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Abstract

This dissertation studies scheduling for service stability and for supply chain coordination

as well. The scheduling problems for service stability are studied from the single perspective

of a firm itself, while the scheduling problems for supply chain coordination are investigated

from the perspective of a supply chain. Both the studies have broad applications in real life.

In the first study, several job scheduling problems are addressed, with the measure of per-

formance being job completion time variance (CTV). CTV minimization is used to represent

service stability, since it means that jobs are completed in a relative concentrated period of

time. CTV minimization also conforms to the Just-in-time philosophy. Two scheduling

problems are studied on multiple identical parallel machines. The one problem does not

restrict the idle times of machines before their job processing, while the other does. For

these two scheduling problems, desirable properties are explored and heuristic algorithms

are proposed. Computational results show the excellent performances of the proposed algo-

rithms. The third scheduling problem in the first study is considered on a single machine

and from the users’ perspective rather than the system’s perspective. The performance mea-

sure is thus class-based completion time variance (CB-CTV). This problem is shown to be

able to be transformed into multiple CTV problems. Therefore, the well-developed desirable
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properties of the CTV problem can be applied to solve the CB-CTV problem. The tradeoff

between the CB-CTV problem and the CTV problem is also investigated.

The second study deals with scheduling coordination in a supply chain, since supply

chain coordination is increasingly critical in recent years. Usually, different standpoints

prevent decision makers in a supply chain from having agreement on a certain scheduling

decision. Therefore conflicts arise. In pursuit of excellent performance of the whole supply

chain, coordination among decision makers is needed. In this study, the scheduling conflicts

are measured and analyzed from different perspectives of decision makers, and cooperation

mechanisms are proposed based on different scenarios of the relative bargaining power among

decision makers. The cooperation savings are examined as well.
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Chapter 1

Introduction

1.1 Introduction to Scheduling

Scheduling, by definition, is a decision-making process that deals with the allocation of

scarce resources (or machines) to tasks (or jobs), with the goal of optimizing one or more

objectives. The resources and tasks have many forms in real life. For example, the resources

may be machines in a workstation, tellers at a bank, runways at an airport, processors in a

computing system, and so on. The corresponding tasks may be operations in a production

process, transactions of customers, take-offs and landings of planes, executions of computer

programs, and so on. Each task may have a certain priority level, a due date, etc. The

objectives may also take many forms. For instance, the objective may be the minimization

of the completion time of the last task, or the maximization of the number of the completed

tasks during a period of time. In this dissertation, we exclusively denote resources and tasks

by machines and jobs, respectively.

1



Scheduling has broad applications in real life. Take airport schedule as an example. At

a major airport, there are dozens of gates and hundreds of airplanes arriving and departing

each day. Generally, the sizes of the gates are different. Neither are the planes’ sizes. The

gates with small space can only accommodate small planes. This makes the assignment

of planes to gates a difficult task. Another difficulty lies in the uncertainty that may be

weather-related or due to the influences of the events in other airports. For example, if it

is known in advance that a plane cannot land at its next destination because of anticipated

congestion at the scheduled arrival time, then in order to conserve fuel the plane will postpone

its take-off. The consequence is that the boarding is delayed and that passengers are kept in

the terminal waiting. Moreover, the plane may remain at the gate for an extended period of

time, therefore preventing other planes from using the gate. In view of these factors (but not

limited to), the airport needs a good schedule to assign planes to the appropriate gates, with

the objective of minimizing the workload of airline personnel and (or) minimizing airplane

delays, and so on.

Because of its numerous applications, scheduling has received extensive attention from

researchers and practitioners for several decades. There is a tremendous body of literature

in this field. Representative are the works of Brucker (2004); Leung (2004); Pinedo (2002).

Many effective scheduling theory and algorithms have been developed. They are widely

employed in lots of manufacturing and production systems, in transportation and distribution

systems, as well as in many information-processing environments.
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Conventionally, a scheduling problem is represented by a triplet α|β|γ introduced by

Graham et al. (1979). The α field determines the machine environment (e.g., single ma-

chine, parallel machines, flow shop, job shop, and so on), the β field specifies the processing

characteristics and constraints (e.g., preemptions, release dates, setup times, and so on), and

the γ field describes the objective function (e.g., makespan, total weighted completion time,

total weighted tardiness, and so on). There are several classification methods of scheduling

problems. We introduce two kinds of methods below. First classification method is based

on the machine environment. So there are two categories: single-machine scheduling prob-

lems and multiple-machine scheduling problems. In the previous literature, single-machine

scheduling problems are well studied. However, due to the relatively complicated nature,

multiple-machine scheduling problems are less investigated. The second classification method

is based on the characteristics of job processing times. Using this method, scheduling prob-

lems can be categorized into three kinds: deterministic, stochastic, and online scheduling.

With regard to deterministic scheduling, job processing times are deterministic and are

known in advance of their processing. Vast literature focuses on deterministic scheduling,

see (Al-Turki et al., 2001; Eilon and Chowdhury, 1977; Manna and Prasad, 1999; Merten and

Muller, 1972; Schrage, 1975). With respect to stochastic scheduling, job processing times

are subject to uncertainty. In other words, job processing times are random variables. The

actual processing times become known only upon the completion of jobs. It is generally as-

sumed, though, that the first moments of these random variables are known beforehand. For

the literature of stochastic scheduling, refer to (Mittenthal and Raghavachari, 1993; Prasad

and Manna, 1997; Vani and Raghavachari, 1987). The most difficult is online scheduling,
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in which the instance is presented to the scheduler only piecewise. Jobs are arriving either

one-by-one (sequence model), or over time (time-stamp model). Job processing times are

usually known upon the arrival of jobs and decisions must be made without any knowledge

of the jobs to come. See (Anderson and Potts, 2002; Hoogeveen and Vestjens, 1996; Megow

and Schulz, 2004) for reference.

As mentioned above, the objectives (also called as performance measures) of scheduling

have various forms. There are generally, though, two kind of performance measures: regular

and non-regular. By definition, regular performance measures are nondecreasing in job

completion times. Other performance measures fall into the non-regular category. Regular

performance measures include mean completion time, mean lateness, mean tardiness, and

so on. In particular, the mean tardiness has been a standard way of measuring conformance

to due dates, even though it ignores the consequence of jobs completing early. Non-regular

performance measures arise from the increasing interest in Just-In-Time (JIT) philosophy,

which espouses the notion that both earliness and tardiness should be penalized (Baker

and Scudder, 1990). Examples of non-regular performance measures include mean squared

deviation (MSD) of completion times, waiting time variance (WTV), and so forth.

1.2 Motivation of the Study

1.2.1 Service Stability

For many firms, the quality of service (QoS) is what they always run after because customers

are expecting better and better service level. A firm with higher level of service has a
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stronger competitive advantage in the market. Qos is widely applied in the field of computer

networking, in which the goal of QoS is to provide guarantees on the ability of a network

to deliver predictable results. Elements of network performance within the scope of QoS

often include availability (uptime), bandwidth (throughput), latency (delay), and error rate.

QoS is especially important for the new generation of Internet applications such as VoIP,

video-on-demand and other consumer services.

Service stability is included in the scope of QoS. Consumers always desire to be serviced

in a stable way. Take a network server as an example. Users who are browsing a web site

expect a stable speed to open a new web page. If the network server can not provide stable

service (i.e., the connection speed is fast sometimes while slow other times), the users will

be dissatisfied with the service and will turn to other network server providers. So service

stability is very crucial in the market competition. The significance of service stability can

be noticed in other service industries as well.

