fresh antiserum that replicates the action of the original. However, the 

classification has been re-determined on the basis of the differing kinetic 

properties of the enzyme types. A compilation of kinetic data for the four variants 

taken from Rowland et al can be seen in figure 1. Type A can best be 

distinguished from types Band C by the large differences in the Km when 

cefazolin is the substrate. The type A enzyme has a much higher kcat for 

benzylpenicillin than that of type D. Rowland et al also found it is possible to 

make these distinctions even with whole cell preparations. There are differences 
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in types Band C, but they are not distinguishable by these parameters, it usually 

takes testing susceptibility to inhibition by tazobactum.8 

The genes for several type A, one type C, and one type 0 ~-Iactamase 

have been sequenced. There are sequence differences between the type A's, 

but the only major change that could account for the serological and kinetic 

differences between types A and 0 is the substitution of an alanine at position 

128 in the type 0 enzyme for the aspartic acid found at this position in type A. 

The sequencing of the gene for the type B enzyme is currently underway.9 Most 

MRSA strains produce a b-Iactanlase. A survey of 27 epidemiologically distinct 

MRSA strains of S. aureus conducted during the 1960's found that all 27 

produced type A ~-lactamase.1o Over 25 years later, a survey of 50 MRSA 

strains from cities in the United States revealed that 40 produced type A while 

the remaining 10 produced type C. No MRSA strain of S. aureus has been 

shown to produce either type B or type D. 11 

There is also work underway to discover whether mutations in the gene for 

~-Iactamase that specify an enzyme that more efficiently hydrolyzes some of the 

newer ~-Iactams are selected for in the natural environment. There has been 

such selection found in the gram-negative ~-Iactamases, but none has been 

documented for the staphylococcal enzyme. Whether such selection is likely for 

the whole culture is debatable because, if the enzyme is entirely extracellular, 

and an individual bacterium would probably not be at significant selective 

advantage. In contrast, staphylococci with some cell-bound ~-Iactamase could 

be at an advantage. 
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There is no good evidence as of yet that ~-Iactams can pass across the 

staphylococcal membrane. They act at the membrane surface to inhibit the 

synthesis of mucopeptide, so there is no value to the organism in having a 

cytoplasmic ~-Iactamase. The enzyme is located either at the membrane or 

released into the medium. Inspection of the predicted amino acid sequence at 

the N-terminus of staphylococcal ~-Iactamase revealed that for the type A 

enzyme there is a leader peptide of 24 amino acids. East et al discovered that 

the isolate S. aureus 1071 releases very little, if any of its enzyme into an 

extracellular medium. They found a proline at position 22 of the leader peptide in 

place of the serine commonly found at this position for other ~-Iactamases. 

Changes they directed by site-directed mutagenesis of the serine at position 22 

of the ~-Iactamase of another isolate, 3084, that produces a large amount of 

extracellular enzyme to a proline prevented the appearance of the extracellular 

enzyme. 12 The leader sequence also has a motif, including a cysteine, that is 

characteristic of a lipoprotein with a covalent bond to a glyceride, which is of 

interest because the nucleotide sequence of a signal peptidase II, which cleaves 

such lipoproteins, has been determined for a gene from S. aureus. If there is a 

lipoprotein from of ~-Iactamase in the cell membrane then it may have kinetics 

that differ from those of the free form of the enzyme. 13 The advantage of such a 

form to the bacterium could be that is has the potential to inactivate the antibiotic 

before it reaches the sensitive site at the membrane. 

For most ~-Iactamase-producing staphylococcal, the enzyme is produced 

inducibly, but the type D enzyme is produced constitutively in one strain, but 
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inducibly in others. In early studies of the induction system, several regulatory 

genes were identified, including the bfaf, the gene for a common repressor 

protein; bfaR1, thought at that time to specify a second polypeptide that bound to 

the 81al protein; and bfaR2, thought to produce a protein that could, for example, 

result in the synthesis of an intracellular inducer such as a mucopeptide 

precursor. The structural gene blaZ, together with blal and blaRI, is often found 

on the large plasmids whereas blaR2 is always chromosomal. The site for the 

blaZ gene on the chromosome is between purB and ilvB and near agr. However, 

since there is evidence for transposons containing bfaZ that may not have 

specific sites for insertion and since complete plasmids are capable of integrating 

into the chromosome, it is expected that the gene will be found in many different 

chromosomal locations. The blaZ gene was shown to be present on the 

chromosome of S. aureus PS80, but could not be transferred to a plasmid. This 

was the first indication that the gene was present on a transposon; since that 

time, several blaZ-containing transposons have been reported, including Tn552, 

Tn4002, Tn3852, and Tn4201. These are very similar to each other and 

probably have a common origin. The transposons have been shown to be 

active, in that both Tn4201 and Tn3852 have been shown to translocate - the 

former to a site near to, if not identical with, the site for blaZ mentioned above.14 

The complete sequence of Tn 552 has been determined, allowing 

significant advances in the understanding of both the transposon and of the 

regulation of ~-Iactamase synthesis. There are six open reading frames, and 

functions can be attributed to all of them. The first ORF, orf480 or transposase, 
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contains the D,D(35)E motif found in several transposases as well as in the 

integrases of retroviruses. The protein has been purified and shown to bind the 

termini of Tn552. The second ORF, orf251 , is probably an accessory 

transposition protein, important in the selection of target DNA, thought to act in a 

way analogous to the MuB protein of bacteriophage /-!. The third ORF, BinL, is a 

recombinase thought to function by catalyzing recombination at the resL site 

within Tn552. The fouth ORF, BlaZ, is the ~-Iactamase, while, as mentioned 

earlier, the fifth is the Blal, the classic repressor protein. The protein binds 

specifically to the blaZ operator region as shown by DNA footprinting and the 

protein protects two regions corresponding to the repeats found in the operator 

sequence. The protein shows 39 percent amino acid sequence identity to the 

Blal protein of B. lichenformis, which has been shown to bind to the control 

region for expression of ~-Iactamases in that organism. The sixth and final orf 

is BlaR1, a putative signal transducer-sensor protein. It consists of 585 amino 

acids and has homology with the BlaR1 's of B. lichenformis and methicillin­

resistant S. epidermidis. There are five hydrophobic regions that could span the 

bacterial membrane, so that it is possible that the N-terminus is on the inside of 

the membrane and the C-terminus is on the outside. The C-terminal region has 

motifs found for ~-Iactam binding proteins.15 

The inducer for ~-Iactam also binds to the C-terminal region of BlaR1, 

causing a signal to be passed, either directly or indirectly to the Blal protein. The 

nature of this signal is not known and it is not known whether the Blal is 

covalently modified or is modified by a noncovalent interaction with a protein or 
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small molecular weight effector. As a result of the signal the Blal no longer binds 

to the operator region and so transcription of both blaZ and blaR11blal increases, 

giving elevated synthesis of the ~-Iactamase and the regulatory proteins. 16 

II. RESISTANCE NOT MEDIATED BY ~-LACTAMASE 

(METHICILLIN REISTANCE) 

The primary target of ~-Iactam antibiotics are the penicillin-binding 

proteins (PBP's), enzymes anchored in the cytoplasmic membrane involved in 

the last stages of peptidoglycan biosynthesis. They are responsible for the 

polymerization of peptide moieties of the peptidoglycan chains, which in S. 

aureus are cross-linked by a characteristic pentaglycyl side chain. Penicillin 

reduces the cross-linking of the peptidoglycan and inhibits new septum initiation. 

