Instituting an Educational Module to Improve Knowledge of Local Anesthetic Systemic Toxicity Among Anesthesia Providers

Alisha Marie Linehan
University of Tennessee, Knoxville, Amitch38@vols.utk.edu

Chad Andrew McClure
University of Tennessee, Knoxville, Cmcclur4@vols.utk.edu

Steven Taylor Moon
University of Tennessee, Knoxville, smoon15@vols.utk.edu

Shukhratilla Ibragimov Shamshitdinov
University of Tennessee, Knoxville, Sshamshi@vols.utk.edu

Julie Newton Bonom
University of Tennessee, Knoxville, jbonom@utk.edu

Recommended Citation

Linehan, Alisha Marie; McClure, Chad Andrew; Moon, Steven Taylor; Shamshitdinov, Shukhratilla Ibragimov; Bonom, Julie Newton; and Buehler, Jason Michael, "Instituting an Educational Module to Improve Knowledge of Local Anesthetic Systemic Toxicity Among Anesthesia Providers" (2023). *Graduate Publications and Other Selected Works - Doctor of Nursing Practice (DNP)*. https://trace.tennessee.edu/dnp/61

This Presentation is brought to you for free and open access by the Nursing at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Graduate Publications and Other Selected Works - Doctor of Nursing Practice (DNP) by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
Authors
Alisha Marie Linehan, Chad Andrew McClure, Steven Taylor Moon, Shukratilla Ibragimov Shamshidinov, Julie Newton Bonom, and Jason Michael Buehler

This presentation is available at TRACE: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/dnp/61
Instituting an Educational Module to Improve Knowledge of Local Anesthetic Systemic Toxicity Among Anesthesia Providers

Alisha Linehan, Chad McClure, Steven Moon, & Shukhratilla Shamshidinov
Background

- Approximately 70 million surgeries annually in the U.S. (Wadlund, 2017)

- Perioperative administration of local anesthetic medications is increasing as multimodal pain management strategies become more popular (Wadlund, 2017)

- Unintentionally high doses or inadvertent intravascular injection of these medications can cause life-threatening complications, such as local anesthetic systemic toxicity (LAST) (Macfarlane et al., 2021)
Problem

- Site data suggests patients may be exhibiting signs of excessive local anesthetic administration during the postoperative period
 - Symptoms like confusion, agitation, cardiac depression and arrhythmias can mimic other conditions like stroke (Nagelhout, 2016)
- Perioperative caregivers unfamiliar with LAST
- No formal LAST education
- Multiple providers administering local anesthetics during multiple phases of the perioperative course with no interdisciplinary communication
- Documented LAST cases are infrequent and randomized clinical trials are unethical (Leskiw & Weinberg, 2009)
Clinical Significance

• Patients who experience a LAST event require rapid interventions, such as administration of lipid emulsion, to prevent devastating side effects (New York School of Regional Anesthesia, 2021)
 – These patients are often misdiagnosed, leading to a greater chance of significant morbidity and mortality (Mahajan & Derian, 2021)
 – Time is potentially wasted performing imaging exams and lab work

• Complications from surgery extend length of stay and possibly require admission to intensive care units (Rapaport et al., 2003)
 – Shorter length of stay has been associated with decreased hospital costs and increased patient satisfaction (Walters et al., 2016)
 – Surgical complications within 30 days reduces the survival rate by 69% (Fawcett et al., 2012)
Project Purpose, and PICO Question

• **Purpose:**
 - To improve CRNA and anesthesia resident knowledge of LAST, including how to prevent, recognize and treat the syndrome. This should decrease the incidence of LAST at the project site by ensuring patients only receive appropriate dosages of local anesthetics and that any patient who does present with LAST is quickly recognized and appropriately treated.
 - This purpose will be measured with an improvement in provider knowledge of LAST as demonstrated by our pre- and post-surveys

• **PICO:**
 - In patient care providers (P), how does the the implementation of local anesthetic systemic toxicity (LAST) education (I), compared to no LAST education (C) affect providers’ prevention, recognition, and treatment of patients experiencing LAST (O)?
Literature Review

❖ Search Strategies for Review of the Literature:
 ➢ PubMed
 ➢ CINHAL
 ➢ The Cochrane Library
 ➢ The Web of Science and Scopus.
Evidence Synthesis

❖ Critical Appraisal of the Literature:
 ➢ Johns Hopkins Nursing Evidence Practice Model (JHNEPBM) Research Evidence Assessment Tool.