In this dissertation, several scheduling problems are considered for service stability. The

performance measure used is job completion time variance (CTV), the minimization of which

is used to represent service stability. The completion time of a job is defined as the point of

time at which the job is completed, and CTV is the variance of all jobs’ completion times.

CTV minimization means that all jobs are completed within a relatively concentrated time

period. Neither earliness nor tardiness is desired. Therefore, CTV minimization is related

to service stability if each service request is regarded as a job.
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1.2.2 Supply Chain Coordination

In the recent decade, we have seen an explosion of publications on supply chain management.

Many articles have appeared in academic and popular magazines and numerous books have

been published. Interest in supply chain management, both in industry and in academia, has

been evoked by part from the discovered enormous magnitude of savings that can be achieved

by effectively planning and managing supply chains. A striking example is Wal-Mart’s

success, which is partly attributed to implementing a new logistics strategy called cross-

docking. Another cause of the enthusiastic research interest in supply chain management is

the emerging and development of information technology and communication systems, which

provide access to various data from all components of the supply chain. Typical examples are

business giants such as Dell Computers and Amazon.com. They enable customers to order

products over the Internet and thus sell products without relying on third-party distributors

or physical stores. The information technology dramatically decreases the operating costs of

these companies.

Simchi-Levi et al. (2003) define supply chain management as “a set of approaches utilized

to efficiently integrate suppliers, manufacturers, warehouses, and stores, so that merchandise

is produced and distributed at the right quantities, to the right locations, and at the right

time, in order to minimize systemwide costs while satisfying service level requirements”. A

company can manage its supply chain from strategic, tactical, and operational levels. The

strategic level deals with decisions that have a long-run effect on the company. This includes

supplier selection, decisions on the number, location, and capacity of plants and warehouses,
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and the like. The tactical level deals with decisions that are typically updated anywhere

between once every quarter and once every year. This includes purchasing and production

decisions, inventory policies, and so on. The operational level deals with day-to-day decisions

such as scheduling, routing, and so forth.

Supply chain management has several key issues, including inventory management (Axsäter,

2006; Silver et al., 1998), information sharing (Lee et al., 1997, 2000; Lee and Whang, 2000),

disruption risk management (Chopra and Sodhi, 2004; Tomlin, 2006), to name a few. Thomas

and Griffin (1996) provide an extensive review on supply chain management research.They

identify several research streams, including coordinated planning in inventory-distribution

systems (Mittenthal and Raghavachari, 1993), coordination in production-distribution sys-

tems (Chandra and Fisher, 1994), and buyer-vendor coordination (Anupindi and Akella,

1993). These research streams reflect the importance of studying the coordination issues

in supply chains. Furthermore, Sarmiento and Nagi (1999) conduct a survey of integrated

production and distribution models, pointing out that the trend towards reduced inventory

levels creates a need for greater coordination between decisions at different stages of a supply

chain. Banker and Khosla (1995) provide general motivation of coordinated decision making

in supply chains.

In this dissertation we will study an important facet of supply chain coordination: supply

chain scheduling. It is concerned with the coordination of scheduling decisions among differ-

ent decision makers in a supply chain. The study on this area is inspired by the phenomena

that there are conflicts with respect to decisions on some scheduling problem(s) that simulta-

neously confront(s) two or more decision makers in a supply chain. The conflicts are usually
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caused by the inconsistency of decision makers’ individual optimal schedules determined by

their respective standpoints. For instance, consider a supplier and a manufacturer. The sup-

plier provides parts to the manufacturer. Assume that the production of each part is time

consuming and thus each part will be immediately shipped to the manufacturer for use once

it is finished producing. As for the parts’ production at the supplier’s, the manufacturer has

its own optimal schedule that meets its need. However, the supplier may desire a different

production schedule that reduces its cost. The conflict arises accordingly. Simply adopting

the optimal schedule of a decision maker will not optimize the cost of the whole supply

chain. Therefore, the scheduling decision needs to be coordinated. Different scenarios of

relative bargaining power among decision makers determine different coordinated scheduling

decisions.

1.3 Contributions and Document Organization

For service stability, this dissertation studies two scheduling problems on identical parallel

machines and a class-based scheduling problem on a single machine. The first two scheduling

problems take the same performance measure: job completion time variance minimization.

The difference lies in that the former considers the unrestricted case of the problem while

the latter addresses the restricted case. The properties of the two problems are explored

and heuristic algorithms are proposed for solving the problems. The last single-machine

scheduling problem takes the minimization of class-based completion time variance as the

8



objective. It treats the problem from the users’ perspective instead of the conventional sys-

tem’s perspective. The property of the problem is investigated. These scheduling problems

for service stability are addressed in Chapter 2.

The above scheduling problems only focus on the optimal schedule within a firm. They

do not consider other components of a supply chain. However, in the current market with

fierce competition, the performance of the whole supply chain is more important than that

of a component itself. Chapter 3 takes into account the scheduling coordination problem

in a supply chain. The specific investigated problem instance in this chapter occurs in a

production-distribution environment. The manufacturer produces the products that are de-

livered to customers by the distributor. Due to different standpoints, the manufacturer and

the distributor have different opinions regarding the production scheduling policy of the cus-

tomers’ orders that the manufacturer receives. This chapter analyzes the conflict, proposes

cooperation mechanisms, and investigates the cost saving provided by the cooperation.

In Chapter 4, we summarize the work and demonstrate its potential applications. Future

research directions are also pointed out.
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Chapter 2

Scheduling for Service Stability

2.1 Introduction

Service stability is an aspect of quality of service (QoS), which plays an increasingly im-

portant role in service industries. QoS is widely employed in computer networking. QoS

requirements in Web services include availability, accessibility, integrity, performance, relia-

bility, regulatory, and security. Consumers always hope to obtain stable service. A service

provider who can provide highly stable service has an enormous body of customers. In this

chapter, we study job scheduling problems for service stability. This is realized by adopting

the performance measure of completion time variance (CTV). CTV is defined as the variance

of job completion times. Since CTV is not nondecreasing in job completion times, it is a

non-regular performance measure.

CTV minimization punishes both earliness and tardiness. This is because that CTV is

the variance of job completion times. If CTV minimization is desirable, then all jobs are
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desired to be completed in a concentrated period of time. Therefore, it is undesirable that a

job completes too early or too late, compared to most jobs. Therefore, CTV minimization is

related to service stability. It also pertains to the Just-in-Time (JIT) philosophy. In a JIT

scheduling environment, jobs that complete early must be held in finished goods inventory

which incurs inventory holding cost, while jobs that complete after their due dates may cause

customer dissatisfaction and penalty of agreement violations. Therefore, an ideal schedule

is the one in which all jobs finish exactly on their assigned due dates, or the one in which

a certain performance measure is stabilized according to (Chen et al., 1998). In the JIT

philosophy, both earliness and tardiness are penalized as well.

Job scheduling with CTV minimization has a wide range of applications in real life. It

can be used in such areas as production scheduling, Internet data packet dispatching, and so

on. Take a hamburger store as an example. Assume that a number of consumers arrive at the

store almost simultaneously. Each consumer places an order of hamburgers. Different orders

may request different preparation times. In pursuit of service stability, the store manager

desires that these consumers receive their orders within a relative centralized period of time.

How should the manager assign these orders to its cooks so as to achieve his/her goal? This

problem is in essence a job scheduling problem on multiple parallel machines with CTV

minimization.