The effect of ~-Iactams in staphylococci is dose dependent, extending with 

increasing concentrations from growth inhibition, to lytic and nonlytic death. The 

lethal target of ~-Iactams has not yet been identified, and penicillin-induced death 

does not necessarily coordinate with bacteriolysis. 17 

Staphylococci have different means to become resistant to ~-Iactam 

antibiotics. They can do so either by mutation, or more efficiently and more 

clinically relevant, by acquisition of a foreign DNA element coding for methicillin 

resistance. The methicillin resistance determinant mec confers to the 

staphylococci an intrinsic resistance against all ~-Iactams, including 

carbapenems and cephalosporins. As stated in the introduction, the first 

methicillin resistant S. aureus (MRSA) containing the mec determinant were 
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isolated in 1960, shortly after the introduction of methicillin into clinical use. At 

that time, MRSA compromised less than 1 percent of all isolates, but they have 

since spread successfully all over the world. 18 MRSA reside mainly in 

environments in which there is a constant strong antibiotic pressure, such as 

hospitals. Once established, MRSA is difficult to control and eradicate. 

A further property of MRSA is their tendency to accumulate unrelated 

resistance determinants and incorporate them into their genome. Their 

adaptability and ready response to antibiotic selection has led, in about 40 years, 

to the evolution of MRSA strains resistant to almost all commonly used 

antibiotics. MRSA have become a serious problem because of both their 

multiresitance, and their intrinsic resistance to ~-Iactam antibiotics, ruling out 

therapy with many currently used antibiotics. Another clinically less important 

class of staphylococci has appeared with borderline resistance to methicillin. 

Although these isolates can sometimes be mistaken in susceptibility tests for 

MRSA, they carry no mec determinant, are usually not multiresistant, and arise 

by mutation at additional non-mec loci and as a result of selection for 

resistance. 19 

The mec determinant resides on a DNA element of more than 30 kb that is 

absent in susceptible staphylococci. In all strains examined by scientists so far, 

this DNA element seems to integrate at a specific site in the S. aureus genome, 

between the spa (protein A) and purA (adenine requirement) genes found to be 

located on the Sma-I-G fragment of S. aureus. Neither the nature or origin of this 

element nor the mechanisms by which it is transferred are currently known. The 



13 

transient capture of the mec determinant on a plasITlid by Trees and Landolo 

suggest that it resides on a transposon Tn4291.2o It is believed that the early 

MRSA isolates descended from one single methicillin resistance clone, however 

since then, the mec determinant seems to have entered other phylogenetic 

lineages of S. aureus. 

It is also possible that the mec determinant was acquired at different times 

by different strains and that additional mutations and deletions have served to 

further diversify the mec-associated DNA as well as the genome of the host. 

Clonal analysis of MRSA strains and of the mec determinant stemming from 

staphylococcal species other than S. aureus, mainly S. epidermidis and S. 

haemolyticus, supports the hypothesis that there may be a dissemination of the 

mec determinant by horizontal transfer, with the CoNS serving as the reservoir of 

the mec determinant for S. aureus. ~-Iactamases, which are transposon and 

plasmid encoded were rapidly and widely disseminated and are now widely 

present in about 80 percent of all staphylococci. In contrast, the mec 

determinant is still restricted to a few clonal lineages and seems to favor clonal 

over horizontal spread.21 

The core sequences of the mec element consist of mecA, a gene coding 

for a low-affinity penicillin-binding protein, termed PBP2' or PBP2a, which is 

prerequisite of methicillin resistance, and a variable segment of 3' DNA that ends 

in an insertion sequence-like element, named IS43111S257. The variable part 

codes for an open reading frame that has amino acid similarity with E. coli 

phosphodiesterase (UgpQ) and for a direct repeat unit (dru) containing 10 
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degenerate 40-bp repeats of unknown function. The length of the fragment 

between mecA and IS431 mec is hypervariable, owing to a deletion within the dru 

element and postinsertional rearrangements between the IS element and the 

hypervariable region. This variability is utilized for epidemiological studies, using 

CIa I restriction site polymorphism of the mec determinant, or size variations after 

amplification of the dru element for molecular typing of MRSA.22 

Another clinically important feature, and the likely reason for the frequent 

association of multiresistance with methicillin resistance, is the fact that mec­

associated DNA acts as a trap for the integration of other unrelated resistance 

determinants in that chromosomal segment. IS431mec thereby serves as target 

for homologous recombination of other resistance determinants or plasmids 

flanked by similar IS elements. Transposon attachment sites found 5' to mecA 

are also responsible for the site-specification of transposon Tn554. Whereas the 

mec determinant of earlier clinical isolates was stable, in more recent isolates, 

which have accuITlulated more resistance determinants, and therefore contain 

several direct repeats of IS43111S257, spontaneous deletions removing the mec 

determinant or part of it have been observed, sometimes even deleting nearby 

chromosomal genes.23 

From the more than 30 kb of additional DNA contained in the element 

which is absent from susceptible strains, only a small part, namely the sequence 

carrying the mecA gene, is sufficient for producing methicillin resistance in 

susceptible strains. Its product is a low-affinity 76 kDa PBP2' that shows the 

characteristics of a membrane-bound PBP, with a putative transglycosylase 



15 

domain and the characteristic conserved sequences of a transpeptide. Its 

transglysosylase domain is sometimes degenerated, as most ITlutational events 

among different mecA genes that had no effect on the methicillin resistant 

phenotype were found in the putative transglycosylase domain. The highly 

conserved sequence similarity between the mecA genes of several unrelated 

methicillin-resistant S. aureus and S. epidermidis strains, suggest little time has 

passed since the mecA gene entered the staphylococci. 24 

As stated before, the mecA origin is unknown, but it is likely that the 

sequence stems from an organism with a high AT content, similar to 

staphylococci. It has been proposed that the mecA sequence arose by 

recombination between the promoter and N-terminal sequence of a penicillinase 

gene and the structural gene of a PBP of unknown origin. Upstream of mecA, 

some mec determinants contain a divergently transcribed regulatory element, 

holding the genes mecR1 and mecl, separated from mecA by its promoter and 

operator. mecl, the repressor of mecA, has strong similarity to Blal, the repressor 

of staphylococcal p-Iactamase. mecR1 is similar to, and has the same molecular 

organization, as BlaR1, which is involved in the induction of staphylococcal P­

lactamase. It contains several hydrophobic transmembrane segments, an 

extracellular penicilloyl serine transferase motif, and a cytoplasmic Zn-peptidase 

motif.25 

In the absence of mecl-mecR1 and p-Iactamase regulatory elements, 

there is a constitutive PBP2' production. Some strains that harbor a complete 

functional mecl-mecR1 regulatory element are strongly repressed and produce 
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PBP2' only after induction. Induction is slow in these strains, and methicillin and 

oxacillin seem to be weak inducers. Consequently, methicillin resistance is 

established very slowly with full induction on methicillin-containing plates seen 

only after about 48 hours. Such strains may appear falsely susceptible in 

standard resistance tests. However, clinical strains that carry the sequences for 

mecl and mecR1 produce PBP2' constitutively and in high amounts. They are 

usually found to have point mutations or deletions that inactivate the repressor.26 

Because of their great similarity to MecR1 and Mecl, the regulatory 

elements BlaR1 and Blal of the staphylococcal ~-Iactamases can also regulate 

mecA transcription. Repression by Blal is weaker than by Mecl, but there is still 

some PBP2' produced in the uninduced strain, and induction by methicillin is as 

rapid as ~-Iactamase induction. Since staphylococcal ~-Iactamase and PBP2' 

share the same induction pathways, the putative chromosomal locus blaR2 that 

is proposed to interfere with the bla regulon may also affect mecA regulation. 