❖ Evidence Level and Quality Grades:
 ➢ Level of evidence II, III and V
 ➢ Quality of evidence B and A
Evidence Synthesis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of LAST Prevention before intervention</td>
<td>↓</td>
<td>↓</td>
<td>Ø</td>
<td>↓ s</td>
<td>↓ s</td>
</tr>
<tr>
<td>Recognition of LAST before intervention</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓ s</td>
<td>↓ s</td>
</tr>
<tr>
<td>Knowledge of Treatments of LAST before intervention</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓ s</td>
<td>↓ s</td>
</tr>
<tr>
<td>Knowledge increase with education of LAST prevention, recognition, and treatments</td>
<td>↑ c</td>
<td>↑ s</td>
<td>↑ c</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>Sample Size</td>
<td>12</td>
<td>70</td>
<td>1582</td>
<td>600</td>
<td>200</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>III</td>
<td>II</td>
<td>V</td>
<td>III</td>
<td>III</td>
</tr>
<tr>
<td>Quality of Evidence</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

Legend: ↓=decrease; ↑=increase; Ø=not discussed in study; LAST= Local Anesthetics Systemic Toxicity, NA= Not Applicable, s=statistical significance; c=clinical significance
Clinical Practice Guidelines/Clinical Expertise/Patient and Family Preferences and Values

❖ Clinical Practice Guideline:
 ➢ The American Society of Regional Anesthesia and Pain Medicine (ASRA)
 ➢ Evidence Level IV and Quality grade A.

❖ Clinical expertise:
 ➢ Anesthesia providers/attending anesthesiologist(s)

❖ Patient and Family Preferences and Values:
 ➢ Safe healthcare that does not harm patients
 ➢ Patient-centered healthcare that is focused on patient preferences and values
 ➢ Efficient health care that is free of waste
Recommendations for Practice Based on the Evidence

- Literature search, internal data, clinical expertise, and patient preferences together constitute strong evidence:
 - That healthcare providers generally lack knowledge about LAST prevention, recognition, and treatment.
 - That interventions aimed at healthcare providers can improve this knowledge.

- The evidence supports development and implementation of a LAST education module aimed at improving healthcare providers’ knowledge of LAST prevention, recognition, and treatment.
Theoretical Model

Steven’s Star Model

• Discovery
• Evidence
• Translation to Guidelines
• Practice Integration
• Process and Outcome Evaluation

Model Fit

• Concise and clear
• Stakeholder incorporation
• Combines literature and clinical expertise
• Focus on outcome evaluation

(Stevens, 2013)
Project Design

- PDSA cycle

(Levin et al., 2010)
Implementation: Where and Who

• Setting: Level I Trauma Center in Tennessee
 — 37 operating rooms, cath lab, endovascular suite, GI lab, MRI, IR

• Population: CRNAs at Project Site
 — 84 CRNAs and 33 SRNAs

• Stakeholders
 — Surgery patients
 — Anesthesia Department
 — Administration
 — DNP Project Committee

• Team
 — 4 SRNAs
 — Project Chair
 — Community member
Implementation: SWOT Analysis

Internal Factors

Strengths (+)
- Comprehensive stroke center
- Level I trauma center
- Magnet facility
- 1,550 patients per month receiving surgical services
- Support from anesthesia, pharmacy, neurological critical care, and stroke team
- Robust system in place for implementing projects and anesthesia research specialists to assist in development and implementation

Weaknesses (-)
- Potential for change fatigue: project site is very progressive with frequent new initiatives and change projects
- Project site is a teaching facility with numerous residents, students, and interns from many different organizations makes widespread education and protocol implementation challenging.
- Staff education on a large scale would potentially involve overtime and additional pay for employees who are already working full-time hours, increasing cost to the hospital and stress on the staff.

External Factors

Opportunities (+)
- Large body of evidence on preliminary search for LAST related information
- The American Society of Regional Anesthesia and Pain Medicine (ASRA) has a protocol available for download and modification on their website which is kept up-to-date with current evidence
- The project could potentially assist with the accreditation process of other services, such as stroke center accreditation, possibly increasing the size of the team conduction the project as well as potential funding.

Threats (-)
- LAST events may be considered an adverse event affecting reimbursement
- COVID 19 pandemic affecting multiple aspects including staffing at the project site, availability of onsite interaction during project development and implementation, etc.

