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A Method. SAS Program. and Example

for Fitting the Broken-Line to Growth Data

The broken-line model. fitted by the method of least squares. yields an

objective estimate of the level of a dietary nutrient that is fully adequate.

also called the nutrient "requirement." Althougl1 for many data a sigmoidal

function can more accurately describe the nutrient response, any response

that approaches an asymptote can be satisfactorily fitted by a broken line

for a narrow ranye of doses and a 1arge enougtl error vari ance (Robbi ns et

~~., 11)79). Given the simplicity of the broken-line model. its use for such

data is sometimes preferable since it is often easier to interpret.

A broken line model consists of two parts: a straight line with an

increasiny or decreasing slope and a horizontal line. Their point of inter-

section is the breakpoint. This one-slope broken-line model is often ade-

quate for fitting growth data, especially if the levels tested cover a rather

narrow range. For other types of biological data. a broken-line equation

describing two intersectiny straignt lines. both with non-zero slopes (i.e ••

a two-slope model) may be needed.

The Ijeneral model of the one-slope broken line is: Y = L + U(R-XLR)' For

the two-slope broken line. the model is: Y = L + U(R-XLR) + V[XGR-R]. In

these equations. L is the ordinate and R the abscissa of the breakpoint in

the curve. U is the slope of the line for X<R. and in the two-slope

el1uation, V is the slope of the line at X>R. Thus by definition (R-XLR) is

zero when X>R. and [XGR-R] is zero when X<R.
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Both of these models may be fitted using ordinary least squares via the

followiny matrices:

1. One-slope model

XIX XIV

[ E(R:XlRl
E(R-XLR) ]

L(R::lRlY]I:(R-XLR)2

where (XIX)-lX'V = B = [~]

2. Two-slope model

I:(R-XLR)

I:(R-XLR)2

o

The model sum of squares is equal to B'X'V. Using an iterative process

we can arrive at the maximum likelihood estimate of R, i.e., the value of R

that maximizes the model sum of squares.

The approximate sampling variances of L, U, V, and R may be estimated

from the matrix of sums of squares and products of first derivatives. These
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matrices are:
1. One-slope model

DID
n E(R-XLR) nLRU

E(R-XLR) E(R-XLR)2 UE(R-XLR)
nLRU UE(R-XLR) nLRU2

2. Two-slope model

DID
n r(R-XLR) E[XGR-R] nLRU - nGRV

E(R-XLR) r(I<-XLR)2 0 UE(R-XLR)

1:[XGR-R] 0 E[XGR-R]2 -VE[XGR-R]

nLl~U - VnGR Ul:(R-XLR) -Vl:[XGR-R] nLRU2 + nGRV2

In these matrices nLR is the number of doses with values less than R~ and
nGR is the number of doses with values greater than R. The variance
covariance matrix is obtained by multiplying the inverse of the DID matrix by
an appropriate error term, e.g., the residual mean square.

An alternative and more efficient method of fitting the broken line is to
iteratively adjust a set of initial model parameter estimates until the vec-
tor of adjustments approaches zero. For the one-slope model~ given observed
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