The mechanisms of the induction cascade and its components, which lead from 

the extracellular ~-Iactam to the different factors involved in signal transduction to 

the final induction of either ~-Iactamase or PBP2', remain to be found in 

staphylococci.27 

It is generally believed that PBP2', which has the binding characteristics of 

a normal PBP, acts as a transpeptidase, and that it takes over the functions of 

the resident PBP's of the cell when activated by high concentrations of ~­

lactams. Under normal growth conditions, in the absence of ~-Iactams, PBP2' 

does not seem to contribute to cell wall composition. Profound differences only 
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become apparent when the normal PBP's of the cells are inactivates by ~­

lactams and solely PBP2' is left functional. Whereas more than 60 percent of 

muropeptides in the wall of normal growing cells are cross-linked, cross-linking 

decreases to 15 percent in the presence of methicillin, suggesting that PBP2' is 

restricted to the formation of muropeptide dimers only. Nevertheless, it is still 

possible that PBP2' has an additional unknown role in resistance. Interestingly, 

the transfer of a resistant strain that constitutively produces PBP2' from a drug­

free medium to a high concentration of methicillin induces a lag period in growth 

roughly proportional to the methicillin concentration in which it was placed. This 

was postulated to be related to the activation of a regulatory circuit that switches 

cell wall synthesis from the normal PBP's to PBP2' .28 

Besides studying the PBP's of staphylococci, much research has gone 

into the heterogeneous expression characteristic of the methicillin-resistant 

strains. When an overnight culture of a MRSA strain is plated on increasing 

concentrations of methicillin or on any other ~-Iactamase resistant ~-Iactam and 

the colony-forming units are determined, only a small fraction of the total 

population is able to grow at much higher concentrations than the majority. The 

concentrations up to which most of the cells grow is commonly called the basal 

resistance level. 29 There have been observations that the population analysis 

profile is also growth phase dependent, which suggests that whatever changes 

are triggered by methicillin that allow resistance above the basal level are cell 

cycle dependent. In some strains, the highly resistant subpopulation will keep 

the high resistance once it has been formed, and descendents of this 
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subpopulation will remain resistant to those concentrations of methicillin to which 

they were selected. The stability of these subclones suggests that they may also 

be mutants. On the other hand, in some clinical isolates, the subclones return to 

their original resistance upon regrowth from a single colony in drug-free medium. 

This could be explained by assuming that the initial level of resistance was due to 

the induction of methicillin resistance and that induction was lost upon regrowth 

on drug-free medium, demonstrating the different mechanisms that may lead to 

high resistance. 30 

Clinical isolates carrying the mec-determinant vary widely in their basal 

resistance to methicillin (MIC's of less than 4 ug/ml to greater than 1,000 ug/ml), 

as well as in the ratio of cells able to develop high methicillin resistance. Since 

population profiles are a strain-specific property that can be reproduced under 

strictly controlled conditions, clinical isolates have been arbitrarily divided into 

four classes of expression by Tomaz et ai, although it is not clear that each of 

these classes corresponds to a single mec/host background.31 Despite many 

efforts such as this, there currently exists no satisfactory model that can explain 

the mechanisms governing heteroresistance. Rearrangements involving the 

mec determinant have been observed in strains after selection for high methicillin 

resistance, but they were shown not to be responsible for increased resistance.32 

Slow inducibility of mecA when controlled by a strong repressor, as in strains with 

mecR1-mec/, can lead to low resistance. It has also been shown that repression 

of mecA by the ~-Iactamase repressor turns a highly and homogeneously 

resistant MRSA into a heterogeneously resistant strain, when the corresponding 
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signal transducer, needed for induction (BlaRI) is inactivated.33 This means that 

a certain threshold of PBP2' is needed for the expression of methicillin 

resistance. However, in strains with constitutive PBP2' synthesis, which vastly 

overproduce this protein, the same amount of PBP2' is present whether the cells 

are heterogeneously or homogeneously resistant. A number of studies have 

been unable to establish a correlation between the amount of PBP2' production 

and resistance levels, suggesting that other genes cooperate with PBP2'. 34 

In contrast, a series of experiments showed that a chromosomal gene(s), 

termed chr*, was responsible for the expression of high level resistance, and that 

neither mecA nor any of the additional mec-associated DNA was involved. A 

similar conclusion, namely that the chromosomal background of the 

staphylococcal strain plays an important role in determining resistance levels, 

was drawn from another experiment. Homogeneous high-level methicillin 

resistance was abolished by insertional activation of mecA. Methicillin resistance 

could be restored to its original high resistance level by reintroducing mecA even 

though its gene came from a low-level heterogeneously resistant strain. The 

functions of genes involved in high-level methicillin resistance such as chr* 

remain to be identified, however a chromosomal segment that may mediate high­

level resistance was recently cloned. Characterization of genes such as this may 

help clarify the differential expression of resistance. 35 

External factors, such as temperature, pH, osmolarity, light, divalent 

cations, chelating agents, and anaerobiosis can also affect methicillin resistance. 

Lowering the temperature and increasing NaCI concentrations enhances 



methicillin resistance, and these conditions are routinely employed in the 

detection of methicillin resistance in clinical isolates. However, which genetic 

elements respond to these external factors in staphylococci and how they are 

connected to the methicillin resistance are still unknown.36 
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Signal transduction may also play an important role in methicillin 

resistance. Substances that are able to interact with the cell membrane, such as 

surfactant glycerol monolaurate, were shown to inhibit ~-Iactamase induction, 

probably by interfering with signal transduction. The detergent Triton-X1 00, 

which stimulated both the release of acylated lipoteichoic acids and bacterial 

autolysis, was shown to reduce methicillin resistance when added in 

subinhibitory concentrations. The effect is similar to that of polidocanol, a 

nonionic detergent, which has been shown to increase the susceptibility of MRSA 

to ~-Iactam antibiotics. 37 These substances presumably act at the cell 

membrane level, disturbing signal transduction and enhancing ~-Iactam action by 

interfering with cell wall metabolism. Mutants resistant to these effects might 

help identify additional factors involved in ~-Iactam action and resistance. 

Tn551-mediated insertional mutagenesis of the staphylococcal genome 

has been used to generate susceptible mutants from a methicillin resistant strain. 

The genes identified were termed factors essential for methicillin reistance (fern) 

or auxiliary (aux) factors. These Tn551-mediated inserts were then mapped and 

found to be numerous and scattered around the staphylococcal genome. 