The remainder of this chapter is organized as follows. Section 2.2 is the literature review of

CTV minimization problems. Sections 2.3 and 2.4 are concerned with the CTV minimization

problems on identical parallel machines, without and with the restriction that machine idle
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times are zero before starting processing jobs, respectively. Section 2.5 studies a class-based

CTV minimization problem on a single machine, which comes from a very different viewpoint.

2.2 Literature Review

2.2.1 Under Single-Machine Environment

The CTV minimization problem on a single machine is denoted by 1||CTV and it has been

widely studied. It is first introduced by Merten and Muller (1972) to minimize the response

time variance in computer file organization problems. Merten and Muller (1972) show that

for the 1||CTV problem, the optimal sequence with CTV minimization is antithetical to

that with waiting time variance (WTV) minimization. They also prove that there exists a

dual optimal sequence, which is obtained by keeping the first job intact while reversing the

order of the remaining jobs. Many other dominant properties about CTV minimization have

been discovered in the past decades. Eilon and Chowdhury (1977) prove that the optimal

sequence with the minimum CTV is V-shaped, which means that the jobs before the smallest

job are scheduled in descending order of processing times and the jobs after the smallest job

are scheduled in ascending order of processing times. Schrage (1975) shows that for the

1||CTV problem, the largest job should be placed on the first position. The author also

makes conjecture on the positions of the next three largest jobs. Hall and Kubiak (1991)

verify Schrage’s conjecture about the placement of the second and the third largest jobs, i.e.,

they should be placed on the last and the second positions respectively, or the second and
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the last positions respectively according to the dual rule. Manna and Prasad (1999) exhibit

the bounds for the position of the smallest job in an optimal sequence.

Despite so many favorable properties, there exist no polynomial time algorithms to obtain

an optimal sequence with CTV minimization. In fact, Kubiak (1993) proves that the CTV

problem is NP-hard. However, countless heuristics have been proposed to obtain a near-

optimal schedule, such as those in (Eilon and Chowdhury, 1977; Kanet, 1981; Manna and

Prasad, 1997, 1999; Vani and Raghavachari, 1987; Ye et al., 2007). Some famous algorithms

are involved in developing efficient heuristics for the 1||CTV problem as well. For instance,

De et al. (1992) develop a dynamic programming algorithm. Other examples include a

genetic algorithm in (Gupta et al., 1993), a simulated annealing method in (Mittenthal

et al., 1993), a tabu search method in (Al-Turki et al., 2001), a branch and bound method

in (Viswanathkumar and Srinivasan, 2003), and an ant-colony optimization algorithm in

(Gajpal and Rajendran, 2006).

2.2.2 Under Parallel-Machine Environment

In this dissertation, parallel machines are assumed to be identical. The CTV minimization

problem on identical parallel machines is denoted by Pm||CTV . By far, few research has

been conducted on the Pm||CTV problem. Cheng and Sin (1990) present that most of the

previous work on parallel-machine job scheduling does not consider the performance measure

of CTV. They mainly focus on other measures of performance such as total completion time,

mean completion time, weighted completion time, maximum completion time, and so on.

To the best of our knowledge, Cai and Cheng (1998) first discuss the problem of Pm‖CTV .
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They derive some properties of optimal solutions and show that the problem is NP-complete

in the strong sense when number of machines m is arbitrary and in the ordinary sense when

m is fixed. Xu and Ye (2007) is mainly concerned with Pm‖WTV , but they show that the

optimal value of Pm‖WTV is equal to that of Pm‖CTV and that a feasible schedule for

Pm‖WTV can be transformed into a feasible schedule for Pm‖CTV .

2.3 The Unrestricted Case of Pm||CTV : Pm|Unres|CTV

As seen in literature review, there is very few existing work related to the Pm||CTV prob-

lem. Therefore, in the current and immediately following sections the Pm||CTV problem

is targeted. Two cases of this problem are addressed. The difference of these two cases lies

in whether there is a restriction on machine idle times that exist before machines start to

process jobs. One case has no restriction, while the other case restricts such idle times to be

zero, in other words, there are no idle times for machines and machines must start processing

jobs at the very beginning.

In this section, we deal with the unrestricted case of job scheduling on identical and

parallel machines with CTV minimization. This problem is denoted by Pm|Unres|CTV .

Several properties of the Pm|Unres|CTV problem are explored and an efficient heuristic

algorithm is proposed. The performance of the proposed heuristic is compared with the

optimal schedules when problem instances are small and is compared with some existing

algorithms when problem instances are large.
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2.3.1 Problem Definition and Notation

In this case, machines’ idle times before they start to process jobs can be a time period of

any length. This is reasonable in practice, because machines may wait some time before they

begin processing jobs, in order to optimize some objective. For instance, in JIT production

system, earliness is undesirable, so machines may have some idle times before processing

jobs to avoid earliness.

Some assumptions are made as follows. First, job processing times are known in advance.

Second, each machine can only process one job at a time. Third, all jobs are available at time

zero. Fourth, no setup time exists between two consecutive jobs. In addition, preemption

is not allowed, that is, a job cannot be interrupted once the machine starts to process it.

Similar assumptions are made in (Eilon and Chowdhury, 1977; Merten and Muller, 1972; Ye

et al., 2007). The notation to be used is defined as follows:

n : the total number of jobs

m : the total number of machines

I : the index set of machines, i.e., I = {1, · · · , m}

ni : the total number of jobs assigned to the ith machine, i ∈ I,
m∑

i=1

ni = n

λ : a schedule

λ∗ : an optimal schedule

MCT : mean completion time

di(λ) : the idle time that exists before the ith machine’s job processing under a

schedule λ, i ∈ I
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pij(λ) : the processing time of the jth job on the ith machine under a schedule λ,

i ∈ I, j ∈ {1, 2, · · · , ni}

Cij(λ) : the completion time of the jth job on the ith machine under a schedule

λ, i ∈ I, j ∈ {1, 2, · · · , ni}

C̄i(λ) : the job MCT on the ith machine under a schedule λ, i ∈ I

MCTi(λ) : same as C̄i(λ)

¯̄C(λ) : the MCT of all n jobs under a schedule λ

CTVi(λ) : the job CTV on the ith machine under a schedule λ, i ∈ I

CTV (λ) : the CTV of all n jobs under a schedule λ

The completion time of a job, by definition, is the time when the job is completed.

Therefore, under the unrestricted case, when calculating a job’s completion time, one needs

to consider the idle time that exists before the corresponding machine’s job processing. Using

the notation, we have

Cij(λ) = di(λ) +

j∑
k=1

pik(λ), i ∈ I, j ∈ {1, 2, · · · , ni}.

For example, assume that a schedule is of the following form:

M1: (2.5) 8 25 13 11 7

M2: (3.0) 23 12 9 6 10

where M1 and M2 represent two machines, the numbers in the parenthesis represent d1 and

d2, and the other numbers represent the processing times of jobs. Then the corresponding

job completion times are as follows:
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M1: 10.5 35.5 48.5 59.5 66.5

M2: 26 38 47 53 63

Take the calculation of C12 for example. It is equal to C12 = d1+p11+p12 = 2.5+8+25 = 35.5.