(Jessee, 2021; Rubin et al., 2017)
Implementation: Barriers and Facilitators

Barriers
- Resources: Consistently heavy workload of anesthesia providers
- Finances: Cost of training
- Competing interest of Stroke Team
- Time: limited time frame to complete project

Facilitators
- Project site culture
- Comprehensive stroke center certification
- Project site attitudes
Implementation: The Details

• Scope: PowerPoint education module
 • Pharmacological principles of LAs, safe dosing, interpersonal communication, LAST treatment
• Evaluation: Pre- and post-survey
• Budget : zero dollars
Methods of Evaluation

• Data collection
 – Chart review
 – Pre- and post-surveys

• Data evaluation
 – Worked with the university statistician to assess data from chart review and surveys
 – Improvement between pre- and post-survey indicated effectiveness
Findings
Findings - Outcome Measures

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Code</th>
<th>Variable Description</th>
<th>Data Source</th>
<th>Possible Range of Values</th>
<th>Level of Measurement</th>
<th>Time Frame for Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provider Role</td>
<td>PR</td>
<td>Self-reported healthcare provider role/licensure level.</td>
<td>Survey</td>
<td>1= RN</td>
<td>Ordinal</td>
<td>Before and after education module.</td>
</tr>
<tr>
<td>I am knowledgeable about the symptoms of LAST.</td>
<td>KSL</td>
<td>Question included in the pre and post survey that evaluates participants’ self-perceived knowledge of the symptoms of LAST.</td>
<td>Survey</td>
<td>1= Strongly disagree</td>
<td>Ordinal</td>
<td>Before and after education module.</td>
</tr>
<tr>
<td>I am comfortable screening patients for possible LAST.</td>
<td>CSL</td>
<td>Question included in the pre and post survey that evaluates participants’ self-perceived comfort in screening for and identifying LAST.</td>
<td>Survey</td>
<td>1= Strongly disagree</td>
<td>Ordinal</td>
<td>Before and after education module.</td>
</tr>
<tr>
<td>I am knowledgeable about the treatment of LAST.</td>
<td>KTL</td>
<td>Question included in the pre and post survey that evaluates participants’ self-perceived knowledge of the treatment of LAST.</td>
<td>Survey</td>
<td>1= Strongly disagree</td>
<td>Ordinal</td>
<td>Before and after education module.</td>
</tr>
<tr>
<td>I am knowledgeable about the risk factors for LAST.</td>
<td>KRFL</td>
<td>Question included in the pre and post survey that evaluates participants’ self-perceived knowledge of the risk factors for LAST.</td>
<td>Survey</td>
<td>1= Strongly disagree</td>
<td>Ordinal</td>
<td>Before and after education module.</td>
</tr>
<tr>
<td>This educational module increased my knowledge of LAST and how to treat it.*</td>
<td>EMI</td>
<td>Question included in the post survey that evaluates participants’ self-perceived knowledge improvement after completion of the educational module.</td>
<td>Survey</td>
<td>1= Strongly disagree</td>
<td>Ordinal</td>
<td>After education module.</td>
</tr>
<tr>
<td>I would like further information about LAST and how to treat it.*</td>
<td>FI</td>
<td>Question included in the post survey that evaluates participants’ desire for further education about the topic.</td>
<td>Survey</td>
<td>1= Strongly disagree</td>
<td>Ordinal</td>
<td>After education module.</td>
</tr>
</tbody>
</table>
Findings Cont… (Education Module)

<table>
<thead>
<tr>
<th>Pre-Post Question Pairs</th>
<th>One-Sided T-Test(p) ($n=22$)</th>
<th>Two-Sided T-Test(p) ($n=22$)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre/Post: I am knowledgeable about the signs and symptoms of LAST</td>
<td>$.001$</td>
<td>$.002$</td>
<td>Statistically Significant</td>
</tr>
<tr>
<td>Pre/Post: I am comfortable screening a patient for possible LAST</td>
<td>$.001$</td>
<td>$<.001$</td>
<td>Statistically Significant</td>
</tr>
<tr>
<td>Pre/Post: I am knowledgeable about the treatment of LAST</td>
<td>$.010$</td>
<td>$.020$</td>
<td>Statistically Significant</td>
</tr>
<tr>
<td>Pre/Post: I am knowledgeable about the risk factors for LAST</td>
<td>$.001$</td>
<td>$<.001$</td>
<td>Statistically Significant</td>
</tr>
</tbody>
</table>
Findings Cont… (Education Module)