According to the effect of their inactivation on methicillin resistance, they can be 

separated into two classes. I nserts in femA and femB abolish methicillin 
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resistance completely, including even the formation of a highly resistant 

subpopulation. Other factors, such as feme and femD, reduce the basal 

resistance level but still allow formation of highly resistant revertants. All of these 

factors belong to the normal set of genes of the staphylococcal genome of both 

susceptible and resistant strains and are involved directly or indirectly in specific 

steps of cell wall biosynthesis. Inactivation of these factors in a susceptible strain 

results in hypersusceptibility to ~-lactams.38 

The femAB operon was mapped downstream or trpA in the Sma I-A 

fragment in S. aureus 8325. It is involved in the peptidoglycan pentaglycine 

interpeptide bridge formation. Mutants that lack FemS are able to attach only 

three glycines to the cross-bridge. No femA zero mutant is available, but 

peptidoglycan composition of a polar mutant allowing less than 10 percent of 

femAB transcription suggests that FemA directs incorporation of glycines two and 

three. The first glycine appears to be added independently of FemA and 

FemS.39 The precise role of these two cytoplasmic proteins, which are very 

similar to one another and have an approximate size of 49kDa, is unknown. The 

glycines are added to the peptidoglycan stem-penta peptide by three glycyl­

tRNA's that are specific for cell wall synthesis and different from the glycyl-tRNA 

used in protein biosynthesis. In S. aureus, glycine is loaded on each of these 

tRNA's by a single glycyl t-RNA synthetase. However, FemA and Fen1S lack 

homology to any published protein sequences, including glycyl t-RNA 

synthetase. Therefore, it is not possible to predict their precise functions.4o 
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The long flexible pentaglycine side chain is responsible for the high cross­

linking values characteristic of the staphylococcal peptidoglycan. The shortened 

glycine side chain in femAB mutants leads to reduced peptidoglycan cross­

linking and to higher resistance to lysostaphin, a glycyl endopeptidase. 

Additional defects in femAB mutants include aberrant septum formation, 

thickened cross walls, and a retarded cell separation. Neither PBP2' synthesis 

nor that of the normal PBP's is affected in femAB mutants. PBP's are produced 

in normal amounts, but their function is impaired - the cells become 

hypersusceptible to ~-Iactams. This is clinically significant because inhibition of 

FemA of FemB to any antibacterial agent should therefore restore the efficacy of 

~-Iactams against MRSA. 

The feme and femO loci were also found to be located on the 

chromosomal Smal-A fragment of the S. aureus 8325 chromosome. Inactivation 

of feme reduces only the basal resistance level in MRSA but still allows 

formation of a highly resistant subpopulation. The feme mutation produces a 

metabolic block in glutamine production. Inactivation of the glutamine synthetase 

repressor (glnR) has a polar effect on transcription of the 3' glutamine synthetase 

gene, gInA, in the glnRA operon, leading to reduces production of glutamine 

synthetase and consequently to a lack of glutamine. This has an indirect effect 

on peptidoglycan composition, reducing the degree of cross-linking in the 

peptidoglycan. Addition of glutamine to the growth medium can restore 

methicillin resistance. The mutation femO interferes with peptidoglycan 

precursor production. It has been postulated to be a defect in a gene controlling 



the rate of biosynthesis of the unsubstituted disaccharide pentapeptide 

precursor. 41 
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Little information is available on femE, although it has been identified as a 

Tn551 insertion in the Smal-A fragment, in a site distinct from femAB and feme. 

No significant changes in peptidoglycan composition were detected in this 

mutant.42 femF mutants are impaired in an early step of precursor muropeptide 

synthesis and the gene has been localized to the Smal-B fragment. 43 

In addition to the fern (factors associated with methicillin resistance), a 

gene, 11m, coding for a 38-kDa lipophilic protein, has been identified that 

increases autolysis rates and reduces methicillin resistance upon inactivation, as 

do the fem factors. The 11m gene has been identified in all S. aureus strains, but 

has not been found in other staphylococcal species. 11m shows strong similarities 

to mra Y, the first enzyme involved in the lipid cycle of peptidoglycan 

biosynthesis.44 From the growing list and functions of fem factors, it seems that 

any disturbances in the well-balanced biosynthesis of peptidoglycan and possibly 

alterations in membrane composition as well, reduce the optimal function of 

PBP2' when resident PBP's are saturated by methicillin. As previously stated, 

the fem factors seem to belong to the normal housekeeping genes of 

staphylococci and apparently function normally in clinical methicillin-resistant 

isolates. Although their experimental disruption by transposon insertion leads to 

a reduction in methicillin resistance, it is not clear that any of the fem genes or 

loci are directly involved in the expression of methicillin resistance in clinical 

isolates or that they are altered in their expression or function by the presence of 



the mec determinant. Future studies could possible use techniques other than 

gene inactivation to find these resistance-associated factors. 
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Unlike the femAB mutants, the femC, femO, and 11m mutants produce a 

small number of highly methicillin-resistant revertants when plated on high 

concentrations of methicillin. Reversion takes place in a site distant from the 

corresponding fem or 11m mutation. In femC mutants, this reversion affects an 

unidentified gene(s), termed hrmC (for high methicillin resistance reversion in 

femC), and does not restore the glutamine synthetase activity. The 

corresponding hmrO revertants of femO and the highly resistant revertants of 11m 

likewise occur at sites involving neither femO nor 11m. These revertants are 

highly and homogeneously resistant, similar to the highly resistant subpopulation 

formed by a heterogeneous MRSA in the presence of high concentrations of 

methicillin. However, the chromosomal chr* mutation involved in high-level 

resistance of wild-type MRSA strains could not substitute for the hmrC mutation. 

This means that in MRSA, rnultiple paths may lead to high-level resistance.45 

Standard susceptibility tests sometimes fail to distinguish between an 

MRSA with a very low level basal resistance and the clinically less relevant 

borderline resistant strains mentioned earlier that carry no mec determinant. 

Two types of borderline resistant strains have been encountered: BORSA and 

MODSA. The first type, termed BORSA, are hyperproducers of ~-Iactamase or 

strains specifically producing a methicillinase. This resistance mechanism is not 

intrinsic because it involves partial hydrolysis of penicillinase-resistant penicillins. 

However, it appears that their hyperproduction of ~-Iactamase is not sufficient, 
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and that specific, yet-to-be defined host background factors are also needed to 

establish borderline resistance.46 

The second type of borderline resistant isolates, termed MODSA, are 

strains with modifications in their own PBP's. Such strains can also be obtained 

in vitro from a susceptible S. aureus and selected for growth on increasing 

concentrations of ~-Iactams. Multiple factors that have yet been identified are 

involved in this process, and changes in the amount and/or affinity of the existing 

PBP's of the cells have been described. Increase in resistance by this 

mechanism is usually impaired with decreasing growth rates. In contrast to 

mecA-dependent methicillin resistance, no heteroresistance is observed in 

MODSA strains all descendents of the culture are uniformly resistant.47 

Clinically, neither the BORSA nor the MODSA have become as relevant as 

MRSA but, because of their phenotypic overlap with low-level resistant MRSA, 

identification methods have been used that can distinguish between the 

presence or absence of the mecA gene. 

In April 2001, Kuroda et al publishes the genome sequence (about 2.8 

million base pairs) for two strains of MRSA, Mu50 and N315.48 Many believe this 

is the breakthrough needed to finally begin to "win" the struggle against MRSA. 

III. RESISTANCE TO ANTIMICROBIAL AGENTS OTHER THAN ~-LACTAMS 

Resistance to a wide range of antimicrobial agents, including antibiotics, 

antiseptics/disinfectants, and inorganic or heavy metal ions, has been reported in 

S. aureus and other staphylococci.49 In many instances, the resistance elements 
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are either plasmid-encoded or associated with other mobile genetic elements. 