The objective of the Pm|Unres|CTV problem is to find a schedule λ so that

CTV (λ) =
1

n− 1

m∑
i=1

ni∑
j=1

(
Cij(λ)− ¯̄C(λ)

)2
(2.1)

is the minimum, where

¯̄C(λ) =
1

n

m∑
i=1

ni∑
j=1

Cij(λ) . (2.2)

Also, the other two important computation formulas are as follows:

C̄i(λ) =
1

ni

ni∑
j=1

Cij(λ), (2.3)

CTVi(λ) =
1

ni − 1

ni∑
j=1

(
Cij(λ)− C̄i(λ)

)2
. (2.4)

2.3.2 Dominant Properties

Lemma 1. For a given schedule λ, the following equality holds:

(n− 1)CTV (λ) =
m∑

i=1

(ni − 1)CTVi(λ) +
m∑

i=1

ni(C̄i(λ)− ¯̄C(λ))2.
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Proof. For simplicity, we neglect λ’s in the notation in the proof below when there is no

confusion.

(n− 1)CTV

=

m∑
i=1

ni∑
j=1

(Cij − ¯̄C)2

=

n1∑
j=1

(C1j − C̄1 + C̄1 − ¯̄C)2 +

n2∑
j=1

(C2j − C̄2 + C̄2 − ¯̄C)2 + · · ·+
nm∑
j=1

(Cmj − C̄m + C̄m − ¯̄C)2

=
n1∑

j=1

(C1j − C̄1)
2 +

n1∑
j=1

(C̄1 − ¯̄C)2 + 2(C̄1 − ¯̄C)
n1∑

j=1

(C1j − C̄1) +
n2∑

j=1

(C2j − C̄2)
2

+
n2∑
j=1

(C̄2 − ¯̄C)2 + 2(C̄2 − ¯̄C)
n2∑

j=1

(C2j − C̄2) + · · ·+
nm∑
j=1

(Cmj − C̄m)2 +
nm∑
j=1

(C̄m − ¯̄C)2

+ 2(C̄m − ¯̄C)
nm∑
j=1

(Cmj − C̄m)

=

n1∑
j=1

(C1j − C̄1)
2 +

n1∑
j=1

(C̄1 − ¯̄C)2 + 0 +

n2∑
j=1

(C2j − C̄2)
2 +

n2∑
j=1

(C̄2 − ¯̄C)2 + 0 + · · ·

+
nm∑
j=1

(Cmj − C̄m)2 +
nm∑
j=1

(C̄m − ¯̄C)2 + 0

(since by Equality (2.3),

ni∑
j=1

Cij = niC̄i, i ∈ I)

=
m∑

i=1

(ni − 1)CTVi +
m∑

i=1

ni(C̄i − ¯̄C)2

(since by Equality (2.4),

ni∑
j=1

(Cij − C̄i)
2 = (ni − 1)CTVi, i ∈ I)

This completes the proof.

Lemma 1 states the CTV of a Pm|Unres|CTV problem can be partitioned into the

weighted sum of CTVi on each machine i and the weighed sum of squares of the differences

between the MCTi on each machine i and the grand MCT .
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Lemma 2. Consider a sequence of numbers {h1, h2, . . . , hn} and a number d. The following

equalities hold:

Mean(h1 + d, h2 + d, . . . , hn + d) = Mean(h1, h2, . . . , hn) + d;

V ar(h1 + d, h2 + d, . . . , hn + d) = V ar(h1, h2, . . . , hn)

where Mean({an}) and V ar({an}) represent the mean value and variance of the array {an},

respectively.

Proof. It can be easily seen that,

Mean(h1 +d, h2 +d, . . . , hn +d) = 1
n

n∑
i=1

(hi +d) = 1
n

n∑
i=1

hi +d = Mean(h1, h2, . . . , hn)+d;

Denoting Mean(h1, h2, . . . , hn) by h̄, we have

V ar(h1 + d, h2 + d, . . . , hn + d) = 1
n−1

n∑
i=1

[hi + d − (h̄ + d)]2 = 1
n−1

n∑
i=1

(hi − h̄)2 =

V ar(h1, h2, . . . , hn).

This completes the proof.

Lemma 3. Consider a problem of 1 ‖ CTV with n jobs, then the following hold:

i) The specific value of the processing time of the first job has no influence on the CTV;

ii) Only increasing(or decreasing) the processing time of a single job other than the first

job will increase(or decrease) the CTV.

Proof. Denote the processing times of these n jobs by {p1, p2, . . . , pn}.
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i) It is easy to see that the corresponding completion times are C = {p1, p1 +p2, p1 +p2 +

p3, . . . , p1 + p2 + · · ·+ pn}. By Lemma 2,

CTV = V ar(C) = V ar(0, p2, p2 + p3, . . . , p2 + · · ·+ pn).

The most right hand side is unrelated to p1. This completes the proof of i).

ii) Denote by j(j �= 1) the position of the job whose processing time increases (or de-

creases). Separate the completion times into two groups, with one group consisting of the

first j − 1 ones and the other group consisting of the last n− j + 1 ones. Denote the mean

values and variances of the completion times in the two groups by C̄1, C̄2, V1, and V2. Ac-

cording to Vani and Raghavachari (1987), the pooled variance of the two groups is given

by:

(n− 1)CTV = (j − 2)V1 + (n− j)V2 +
(j − 1)(n− j + 1)

n
(C̄1 − C̄2)

2.

When only increasing (or decreasing) the processing time pj , it is clear that C̄1, V1 will

not change and by Lemma 2, C̄2 will increase (or decrease) and V2 will not change. On the

other hand, it is obvious that C̄1 < C̄2 any time. Thus, when only pj increases (or decreases),

(C̄1− C̄2)
2 and thereby CTV will increase (or decrease). This completes the proof of ii).

Property 1. Under λ∗, the MCT on each machine is the same. That is, C̄i(λ
∗) = C̄j(λ

∗), i �=

j, i, j ∈ I.

Proof. (By contradiction.)
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Suppose that under λ∗ there exist at least two machines whose job MCTs are not equal.

Let K be the index set of the machines whose job MCTs achieve the maximum under λ∗,

i.e., K = arg max
i∈I

C̄i(λ
∗). Let T be the maximum job MCT, i.e., T = max

i∈I
C̄i(λ

∗). We

adjust the schedule λ∗ as follows. For each machine i /∈ K, add an additional idle time

di = T − C̄i(λ
∗) before the machine starts to process jobs. It is obvious that di > 0, i /∈ K.

Denote by λ′ the new schedule. Then, by Lemma 2, we have

∀i /∈ K, C̄i(λ
′) = C̄i(λ

∗) + di = T , and CTVi(λ
′) = CTVi(λ

∗).

On the other hand, since no changes are made on machine i ∈ K, job completion times

on these machines keep the same and therefore, so do the MCTs and the CTVs on these

machines. That is, ∀i ∈ K,

Cij(λ
′) = Cij(λ

∗), j = 1, . . . , ni; C̄i(λ
′) = C̄i(λ

∗) = T ; and CTVi(λ
′) = CTVi(λ

∗).

Thus,

¯̄C(λ′) =
1

n

m∑
i=1

ni∑
j=1

Cij(λ
′) =

1

n

m∑
i=1

niC̄i(λ
′) =

1

n

m∑
i=1

niT = T

¯̄C(λ∗) =
1

n

m∑
i=1

ni∑
j=1

Cij(λ
∗) =

1

n

m∑
i=1

niC̄i(λ
∗) =

1

n

(∑
i/∈K

niC̄i(λ
∗) +

∑
i∈K

niC̄i(λ
∗)
)

=
1

n

(∑
i/∈K

ni(T − di) +
∑
i∈K

niT
)

= T − (
∑
i/∈K

nidi)/n.