<table>
<thead>
<tr>
<th>Descriptive Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>This education module increased my knowledge of LAST and how to treat it</td>
</tr>
<tr>
<td>I would like further education topics presented about LAST and how to treat it</td>
</tr>
</tbody>
</table>
Findings Cont… (Education Module)

<table>
<thead>
<tr>
<th>Group</th>
<th>N=</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRNA</td>
<td>16</td>
<td>66.7</td>
<td>72.7</td>
<td>72.7</td>
</tr>
<tr>
<td>Resident</td>
<td>6</td>
<td>25</td>
<td>27.3</td>
<td>100</td>
</tr>
<tr>
<td>Provider Total</td>
<td>22</td>
<td>91.7</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Missing Results</td>
<td>6</td>
<td>8.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cumulative Total</td>
<td>24</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Findings Cont… (Chart Review)

<table>
<thead>
<tr>
<th></th>
<th>Inpatient</th>
<th>ED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Code Stroke Calls</td>
<td>101</td>
<td>860</td>
</tr>
<tr>
<td>Charts NOT meeting selection criteria</td>
<td>90</td>
<td>750</td>
</tr>
<tr>
<td>Charts pulled for initial review based on initial selection criteria</td>
<td>13</td>
<td>110</td>
</tr>
<tr>
<td>Charts found with excessive local anesthetic administration</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Findings Cont... (Chart Review)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Max Allowance</th>
<th>Local Dosage</th>
<th>Max% Dosage</th>
<th>Overage</th>
</tr>
</thead>
</table>
| 1 | **Lidocaine**=300mg
Bupivacaine=175mg
Ropivacaine=225mg | **Lidocaine**=60mg
Bupivacaine=10mg
Ropivacaine=150mg | **Lidocaine**=20%
Bupivacaine=7.35%
Ropivacaine=73.5%
Total: 100.85% | +0.85% |
| 2 | **Lidocaine**=300mg
Exparel=266mg
Ropivacaine=216mg | **Lidocaine**=60mg
Exparel=266mg
Ropivacaine=100mg | **Lidocaine**=20%
Exparel=100%
Ropivacaine=46.3%
Total: 166.3% | +66.3% |
| 3 | **Lidocaine**=220mg (49kg)
Ropivacaine=147mg (49kg) | **Lidocaine**=60mg
Ropivacaine=150mg | **Lidocaine**=27.2%
Ropivacaine=102%
Total: 129.2% | +29.2% |
Implications
Implication for Practice/Policy Change

Strengths of the project
• Access to internal data and detailed review of the Code Stroke Alert charts demonstrated evidence that patients at the project site are occasionally receiving unsafe doses of local anesthetics, and this could be leading to undiagnosed incidence of LAST that are being misidentified as Code Strokes.

Limitations of the project
• Time limitations for completion of this project restricted a second chart review.
• Small sample size (n=16) compared to size of department

Impact of our educational module signified that:
• There is a knowledge gap about LAST among the providers on a local level.
• Providers are open to and need more education on LAST.
• Educational module does measurably improve provider knowledge of LAST.

Project Implication
• All providers at the project site who are involved with patients who receive local anesthetics should receive baseline education on LAST prevention, recognition, and treatment, to improve outcomes and deliver a higher quality care to patients and families at the project site.
Dissemination Plan

- DNP Project Defense Presentation to Stakeholders
- Upload Digital Education Module and defense video to YouTube
- Submit an abstract of this paper to the Tennessee Research and Creative Exchange (TRACE)
Ethical Considerations and Sustainability

• Ethical considerations
 – IRB review: Exemption
 – Chart Review: De-identification
 – Surveys for education tool: de-identification

• Sustainability
 – Educational module is easily disseminated to other providers at the project site as needed
 – Updates can be made as new information becomes available
 – Future DNP projects plan to continue our work
 • Future chart reviews can be compared to our chart review to determine if rates of LAST at the project site are decreasing

(Carter et al., 2017)
References

Rapoport, J., Teres, D., Zhao, Y., & Lemeshow, S. (2003). Length of stay data as a guide to hospital economic performance for ICU patients. Medical Care, 41(3), 386-397. https://doi.org/10.1097/01.mlr.0000053021.93198.96

Stevens, K. R., (2013). The impact of evidence-based practice in nursing and the next big ideas. The Online Journal of Issues in Nursing, 18(2). https://doi.org/10.3912/OJIN.Vol18No02Man04

The University of Tennessee Graduate School of Medicine. (2019). The department of anesthesiology. https://gsm.utmck.edu/anesthesiology/main.cfm