These determinants mediate resistance through a number of different 

biochemical mechanisms that can be classified into several common categories: 

inactivation mechanisms, bypass mechanisms, target site alteration, efflux 

mechanisms, and sequestration. 

In the first example, the antimicrobial agent is inactivated by chemical 

modification by either intracellular or extracellular detoxifying enzymes (e.g. the 

inactivation of chloramphenicol by chlorarnphenical acetyltransferase). 

Secondly, staphylococci can bypass the effect of the antimicrobial agent by 

substitution of an alternate pathway or enzyme, as in resistance to trimethoprim 

due to the synthesis of an alternative trimethoprim-insensitive dihydrofolate 

reductase enzyme. Thirdly, target site alteration leads to a reduced affinity of the 

target site for binding with the antimicrobial agent, as is observed with in 

resistance to macrolides, lincosmaides, and streptogramin (MLS) type B 

antibiotics, where there target site is structurally modified (methylation of the 23S 

rRNA adenine residues). Fourthly, the antimicrobial agent can be actively 

pumped out of the bacterial cell (e.g. the active export of toxic organic cations). 

Lastly, the antimicrobial agent can be specifically and stoichiometrically bound by 

a cellular protein such that its antimicrobial action is blocked, an example of 

which can be seen in the binding and sequestration of bleomycin. Some of these 

examples and others will be discussed in detail in the next sections. 50 For each 

antibiotic, examples of each will be given along with their mechanism of action 

and prevalence of use for staphylococcal infections. Also discussed will be 
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cloning and sequence analysis of proposed resistance determinants, location 

(where they are located chromosomally, types of plasmids, etc), and homology to 

other known determinants, as well as other factors relevant to describing the 

genetic and molecular bases of resistance. 

AMINOGL YCOSIDES 

Aminoglycoside antibiotics, including gentamicin, kanamycin, 

streptomycin, and neomycin, inhibit protein synthesis by binding to the 30S 

ribosomal subunit. Aminoglycosides have been widely used to treat 

staphylococcal infections and are still used in combination with other 

antistaphylococcal agents. The major mechanism of aminoglycoside resistance 

observed in the staphylococci is drug inactivation by cellular enzymes, such as 

aminoglycoside acetyltransferases (AAC), adenyltransferases (AAD), or 

phosphotransferases (APH). Aminoglycosides modified at the amino groups (by 

AAC's) or hydroxyl group (by AAD's or APH's) lose their ability to bind 

ribosomes, and hence, do not inhibit protein synthesis.51 

Resistance to gentamicin and concomitant resistance to tobramycin and 

kanamycin in the staphylococci is mediated by a bifunctional enzyme displaying 

both AAC And APH activity, which has been purified and characterized 

biochemically. 52 The aacA-apdD gene encoding this enzyme has been cloned 

from the plasmid pSK1 and sequenced. Amino acid sequence analysis suggests 

that it contains two separate domains, an N-terminal domain with homology to 

AAC enzymes and a C-terminal domain with homology to APH enzymes. 

Mutagenesis of the aacA-apdD gene supports the notion that two separate 
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domains in this enzyme are responsible for the two aminoglycoside-modifying 

activities. The aacA-apdD gene has been shown to be encoded on the 

composite transposon Tn4001. Tn4001 and Tn4001-like elements have been 

found to be widely distributed in both S. aureus and CoNS, being found on pSK1 

family plasmids, conjunctive plasmids, occasionally on p-Iactamase/heavy metal 

resistance plasmids, and also in various chromosomallocations. 53 

Resistance to neomycin, kanamycin, tobramycin, and several other 

aminoglycosides in the staphylococci is mediated by an AAD encoded by the 

aadD gene. The aadD gene is often carried on small plasmids, such as pUB11 O. 

The complete nucleotide sequence of pUB11 0 has also been determined, and 

the AAD product of aadD has been purified and biochemically characterized. 

Copies of the aadD-encoding pUB11 O-like plasmids have also been found 

integrated into large conjunctive plasITlids and into the methicillin resistance mec 

region of the chromosome of some S. aureus isolates. Additionally, a variety of 

other plasmids encoding AAD have been detected and probably also carry an 

aadD gene. 54 

Staphylococcal streptomycin-resistance genes have also been identified. 

Sequencing of the streptomycin resistance gene str, identified on small plasmids 

such as pS 194, has demonstrated that its product is homologous with AAD 

enzymes fron1 other bacteria. High-level streptomycin resistance has been 

associated with chromosomal mutations (strA) that affect the ribosome. Low­

level cross-resistance to most aminoglycosides appears to be due to a 

chromoson1al mutation that affects the membrane's permeability to 
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aminoglycosides. A streptomycin resistance APH encoded by an aphC gene has 

also been found in S. aureus, but not well characterized. Additionally, a plasmid­

borne aadA gene encoding an AAD that confers resistance to streptomycin and 

spectinomycin has been detected.55 

CHLORAMPHENICOL 

Chloramphenicol is a bacteriostatic antibiotic that binds to the 50S 

ribosomal subunit and inhibits the transpeptidation step in protein synthesis. It 

has not been widely used as an antistaphylococcal agent, however resistance to 

chloramphenicol in the staphylococci has been reported and is due to the 

inactivation of the antibiotic by a chloramphenicol acetyltransferase enzyme 

(CAT), which acetylates the antibiotic.56 cat genes have been located on a wide 

variety of staphylococcal plasmids, and three main families of cat-encoding 

plasmids have been identified, typified by the plasmids pC194, pC221, and 

pC223. The nucleotide sequences of the cat genes on S. aureus plasm ids such 

as these have been determined and their products are homologous both with 

each other and with cat enzymes from other bacteria. Expression of the cat gene 

is typically inducible and has been studied in detail in the case of the pUB112 cat 

gene. Expression seems to be regulated by translational attenuation in a similar 

manner to ermC expression, which will be discussed in the next section. The 

cat gene is preceded by a 9-amino acid leader peptide, and the leader mRNA 

can form a stable stem-loop structure, which masks the ribosome binding site of 

the cat gene. Chloramphenicol appears to cause the ribosome to stall on the 

leader sequence, opening the stem-loop structure, thereby exposing the cat 



ribosomal binding site, allowing cat expression, and therefore resistance to 

chloramphenicol. 57 
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MACROLIDES, LlNCOSAMIDES, STREPTOGRAMINS (MLS) 

Macrolides, such as erythromycin and oleandomycin; lincosamides, such 

as lincomycin and clindamycin; and streptogramin antibiotics have a 

bacteriostatic effect sin1ilar to that of chloramphenicol - by binding the 50S 

ribosomal subunit and arresting protein synthesis. Erythromycin, clindamycin, 

and lincomycin have been used extensively in the treatment of both minor and 

major staphylococcal infections. Currently, resistance to these agents is highly 

prevalent among the staphylococci. Streptogramins, such as pristinamycin, 

have been used in Europe as antistaphylococcal agents, but the prevalence of 

resistant strains remains IOW.58 A number of determinants conferring resistance 

to this group of antibiotics via a variety of mechanisms have been identified in the 

sta phylococci. 