Then, by Lemma 1,

(n− 1)CTV (λ′) =

m∑
i=1

(ni − 1)CTVi(λ
′) +

m∑
i=1

ni

(
C̄i(λ

′)− ¯̄C(λ′)
)2

=

m∑
i=1

(ni − 1)CTVi(λ
′) +

m∑
i=1

ni(T − T )2

=

m∑
i=1

(ni − 1)CTVi(λ
′) (2.5)
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(n− 1)CTV (λ∗) =

m∑
i=1

(ni − 1)CTVi(λ
∗) +

m∑
i=1

ni

(
C̄i(λ

∗)− ¯̄C(λ∗)
)2

=

m∑
i=1

(ni − 1)CTVi(λ
∗) +

∑
i/∈K

ni

(
C̄i(λ

∗)− ¯̄C(λ∗)
)2

+
∑
i∈K

ni

(
C̄i(λ

∗)− ¯̄C(λ∗)
)2

=
m∑

i=1

(ni − 1)CTVi(λ
∗) +

∑
i/∈K

ni

(
(
∑
j /∈K

njdj)/n− di

)2
+
∑
i∈K

ni

(
(
∑
j /∈K

njdj)/n
)2

>

m∑
i=1

(ni − 1)CTVi(λ
∗) (since dj > 0, ∀j /∈ K)

=

m∑
i=1

(ni − 1)CTVi(λ
′) (since CTVi(λ

′) = CTVi(λ
∗), ∀i ∈ I)

=(n− 1)CTV (λ′) (by the expression (2.5))

That is, CTV (λ∗) > CTV (λ′), which violates the assumption that λ∗ is an optimal

schedule. Therefore Property 1 holds.

Corollary 1. C̄i(λ
∗) = ¯̄C(λ∗), ∀i ∈ I, and (n− 1)CTV (λ∗) =

m∑
i=1

(ni − 1)CTVi(λ
∗).

Proof. By Property 1, C̄i(λ
∗) = C̄j(λ

∗), i �= j, i, j ∈ I. Assume that C̄i(λ
∗) = T, ∀i ∈ I.

Hence, ¯̄C(λ∗) = 1
n

m∑
i=1

ni∑
j=1

Cij(λ
∗) = 1

n

m∑
i=1

niC̄i(λ
∗) = 1

n

m∑
i=1

niT = T = C̄i(λ
∗), ∀i ∈ I.

Thus, by Lemma 1,

(n− 1)CTV (λ∗) =
m∑

i=1

(ni− 1)CTVi(λ
∗) +

m∑
i=1

ni(C̄i(λ
∗)− ¯̄C(λ∗))2 =

m∑
i=1

(ni− 1)CTVi(λ
∗).

This completes the proof.

Property 2. Under λ∗, the schedule on each machine is optimal.

Proof. (By contradiction.)
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Suppose that the schedules on some machines are not optimal under λ∗. Denote Q as the

index set of these machines. We reschedule the jobs on these machines so that the schedules

become optimal. Since an optimal schedule for the Pm|Unres|CTV problem should satisfy

Property 1, we further adjust idle times on each machine so that the MCT on each machine

keeps the same. Denote the adjusted schedule by λ′. It is clear that CTVi(λ
′) < CTVi(λ

∗),

∀i ∈ Q, and CTVi(λ
′) = CTVi(λ

∗), ∀i /∈ Q, which is based on Lemma 2.

Since Corollary 1 is derived by the condition that the MCT on each machine is the same,

we likewise have

(n− 1)CTV (λ′) =

m∑
i=1

(ni − 1)CTVi(λ
′). (2.6)

On the other hand, by Corollary 1,

(n− 1)CTV (λ∗) =
m∑

i=1

(ni − 1)CTVi(λ
∗)

=
∑
i∈Q

(ni − 1)CTVi(λ
∗) +

∑
i/∈Q

(ni − 1)CTVi(λ
∗)

>
∑
i∈Q

(ni − 1)CTVi(λ
′) +

∑
i/∈Q

(ni − 1)CTVi(λ
′)

=
m∑

i=1

(ni − 1)CTVi(λ
′)

=(n− 1)CTV (λ′). (by the expression (2.6))

That is, CTV (λ∗) > CTV (λ′), which violates the assumption that λ∗ is an optimal schedule.

So Property 2 holds.

Corollary 2. Under λ∗, the job sequence on each machine is V-shaped.
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Proof. This corollary naturally holds, since Eilon and Chowdhury (1977) prove the V-shaped

property of an optimal schedule on a single machine.

Property 3. Under λ∗, the m largest jobs should be placed on the respective first positions

of the m machines.

Proof. (By contradiction.)

Let M = {n, n − 1, · · · , n − m + 1} be the set of the largest m jobs. Suppose the

property does not hold, then under an optimal schedule λ∗, there must exist at least 3 jobs

r, k, j(r /∈M, k, j ∈M) such that the job r is scheduled first on some machine t and the jobs

k, j are scheduled on a same machine denoted by q. Obviously, r is the largest job among

those assigned to the machine t, since the schedule on each machine is optimal under an

optimal schedule(i.e., Property 2). Assume k > j. The job j is therefore not scheduled on

the first position of the machine q by Property 2. Below we prove that interchanging the

jobs r and j leads to the decrease of CTV.

Interchange the jobs r and j. Although the processing time of the first job on the machine

t increases, by Lemma 3i) CTVt does not change. On the other hand, interchanging r with

j can be regarded as the decrease of the processing time of the job j on the machine q. By

Lemma 3ii) this decreases CTVq. Note that an optimal schedule should satisfy Property

1, so we need to adjust idle times so that the MCT on each machine is the same. By

Lemma 2, adjusting idle times does not change CTV on each machine. Thus, if denoting

the new schedule after interchange and adjustment by λ′, we have C̄i(λ
′) = C̄j(λ

′) = ¯̄C(λ′),

i, j ∈ I, i �= j, and CTVq(λ
′) < CTVq(λ

∗), CTVi(λ
′) = CTVi(λ

∗), i �= q.
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Thus by Lemma 1,

(n− 1)CTV (λ′) =
m∑

i=1

(ni − 1)CTVi(λ
′) +

m∑
i=1

ni

(
C̄i(λ

′)− ¯̄C(λ′)
)2

=
m∑

i=1

(ni − 1)CTVi(λ
′)

=
∑
i�=q

(ni − 1)CTVi(λ
′) + (nq − 1)CTVq(λ

′)

<
m∑

i=1

(ni − 1)CTVi(λ
∗)

=(n− 1)CTV (λ∗). (by Corollary 1)

That is, CTV (λ′) < CTV (λ∗), which violates the assumption that λ∗ is an optimal schedule.

So Property 3 holds.

Property 4. There exist countless optimal schedules for a Pm|Unres|CTV problem. How-

ever, there exists an optimal schedule under which there are no idle times before the job

processing of some machine(s).

Proof. Given an optimal schedule λ∗, simultaneously add the same amount of idle time

before each machine to obtain a new schedule denoted by λ′. Then by Lemma 2, Property

1 still holds under λ′ and CTVi(λ
′) = CTVi(λ

∗), i ∈ I. We can also know that (n −

1)CTV (λ′) =
m∑

i=1

(ni − 1)CTVi(λ
′) =

m∑
i=1

(ni − 1)CTVi(λ
∗) = (n− 1)CTV (λ∗), which implies

CTV (λ′) = CTV (λ∗), i.e., λ′ is also optimal. Therefore, a different amount of added idle

time corresponds to a different optimal schedule, which results in countless optimal schedules.

