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wakefulness could distinguish between the 3 behavioral states. All known metabolites consistently detected in 
our samples (33 in M1, 36 in mPFC) were used for this analysis. PLSDA is a commonly used statistical approach 
in metabolomics because it is properly suited for an uneven design matrix, in which the number of depend-
ent variables (detected metabolites) is larger than the number of independent variables (number of samples). 

Figure 4. Time course of z-scored changes for the 11 metabolites with significant and consistent differences 
between behavioral states in M1 (mean ± sem). In each plot the vertical line indicates a behavioral state 
transition at hour 6. Similar to mPFC, metabolite levels tended to decrease during sleep, and either increased 
or remained constant during the two wakefulness conditions. Abbreviations: M1, primary motor cortex; SW, 
spontaneous wake; EW, enforced wake; S, spontaneous sleep.
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Indeed, the metabolite profile from all 3 experimental groups (S6, EW6, SW6) was sufficient to classify the state 
of arousal using data from both mPFC and M1. The PLSDA model perfectly classified the mice into their respec-
tive experimental conditions. As shown in Fig. 7a plotting the PLSDA score values of PLS Component 1 and 
PLS Component 2 demonstrated visible clustering and clear separation between the 3 experimental groups. 
Additionally, PLSDA identified the metabolites that drive the separation among conditions by ascribing a variable 
importance of projection score (VIP). As the weighted sum of the squared correlations between PLSDA compo-
nents and the original variables, these values represent the percentage of variation explained by the component in 
the model. Generally, a VIP greater than 1.0 is considered most significant (i.e., metabolites with VIP >1 strongly 
contribute to the observed differences among groups). The 15 metabolites with the highest VIP scores are listed 
in Fig. 7a’ (mPFC) and 7a” (M1).

With so many explanatory variables and a relatively small number of mice, overfitting the PLSDA model was 
a concern. To better understand how the results will generalize, a K-fold stratified cross-validation procedure was 
used to estimate the accuracy of the classifier and statistical significance was assessed using non-parametric per-
mutations tests. The cross-validation analysis resulted in an estimated accuracy of 76.4%, which was significantly 
greater than chance (p < 0.05). We then explored alternative classification models to see if we could improve on 
the accuracy of PLSDA. The best accuracy was achieved using a logistic regression classifier with an ℓ2 regu-
larization penalty with sparsity parameter C = 0.001 (smaller values of C restrict the model and promote more 
sparsity). For this classifier the cross-validation procedure resulted in an estimated accuracy of 83%, which was 

Figure 5. Correlations between levels of each compound (log transformed; y axis) and 2–6 Hz EEG activity 
during wakefulness (x axis). Data and regression lines are depicted in green for mPFC and red for M1. The inset 
(bottom right) shows the averaged time course (n = 6 mice) of 2–6 Hz activity during the EW6-S3 experiment. 
Note the progressive increase in 2–6 Hz activity in the course of EW. Abbreviations: mPFC, medial prefrontal 
cortex; M1, primary motor cortex; EW, enforced wakefulness; S, sleep.