Three homologous staphylococcal determinants, ermA, ermB, and ermC 

have been identified that confer resistance to the MLS antibiotics by target-site 

alteration of the ribosome. The best example of these genes, ermC, has been 

demonstrated to encode a methylase, which catalyzes the dimethylation of an 

adenine residue in the 23S ribosomal subunit, thereby reducing the affinity 

between the ribosome and the MLS antibiotic. The ermC gene is typically carried 

on small staphylococcal plasmids, such as pE194, and its expression is inducible 

and is regulated at the level of mRNA secondary structure, as has been thought 

for cat regulation. The ermC mRNA contains a leader sequence coding for a 19-
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amino acid leader peptide, and this leader mRNA is capable of forming a stable 

stem-loop structure that sequesters the ermC binding site. Erythromycin-induced 

stalling of the ribosome during translation of the leader sequence opens up the 

stem-loop, permitting ribosomal access to the ermC ribosomal binding site and 

subsequent translation of ermC. Both genetic and physical evidence strongly 

support this model of translational attenuation and have suggested that codons 5 

to 9 of the leader sequence are essential for induction while codons 9 and 10 are 

in physical contact with the stalled ribosome. Although ermC-encoded MLS 

resistance is characteristically inducible, both naturally occurring and in vitro 

mutants of ermC have been isolated that express constitutive MLS resistance. 59 

The ermA gene also confers inducible resistance to MLS and has been 

shown to be encoded on the transposon Tn554. Tn554 also carries the 

streptomycin resistance spc gene encoding an adenyl transferase, similar to AAD 

of aminoglycoside-resistant strains. The cornplete sequence of Tn554 has been 

determined and the ermA gene demonstrated to encode a product homologous 

to the RNA methylase encoded by ermC. Tn554 has been shown to insert at a 

specific site in the S. aureus chromosome but has also been found at a number 

of chromosomal sites, including within the mec region and may also be plasmid 

located. The ermA gene is preceded by a leader sequence coding for a 19 

amino-acid peptide homologous with the ermC leader peptide. This suggests 

that ermC is also regulated by translational attenuation; supporting this, 

erythromycin-induced stalling of the ribosome on the ermA leader has been 

observed. Erythromycin may also playa role in stabilizing the ermA mRNA. 
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The ermB gene confers constitutive resistance to MLS and has been 

detected on some ~-Iactamase/heavy metal plasmids where it is encoded on the 

transposon Tn551. Transposition of Tn551 has been demonstrated in vivo and 

the transposon has been partially sequenced at this time. 60 

Distinct from the erm genes, msrA gene confers resistance only to 14-and 

15-member macrolides, such as erythromycin, and to type B streptogramins, 

possibly by an efflux mechanism. msrA is frequently plasmid encoded and is 

widely disseminated in clinical S. epidermidis strains, as well as being found in S. 

aureus strains. msrA has been cloned and sequenced from the S. epidermidis 

plasmid pUL5050 and found to encode a hydrophobic protein with sequence 

similarity to the ATP-binding components of the ABC superfamily ATP-dependent 

transport systems. The region upstream of msrA resmbles the control regions of 

ermAIC genes regulated by translational attenuation. 61 Epidemiologic studies of 

erythromycin resistance have indicated that ermC and msrA are the most 

frequent causes of erythromycin resistance and that ermA and ermB are only 

present in a minority of isolates.62 

TETRACYCLINES 

Tetracycline and related antibiotics are bacteriostatic agents that bind to 

the 30S ribosomal subunit, preventing stable association with the aminoacyl­

tRNA, resulting in the inhibition of protein synthesis. Tetracycline is a very 

commonly used antibiotic, but has not been widely used for treatment of 

staphylococcal infections, however a semi-synthetic tetracycline, minocycline, is 

used in some countries for treatment of multi-resistant staphylococcal strains.63 
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Two different resistance mechanisms to tetracycline have been identified in the 

staphylococci. First, the chromosomally encoded tetA(M) gene confers 

resistance to tetracycline and to semisynthetic analogues, including minocycline, 

by a mechanism known as ribosomal protection. The tetA(M) gene from a 

clinical S. aureus isolate has been cloned and sequenced and found to share a 

high level of sequence sirrlilarity at the nucleotide and amino acid level with class 

M tet determinants from other gram-positive and-negative organisms. Southern 

hybridization analysis has suggested that there is no indication that tetA(M) in S. 

aureus is located on a transposable element. Expression of tetA(M) gene has 

been shown to be induced by the tetracycline. The TetM protein shares 

sequence sirrlilarity with elongation factor G, which translocates the peptidyl­

tRNA during protein synthesis, and other GTP-binding proteins. tRNA 

modification activity has been suggested to be necessary for TetM-mediated 

tetracycline resistance, but to date, the biochemical basis remains unclear. One 

possibility is that TetM stabilizes the ribosome-tRNA interaction in the presence 

of tetracycline.64
,65 

The second tetracycline resistance mechanism identified in staphylococci 

is active efflux that can be encoded by either of to determinant tetA(K) or tetA(L). 

Both confer inducible resistance to tetracycline, but not its semisynthetic 

analogues. tetA(K) is found on small plasmids, and also has been found 

chromosomally due to IS257-mediated integration of a plasmid. tetA(K) has 

been cloned an sequenced from staphylococcal plasmids. tetA(L) is also 

typically found on small plasm ids in Bacillus sp., but it also has been seen in 
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staphylococci. Both tetA(K) and tetA(L) are probably regulated by translational 

attenuation in a similar manner to that of cat, ermA, and ermC expression. The 

products of tetA(K) and tetA(L) are homologous to each other, as well as to a 

range of drug efflux proteins in the major facilitator superfamily, some of which 

are discussed later. TetK and TetL are both thought to be membrane proteins 

with 14 transmembrane-spanning segments. Like other members of the major 

facilitator superfamily, TetK and TetL mediate drug efflux driven by the proton 

motive force (pmf) of the transmembrane electrochemical proton gradient, rather 

than by ATP hydrolysis. Transport assays have indicated that tetK confers 

tetracycline resistance - assays of tetracycline uptake in everted membrane 

vesicles have indicated that TetK is functionally similar to the well-characterized 

TetB tetracycline efflux pump encoded in enterobacteria. In a similar manner to 

TetB, TetK-mediated tetracycline efflux was demonstrated to be dependent on 

the presence of divalent cations, such as Co2
+, which are co-transported with 

tetracycline - transport of such a metal ion/tetracycline complex is coupled with 

proton transport.66 

TRIMETHOPRIM AND SULFONAMIDES 

Trimethoprim and the sulfonamides are synthetic agents that affect the 

biosynthesis of hydrofolic acid, an essential derivative used in amino acid and 

nucleotide synthesis. Sulfonamides are analogues of p-aminobenzoic acid that 

competitively inhibit the enzyme dihydropteroate synthase (DHPS), which 

catalyzes the condensation of dihydropteridine with p-aminobenzoic acid, an 

early step in tetrahydrofolic acid synthesis. Trimethoprim is an analogue of 



dihydrofolic acid that competitively inhibits the enzyme dihydrofolate reductase 

(DHFR). DHFR catalyzes the reduction of dihydrofolic acid to tetrahydrofolic 

acid, the final step of tetrahydrofolic acid synthesis. Cotrimoxazole, a 

combination of trimethoprim with a sulfonamide, has been used extensively to 

combat staphylococcal infections.67 

35 

Both high- (MIC greater than 1,000 j.tg/ml) and low- (MIC less than 100 

j.tg/ml) level trimethoprim resistance has been reported in both S. aureus and 

CoNS. I n some cases, chromosomally encoded low-level trimethoprim 

resistance may be due to overproduction of host DHFR. More commonly, 

however, resistance is encoded by the dfrA gene carried on the transposon-like 

element Tn4003. dfrA codes for a trimethoprim-resistant type S 1 dihydrofolate 

reductase that has been both biochemically purified and characterized. Tn4003 

has also been sequenced and it or similar dtiA encoding elements have been 

found on pSK1 family plasmids, large conjunctive plasmids, and on various other 

plasmids in both S. aureus and CoNS. Transposition of Tn4003 has not been 

experimentally demonstrated; rather, its apparent motility may be due to IS257-

mediated recombination events. The dtiA gene appears to be responsible for 

both high- and low-level resistance to trimethoprim in both S. aureus and CoNS. 