25



On the other hand, we can simultaneously subtract the smallest idle time on each machine

to obtain an optimal schedule under which at least one machine has zero idle time.

2.3.3 The Heuristic Algorithm

Hereafter in this section, the optimal schedules we consider refer to the schedules especially

mentioned in Property 4, i.e., those under which there exist at least one machine that doesn’t

have an idle time before it starts to process jobs. One can obtain such schedules by first

enumerating all possible schedules without considering idle times, then adding idle times to

the appropriated machines so that each schedule satisfies Property 1, and finally choosing

among them the one with the minimum CTV.

We first simulate 30 small problem instances with n = 9 and the job processing times

following the uniform distribution of Uniform(1, 60). We then derive the optimal schedules

of these problem instances on m = 2 identical parallel machines. Table 2.1 shows some of the

computational outputs, from which we observe an interesting phenomenon about an optimal

schedule: the sum of job processing times plus idle time on each machine keeps as close to

each other as possible.

Without loss of generality, we assume that the n jobs J1, J2, · · · , Jn are sorted in de-

scending order of their processing times. Based on the observation from Table 2.1 and the

dominant properties in Subsection 2.3.2, we propose a heuristic algorithm as follows:

Step 1: Following a wavy pattern, assign the jobs Ji, J2m−i+1, J2m+i, J4m−i+1,

· · · to the machine i, i = 1, 2, ..., m. The specific assignment pattern is

illustrated in Figure 2.1.
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Table 2.1: Optimal schedules for 5 small problem instances by exhaustive enumeration, where
"DbtS" stands for "Difference between two Sums".

No. Problem instances Optimal schedules Sum DbtS

1 26, 23, 10, 50, 51, 28, 58, 9, 53
M1: 58, 50, 23, 26 157

1.3
M2: (4.70) 53, 51, 9, 10, 28 155.7

2 25, 28, 37, 5, 19, 11, 38, 15, 36
M1: 38, 28, 15, 25 106

6.75
M2: (4.75) 37, 19, 11, 5, 36 112.75

3 31, 44, 19, 7, 27, 29, 1, 40, 17
M1: (4.50) 40, 27, 17, 19 107.5

4.5
M2: 44, 29, 7, 1, 31 112

4 14, 43, 32, 56, 27, 11, 59, 22, 3
M1: 59, 27, 14, 32 132

7.25
M2: (4.25) 56, 22, 11, 3, 43 139.25

5 13, 28, 5, 52, 34, 20, 23, 53, 12
M1: 53, 23, 13, 34 123

3.55
M2: (2.45) 52, 20, 12, 5, 28 119.45

M 1

M 2

M m -1

M m

J1

J2

Jm -1

Jm Jm +1

Jm +2

J2m -1

J2m J2m +1

J2m +2

J3m -1

J3m

Figure 2.1: The initial assignment of jobs to machines. Mi stands for the ith machine, i =
1, 2, . . . ,m. The arrows represent the direction of the assignment.
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Step 2: On each machine i ∈ I, schedule the jobs assigned to it as follows:

i) Sort the jobs in descending order of their processing times. Denote

these sorted jobs by {Ji1, Ji2, · · · , Jini
}.

ii) Place Ji1 on the first position, Ji2 on the second position, Ji3 on the last

position, and Jini
on the last-but-one position. The current job sequence

is {Ji1, Ji2, Jini
, Ji3}. The remaining jobs include {Ji4, Ji5, · · · , Ji(ni−1)}.

iii) Place the largest one among the remaining jobs to either exactly before

or exactly after Jini
, depending on which position achieves a smaller

CTV of the current job sequence. If there is a tie, we arbitrarily place

it to the left of Jini
.

iv) Repeat iii) until all jobs have been scheduled.

Step 3: Calculate the MCT on each machine. Let MCT ∗ = max
i∈I

MCTi. Then

insert an idle time MCT ∗−MCTi before the job processing of each machine

i such that the MCT on each machine is the same. The schedule is now

complete.

We name the heuristic algorithm as WAVS (Wavy Assignment, Verified Schedule), since

we first assign jobs to machines in a wavy pattern and then decide the specific positions of

the jobs on each machine by a verification method. Step 2 is similar to the Verified Spiral

(VS) method proposed by Ye et al. (2007) for large 1||WTV problem instances. Note that

when there are a small number (e.g., less than 10) of jobs on each machine after Step 1,

we can use exhaustive enumeration to replace Step 2 to find an optimal sequence on each
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machine as if it were a 1||CTV problem. Step 1 in the algorithm WAVS is based on Property

3 and the observation from Table 2.1. Step 2 is inspired by Property 2, and the foundation

of Step 3 is Property 1.

2.3.4 Computational Experiments

We test the performance of WAVS by conducting experiments on both small and large

problem instances. These problem instances are generated by simulating the processing

times of a batch of jobs. Due to the diversity of the distributions of job processing times in

real life, we consider four types of probabilistic distributions to simulate job processing times:

uniform distribution, normal distribution, exponential distribution, and Pareto distribution.

Note that a normal distribution may generate a negative number, which is unrealistic to

be a job’s processing time. So in this case we take its absolute value. In addition, for the

feasibility of comparing the computational outputs, we set the mean value of job processing

times from each distribution to be the same.

2.3.4.1 Small Problem Instances

For small problem instances, job processing times are set to follow the following four kinds

of distributions: the uniform distribution of Uniform(1, 59), the normal distribution of

Normal(30, 102), the exponential distribution of Exponential(30), and the Pareto distribu-

tion of Pareto(1.0345, 1). The mean job processing time is 30 in these four scenarios.
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Since the optimal schedules for small problem instances can be obtained by exhaustive

enumeration, we measure the performance of WAVS by comparing CTVW with CTVO, where

CTVW and CTVO denote the CTV’s obtained by WAVS and an optimal schedule, respec-

tively. The comparison criterion we take is competitive ratio (CR), which is denoted by

CRO here and is calculated as follows:

CRO =
CTVW − CTVO

CTVO

The smaller the CRO, the closer WAVS is to obtain an optimal schedule. Tables 2.2 - 2.5

are some typical computational outputs for small problem instances from the four kinds of

distributions.

Table 2.2: The competitive ratios of WAVS versus the optimal solutions for small problem instances
from Uniform(1, 59).

No. Optimal schedules CTVO Schedules by WAVS CTVW CRO

1
M1: (8.20) 51, 37, 26, 45

1512.85
M1: 57, 45, 7, 6, 47

1515.84 0.0020
M2: 57, 48, 6, 7, 47 M2: (5.25) 51, 37, 26, 48

2
M1: (12.90) 45, 22, 21, 34

831.28
M1: 58, 26, 7, 4, 34

840.40 0.0110
M2: 58, 26, 7, 4, 44 M2: (8.40) 45, 22, 21, 44

3
M1: (4.35) 48, 17, 11, 20

322.74
M1: (0.30) 49, 20, 4, 1, 22

324.98 0.0069
M2: 49, 25, 1, 4, 22 M2: 48, 17, 11, 25

4
M1: 56, 47, 10, 15

737.50
M1: 58, 30, 9, 6, 31

737.50 0.0000
M2: (4.00) 58, 30, 9, 6, 31 M2: (12.00) 56, 15, 10, 47

5
M1: 51, 30, 10, 29

630.59
M1: 51, 30, 4, 2, 31

632.53 0.0031
M2: (4.75) 44, 35, 2, 4, 31 M2: (4.90) 44, 29, 10, 35
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Table 2.3: The competitive ratios of WAVS versus the optimal solutions for small problem instances
from Normal(30, 102).