The differences in resistance correlate with differences in transcription caused by 

deletions adjacent to a copy of IS257 in Tn4003 affecting the promoter used by 

dtiA.68 

The chromosomal trimethoprim-sensitive DHFR gene from S. aureus has 

been cloned and sequenced and found to be distinct from dtiA (80 percent 
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identical at the amino acid level) and not located within an operon, suggesting 

that drfA did not originate from the S. aureus chromosomal DHFR gene. In 

contrast, the S. epidermidis trimethoprim-sensitive chromosomal DHFR gene 

differs from drfA by only 4 bp and is found in an operon-like structure, strongly 

suggesting that drfA originate from the S. epidermidis chromosomal gene. Site­

directed mutagenesis of drfA and kinetic analyses of purified DHFR's has 

indicated that a single alteration is largely responsible for the trimethoprim 

resistance. 69 

FLUOROQUINOLONES 

Fluoroquniolones such as norfloxacin, ciprofloxacin, and pefloxacin are 

synthetic broad-spectrum antimicrobial agents that interfere with the function of 

DNA gyrase, an essential enzyme involved in DNA replication and repair. 

Fluoroquinolone resistance has arisen rapidly in the staphylococci following the 

use of these agents in recent years to treat both gram-positive and gram­

negative bacterial infections. Three distinct loci have been identified in S. aureus 

that are involved in conferring resistance to fluoroquinolones. 7o 

First, target alterations in DNA gyrase can decrease the fluoroquinolone 

sensitivity of this enzyme. DNA gyrase is a tetrameric enzyme with two subunits 

(A and B) encoded by the gyrA and gyrB genes, which are homologous to their 

counterparts from other bacteria such as E. coli and B. subtilis. Sequencing of 

rnutant alleles of gyrA from a very large number of independent fluoroquinolone­

resistant isolates has indicated that mutations conferring fluoroquinolone 

resistance are located within a single region near codon 84. Additionally, gyrB 
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mutants have been identified that confer lower levels of resistance than gyrA 

mutants. These mutants were found to have substitutions at codon Asp-437 or 

Asp-458. Transformation of these gyrA or gyrB fluoroquinolone-resistant 

mutants with wild type gyrA or gyrB plasmids reconferred fluoroquinolone 

susceptibility in these strains, confirming that mutations in gyrA and gyrB are in 

fact responsible for the fluoroquinolone resistance. In addition, purified DNA 

gyrase from fluoroquinolone-resistant gyrA mutants has been shown in vitro to be 

resistant to approximately 20-fold higher concentrations of the agent than purified 

wild-type enzyme from fluoroquinolone-sensitive strains. 71 

Secondly, low-level fluoroquinolone resistance appears to be associated 

with mutations in the chromosomal grlA gene of S. aureus. The S. aureus grlA 

and grlB genes encode for homologues of GyrA and GyrB, which have been 

demonstrated to catalyze ATP-dependent DNA relaxation. Analysis of 

fluoroquinolone-resistant S. aureus mutants has indicated that mutants resistant 

to low levels of fluoroquinolone contained substitutions at Ser-80 of GrIA. Work 

with stepwise-selected mutants has indicated that mutations in grlA are required 

for expression of resistance due to gyrA mutations. Thus, low-level resistance is 

conferred by grlA mutations, but high-level resistance is a result of mutations in 

both grlA and gyrA. Thirdly, a chromosomally encoded active fluoroquinolone 

efflux system encoded by the norA gene has been described in S. aureus. The 

norA gene has been cloned and sequenced and found to encode a membrane 

protein. Sequence analyses have indicated that NorA is a member of the major 

facilitator superfamily of transporter proteins and is closely related to other drug 
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efflux proteins, some of which were mentioned earlier. Drug transport studies in 

whole cells and everted nlembrane vesicles have indicated that NorA mediates 

the active efflux of fluoroquinolone driven by the pmf. norA has also been shown 

to confer resistance to a range of compounds structurally unrelated to the 

fluoroquinolones and the norA gene has also been found in fluoroquinolone­

sensitive staphylococcal strains. An initial report suggested that fluoroquinolone 

resistance was due to a single base pair change in norA, resulting in a single 

amino acid change in its product. However, sequencing of the complete norA 

gene from both sensitive and resistant S. aureus strains failed to detect any 

differences within the gene?2 

MUPIROCIN 

The antibiotic mupirocin (pseudomonic acid A) is an isoleucine analogue 

that competitively inhibits isoleucyl-tRNA synthetase (IRS), preventing protein 

synthesis. Mupirocin has been used as a topical agent in the treatment of gram­

positive bacterial infections since its introduction in 1985. Interestingly, mupA 

has been detected in staphylococcal strains dating from 1965, well before the 

introduction of mupirocin as a topical agent. High- (MIC greater than 1,000 

J.lg/ml) and low- (MIC 8 to 256 J.lg/ml) resistance to mupirocin has been detected 

in both S. aureus and CoNS. Low-level resistance is probably due, in most 

cases, to mutation in the host IRS.73 Strains resistant to high levels of mupirocin 

have been shown to contain two biochemically distinct IRS enzymes: the na'lve 

mupirocin-sensitive IRS enzyme and an additional IRS enzyme that is less 

sensitive to inhibition by mupirocin. The mupA gene that codes for a mupirocin-
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resistant shares significant sequence similarity with a number of different 

bacterial IRS enzymes and contains characteristic IRS-specific motifs involved in 

ATP hydrolysis and amino acid activation. The mupA gene is, however, distinct 

from the chromosomal I RS gene, as they share only 30 percent similarity at the 

amino acid level. Thus, high-level mupirocin resistance in S. aureus appears to 

be due to the acquisition of an IRS gene from another organism, possibly in an 

analogous manner to the acquisition of trimethoprim resistance, as discussed 

previously. The mupA gene has demonstrated to be plasmid encoded in a rage 

of epidemiologically independent S. aureus and CoNS strains. Analysis of the 

mupA plasmids of pG0400 and pl3358 has indicated that the gene is flanked by 

directly repeated copies of the insertion sequence IS257. Analysis of other 

staphylococcal plasmids has suggested that IS257 has played a role in horizontal 

transmission of the resistance gene, as was suggested for previous examples.74 

VANCOMYCIN AND TEICOPLANIN 

Glycopeptide antibiotics, such as vancomycin and teicoplanin, form 

complexes with the peptidyl-o-Ala-o-Ala terminus of the peptidoglycan precursors 

at the outer surface of the cytoplasmic membrane, leading to the inhibition of 

transglycosylation and transpeptidation steps of cell wall synthesis. Since the 

development of multiresistance staphylococcal strains, vancomycin has 

frequently been the only drug available to the clinician for the treatment of 

serious infections caused by MRSA. Staphylococcal strains with reduced 

susceptibility to both vancomycin and teicoplanin have been isolated. In clinical 

strains of CoNS, resistance to both has also been noted, although more 
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commonly, strains are resistant to teicoplanin (MIC less than 128 }lg/ml) but 

sensitive to vancomycin (MIC less than 4 }lg/ml). In particular, S. haemo/yticus 

displays a propensity for developing resistance to glycopeptides in a single step 

upon exposure. Clinical isolates of S. aureus have been detected which have 

low-level resistance to both vancomycin and teicoplanin, while mutants of 

S.aureus have been selected in vitro with decreased susceptibility to both as 

well?5 A number of studies of glycopeptide-resistant staphylococcal strains 

have indicated that resistance is typically constitutively expressed, 

chromosomally encoded, and is stable in the absence of selective pressure. 

Clinical isolates of teicoplanin resistant staphylococci have been found to 

express a 39-kDa protein associated with the membrane to cell wall of the 

organisms. Kaatz et al detected a teicoplanin-resistant isolate from a single 

patient following unsuccessful therapy. Tn551 insertion mutants obtained of this 

strain regained teicoplanin susceptibility. These insertions were mapped to a 

single Sma1 chromosomal fragment. Analysis of the resistant strain indicated 

that expressed a 35-kDa membrane protein and had increased expression of 

both PBP2 peptides relative to the Tn551 insertion mutants. Moreover, its cell 

wall physiology was altered in some aspects.?6 In a similar study, analysis of 

clinical S. aureus isolates with decreased susceptibility to vancomycin from 12 

patients indicated that the majority expressed a 35-kDa membrane protein with 

increased expression of both PBP2 peptides as well.?? 

Vancomycin- and teicoplanin-resistant S. aureus mutants have been 

obtained in vitro by serial incubation in the presence of a low concentration of 
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either compound. Daum et al isolated mutants exhibiting low-level vancomycin 

resistance that showed alterations in cell wall organization and constitutively 

produced a 35-kDa protein. The ddh gene encoding this protein has been cloned 

and sequenced and codes for a cytoplasmic protein with sequence similarity to 0-

lactate dehydrogenase (o-LDH) and to the enterococcal VanH protein (discussed 

later). ddh was shown to be expressed in wild-type staphylococci, and 

expression was found to be increased in a glycopeptide-resistant mutant, which 

was associated with increased o-LDH activity. This possibly suggests that 

overexpression of o-LDH in S. aureus may contribute to low-level glycopeptide 

resistance. As mentioned earlier, decreased susceptibility to glycopeptides in 

the staphylococci also appears to be associated with expression of a 35- or 39-

kDa membrane protein, often accompanied by increased expression of PBP2 

peptides and apparent alterations in the cell wall physiology of the organism. 

Despite the similarity in size, these 35- or 39-kDa proteins probably do not 

correspond to Ddh, as Ddh is a cytoplasmic protein. Therefore, the 

mechanism(s) of glycopeptide resistance in these strain(s) still remain to be 

clarified.78 

In the better-studied enterococci, transferable high-level resistance to 

vancomycin (MIC greater than 512 J.lg/ml) with concomitant resistance is 

commonly seen and is referred to as VanA type resistance. This phenotype has 

been shown to be encoded by the vanA gene cluster on the 10.8 kb transposon 

Tn 1546, which is often carried by conjunctive plasrnids with a broad host range in 

gram-positive bacteria. Tn 1546 includes three genes essential for glycopeptide 
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resistance: vanA, which encodes an alternative o-Ala-o-Ala ligase that produces 

altered peptidoglycan side chains, containing an terminal dipeptide (e.g. o-Ala-o­

lactate) with greatly reduced affinity for glycopeptide antibiotics; vanH, which 

encoded a dehydrogenase that reduces pyruvate to o-Iactate, a substrate for the 

vanA product; and vanX, which encodes a 0, o-dipeptidase that hydrolyzes o-Ala­

o-Ala produced by the host ligase. Tn 1546 also includes two accessory 

glycopeptide-resistance genes: van Y, encoding a 0, o-carboxypeptidase that 

cleaves the C-terminal o-Ala of peptidoglycan precursors, and vanZ, which 

encodes a teicoplanin-resistance determinant; two genes, vanR and vanS, 

encoding a two-component system that regulates expression of glycopeptide 

resistance; and two transposition genes. Two other types of glycopeptide 

resistance, VanS and VanC, have also been identified in the enterococci. Like 

VanA resistance, these rely on the production of o-Ala-o-Ala ligases. The vanB 

gene cluster, which encodes a vancomycin-resistant, teicoplanin-sensitive 

phenotype, is encoded on the 64-kb composite transposon Tn 1547. 

Significantly, Tn 1547 is bounded on one side by the staphylococcal insertion 

sequence IS256 and on the other by IS 16, which is highly similar to IS256?9 

Unlike the enterococci, reduced susceptibility to vancomycin and 

teicoplanin in the staphylococcal appears not to be due to ligases with altered 

substrate specificity, since resistant staphylococci produce peptidoglycan 

precursors terminating in o-Ala-o-Ala. High-level vancomycin resistance as seen 

in the enterococci has not been observed in clinical staphylococcal strains. 

However, the conjunctive co-transfer both in vitro and in vivo of vancomycin 
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resistance, along with other resistances, from E. faecalis to S. aureus has been 

demonstrated. The S. aureus transconjugants were subsequently resistant to 

high levels of vancomycin, although they were unable to transfer resistance to 

other S. aureus strains and resistance was lost in the absence of selective 

pressure.80 Thus, it seems likely that the emergence of staphylococcal strains 

resistant to high levels of vancomycin is only a matter of time. This scenario 

would have great ramifications for the treatment of serious S. aureus infections. 

However, it is hoped that with the growing knowledge of the mechanistic basis of 

resistance and its evolution at the molecular and genetic level, new strategies 

can be devised to reduce the impact of this devastating public health problem. 
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Figure 1: Kinetic parameters of the four variants of ~-Iactamase of Staphylococcus aureus 

Type A Type B TypeC Type D 
~-Iactam Kcat Km REH Kcat Km REH Kcat Km REH Kcat Km REH 

Cephaloridine 1.95 10.9 100 6.65 19.4 191 5.61 11.5 273 1.25 7.9 88 
Cefazolin 1.01 18.4 31 4.68 254 10 3.94 267 9 1.91 49.9 21 
Nitrocefin 23.2 6.4 2,034 16.5 15.7 587 13.7 20.4 293 25.6 5.9 2,424 

Benzylpenicillin 171 51.1 1,869 156 38.6 2,258 210 55.9 2,098 46 112.6 228 
Ampicillin 308 255 675 412 160 1,438 355 122 1,685 133 129 571 

Abbreviations: Kcat molecules of substrate hydrolyzed per second; Km, in Jlm; REH, relative efficiency of hydrolysis (Kcat/Km) relative to cephaloridine set at 100 
(Data from Rowland et al) 
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