No. Optimal schedules CTVO Schedules by WAVS CTVW CRO

1
M1: 57, 30, 22, 33

948.09
M1: 57, 28, 15, 12, 30

948.98 0.0009
M2: (6.75) 51, 28, 12, 15, 27 M2: (8.70) 51, 27, 22, 33

2
M1: (0.65) 45, 38, 29, 39

1719.99
M1: 45, 36, 25, 22, 38

1732.44 0.0072
M2: 40, 36, 22, 25, 32 M2: (16.95) 40, 32, 29, 39

3
M1: (8.15) 34, 29, 20, 30

849.74
M1: 41, 28, 18, 11, 29

858.49 0.0103
M2: 41, 28, 11, 18, 21 M2: (17.15) 34, 21, 20, 30

4
M1: (3.15) 45, 31, 24, 32

1073.74
M1: 45, 31, 13, 10, 32

1074.59 0.0008
M2: 43, 39, 10, 13, 30 M2: (0.75) 43, 30, 24, 39

5
M1: (3.70) 39, 34, 30, 36

1525.98
M1: 39, 33, 22, 21, 34

1528.85 0.0019
M2: 38, 33, 21, 22, 32 M2: (7.80) 38, 32, 30, 36

Table 2.4: The competitive ratios of WAVS versus the optimal solutions for small problem instances
from Exponential(30).

No. Optimal schedules CTVO Schedules by WAVS CTVW CRO

1
M1: 55, 21, 7, 23

333.90
M1: 55, 21, 7, 3, 23

335.23 0.0040
M2: (21.60) 29, 28, 3, 8, 10 M2: (34.30) 29, 10, 8, 28

2
M1: (70.90) 58, 29, 20, 47

1161.78
M1: 132, 29, 17, 6, 43

1162.74 0.0008
M2: 132, 24, 17, 6, 43 M2: (78.65) 58, 24, 20, 47

3
M1: (73.35) 68, 25, 13, 52

1102.99
M1: 133, 39, 9, 4, 42

1102.99 0.0000
M2: 133, 39, 9, 4, 42 M2: (73.35) 68, 25, 13, 52

4
M1: (46.50) 96, 86, 29

2250.94
M1: 123, 29, 5, 4, 85

2255.94 0.0022
M2: 123, 85, 4, 5, 20, 23 M2: (23.05) 96, 23, 20, 86

5
M1: 110, 22, 9, 21

362.19
M1: 110, 21, 6, 3, 22

362.34 0.0004
M2: (77.45) 33, 20, 6, 3, 25 M2: (77.25) 33, 20, 9, 25
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Table 2.5: The competitive ratios of WAVS versus the optimal solutions for small problem instances
from Pareto(1.0345, 1).

No. Optimal schedules CTVO Schedules by WAVS CTVW CRO

1
M1: (285.07) 153, 51

225.5
M1: 449, 6, 3, 2, 8

316.38 0.4028
M2: 449, 8, 4, 3, 2, 5, 6 M2: (286.50) 153, 5, 4, 51

2
M1: (5.55) 12, 11, 5, 6

70.19
M1: 18, 9, 3, 2, 10

70.19 0.0000
M2: 18, 9, 3, 2, 10 M2: (8.05) 12, 6, 5, 11

3
M1: 53, 5, 4, 16

78.99
M1: 53, 7, 3, 2, 11

78.99 0.0000
M2: (27.35) 25, 7, 3, 2, 11 M2: (28.65) 25, 5, 4, 16

4
M1: (13.25) 28, 15, 2, 18

137.84
M1: 40, 15, 3, 2, 17

139.09 0.0091
M2: 40, 17, 3, 4, 5 M2: (19.75) 28, 5, 4, 18

5
M1: 108, 8, 4, 6

41.13
M1: 108, 6, 3, 2, 7

41.19 0.0017
M2: (98.50) 10, 7, 2, 3, 5 M2: (99.05) 10, 5, 4, 8

Except for Pareto(1.0345, 1), the outputs show the extremely good performance of WAVS,

which can generate a near-optimal schedule. For example, for the problem instances tested

for Exponential(30) in Table 2.4, the CRO values are less than 0.004. As to the distribution

of Pareto(1.0345, 1), the output of the first instance is abnormal since the resulting CRO is

far greater than the others’. We calculate 30 small problem instances from Pareto(1.0345, 1)

and there are only 3 instances whose CRO’s are greater than 0.10. This implies that in general

WAVS is able to efficiently reduce CTV for small problem instances from Pareto(1.0345, 1).

In sum, WAVS shows great performance for small problem instances, compared to the opti-

mal schedules.

2.3.4.2 Large Problem Instances

For large problem instances, job processing times are set to follow these distributions:

Uniform(1, 999), Normal(500, 1002), Exponential(500), and Pareto(1.11, 50). The mean
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job processing time is set to 500. Due to the size of large problem instances, it is computation-

ally costly if not impossible to use exhaustive enumeration to obtain the optimal schedules.

Thus, we compare the CTV obtained by WAVS with those obtained by some existing schedul-

ing algorithms, including First-Come-First-Served (FCFS), Longest-Processing-Time-First

(LPT), Smallest-Processing-Time-First (SPT), and Dynamic Verified Spiral (DVS, refer to

(Xu and Ye, 2007)). Since FCFS, LPT, or SPT is generally used for the single-machine

scheduling problem, we adjust them so as to accommodate to the multiple identical parallel

machine environment. Suppose that the jobs enter the system in the order in which the jobs

are generated. Then the Adjusted-FCFS (A-FCFS) algorithm is as follows:

Step 1: Assign the first m jobs to the m machines, with one job on one machine.

Step 2: Assign the next job to the machine that has the smallest sum of process-

ing times of the jobs already assigned to it. According to this rule, assign

the remaining jobs to the machines.

Step 3: Adjust the MCT on each machine by inserting appropriate idle times

such that the MCT on each machine is the same. The method to calculate

the idle times is the same as the Step 3 in WAVS.

The Adjusted-LPT (A-LPT) or Adjusted-SPT (A-SPT) algorithm is as follows:

Step 1: Sort the jobs in descending (or ascending if A-SPT) order of their pro-

cessing times.

Step 2: Ragard the order of the sorted jobs as the order these jobs enter the

system and schedule them according to the above A-FCFS algorithm.
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Although DVS is proposed for Pm||WTV , Xu and Ye (2007) prove that the optimal value

of Pm||WTV is equal to that of Pm||CTV and that any feasible schedule for Pm||WTV

can be transformed into a feasible schedule for Pm||CTV. Hence, we can directly apply DVS

to calculate CTV and compare it with the CTV obtained by WAVS.

The performance tests of WAVS for large problem instances are conducted with the

various machine numbers (m = 2, . . . , 20) and job numbers (n = 100, 200, 300, 400), for each

of the four distributions of job processing times. Specifically, for each combination of a

machine number, a job number, and a distribution, we calculate the competitive ratios of

A-FCFS (A-LPT, and A-SPT) versus WAVS for 1000 large instances and then average them.

While for DVS, we refine n = 100 since DVS has very high time complexity as shown later.

In a similar way, we calculate and average the competitive ratios of DVS versus WAVS for

1000 large instances. Note that the competitive ratios are computed as follows:

CRZ =
CTVZ − CTVW

CTVW
, Z ∈ {A-FCFS, A-LPT, A-SPT, DV S}

where CRZ stands for the competitive ratio of some algorithm Z, while CTVZ stands for the

CTV obtained by the algorithm Z. The larger the CRZ , the better the WAVS is than the

compared algorithms. The computational outputs are presented in Figure 2.2 and Figure

2.3.

Figures 2.2(a), (b), (c) clearly demonstrate that for the problem instances generated

from the uniform, normal, and exponential distributions, WAVS is significantly better than

(since CR � 0) these three scheduling algorithms: A-FCFS, A-LPT, and A-SPT. Figure
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(b) for the case of Normal(500, 1002)
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(c) for the case of Exponential(500)
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(d) for the case of Pareto(1.11, 50)
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Figure 2.2: The performance of WAVS versus A-FCFS, A-LPT, and A-SPT
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Figure 2.3: The performance of WAVS versus DVS
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Figure 2.4: The performance of WAVS versus A-LPT (enlarged for the case of Pareto(1.11, 50))

2.2(d) shows the performance of WAVS with respect to the problem instances generated from

Pareto distribution. It clearly shows that WAVS dramatically outperforms the algorithms

A-FCFS and A-SPT. The largest average CR is even close to 5000. However, simply from

Figure 2.2(d) the average competitive ratios of A-LPT versus WAVS seem to be equal to 0.

In fact, they are much greater than 0. Figure 2.4 is the enlarged plot of the performance

of WAVS versus A-LPT for the Pareto distribution case. It is obvious that WAVS greatly

outperforms A-LPT.

Figure 2.3 shows that WAVS consistently but not significantly outperforms DVS with

respect to CTV reduction. However, from the perspective of time consumption, WAVS

is much better than DVS. It can be easily derived that the time complexity of WAVS is
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O(n2/m) while the time complexity of DVS is O(n3/m2). In addition, we record the average

computational times of WAVS and DVS for a large problem instance of n = 100, regardless

of the distribution of job processing times. The record is based on different numbers of

machines and is shown in Table 2.6. Each item in Table 2.6 is obtained based on 4000

problem instances. The implementation uses MATLAB on a PC with a 3.20GHz CPU and

1.99GB RAM. As can be seen, the computational time of WAVS is much less than that of

DVS. Furthermore, the time consumption for WAVS has a decreasing trend with the increase

of the number of machines, while the opposite is for DVS.

In sum, for large problem instances, the proposed algorithm WAVS outperforms the

existing algorithms A-FCFS, A-LPT, A-SPT, and DVS with respect to CTV reduction.

2.3.5 Summary

In this section, we consider a multiple identical parallel machine scheduling problem with

the objective of minimizing job completion time variance, which is closely related to the JIT

philosophy and the service stability concept. It can be applied to many areas such as the

Internet data package dispatching and production planning. We investigate the unrestricted

case of the problem, denoted by Pm|Unres|CTV, in which idle times are allowed to exist

before machines start to process jobs. We first prove a dominant property that under an

Table 2.6: The computational time comparison of WAVS versus DVS for a large problem instance
of n = 100(unit: s)

m 2 5 8 10 15 20
WAVS 0.0207 0.016 0.0141 0.0131 0.0104 0.0083
DVS 1.61 2.9155 3.639 3.8803 4.0175 4.1503
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optimal schedule the mean completion time on each machine is the same. We further prove

that under an optimal schedule, the schedule on each machine is optimal and the largest m

jobs should be scheduled on the respective first positions of the m machines. In addition,

from the optimal schedules of some small problem instances, we observe that under an

optimal schedule, the difference between the sums of job processing times plus idle time on

two machines is rather small. Using this observation and the proven favorable properties,

we develop a heuristic algorithm named WAVS, which is shown to generate near optimal

schedules for small problem instances and dramatically outperform some existing scheduling

algorithms for large problem instances.

2.4 The Restricted Case of Pm||CTV : Pm|Res|CTV

In this section, we deal with the restricted case of job scheduling on identical and parallel

machines, denoted by Pm|Res|CTV . The restricted case does not permit the existence of

machines’ idle times before they start to process jobs. This restricted case is more compli-

cated than its unrestricted peer, since it imposes zero idle times. Similarly, in this section

several properties of the Pm|Res|CTV problem are explored and an efficient heuristic al-

gorithm is proposed. The proposed heuristic is compared with the optimal schedules when

problem instances are small and is compared with some existing algorithms when problem

instances are large.
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2.4.1 Problem Statement

This section considers the scheduling problem of n jobs on m identical parallel machines

with the objective of minimizing job completion time variance. We tackle the case where no

idle times are admitted to exist before machines begin processing jobs. That is, all machines

must start to process jobs at time zero. In practice, such requirement may be necessary in

order to improve utilization of machines.

Several assumptions are made as follows. First, all jobs are assumed to be ready for

scheduling at time zero. Second, no setup time exists between two consecutive jobs or setup

times are included in the processing times of jobs. Third, each machine only processes

one job at a time. Fourth, machines run continuously, i.e., machines process the next job

immediately after finishing the processing of a job. In addition, preemption is not allowed,

that is, a job cannot be interrupted once the machine starts to process it.

The notations to be used are defined as follows:

n : the total number of jobs

m : the total number of machines

ni : the number of jobs assigned to the ith machine, i = 1, . . . , m,
m∑

i=1

ni = n

λ : a schedule

λ∗ : an optimal schedule

pij(λ) : the processing time of the jth job on the ith machine under a schedule λ

Cij(λ) : the completion time of the jth job on the ith machine under a schedule

λ
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C̄i(λ) : the job mean completion time (MCT) on the ith machine under a schedule

λ

¯̄C(λ) : the MCT of all the n jobs under a schedule λ

CTV (λ) : the CTV of all the n jobs under a schedule λ

With the above notation, the objective of a Pm|Res|CTV problem is to find a schedule λ

such that

CTV (λ) =
1

n− 1

m∑
i=1

ni∑
j=1

(Cij(λ)− ¯̄C(λ))2 (2.7)

is the minimum, where

¯̄C(λ) =
1

n

m∑
i=1

ni∑
j=1

Cij(λ)

and

Cij(λ) =

j∑
k=1

pik(λ), i = 1, . . . , m; j = 1, . . . , ni.

The following example illustrates how to calculate the CTV. Suppose that a schedule is

of the following form:

M1: 8 25 13 11 7

M2: 23 12 9 6 10

where M1, M2 represent two machines and the numbers represent the processing times of

jobs. Then, the corresponding job completion times are calculated as follows:

M1: 8 33 46 57 64

M2: 23 35 44 50 60
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CTV can then be easily calculated as V ar(8, 33, 46, 57, 64, 23, 35, 44, 50, 60) = 307.11.

For many years, scheduling research focuses on regular performance measures, which

are nondecreasing in job completion times Cj. Such regular measures include mean com-

pletion time, mean lateness, and mean tardiness. In particular, the mean tardiness has

been a standard way of measuring conformance to due dates, even though it ignores the

consequence of jobs completing early. However, with the increasing interest in Just-In-

Time (JIT) concept which espouses the notion that both earliness and tardiness should

be discouraged, researchers have begun to study objective functions that are not regular,

or nonregular. For example, an objective function as
∑

Ej +
∑

Tj is nonregular, where

Ej = max(dj−Cj, 0) = (dj−Cj)
+ denotes the earliness and Tj = max(Cj−dj, 0) = (Cj−dj)

+

denotes the tardiness. dj and Cj are due date and completion time of job j, respectively.

In a JIT scheduling environment, jobs that complete early must be held in finished goods

inventory which incurs inventory holding cost, while jobs that complete after their due dates

may cause customer dissatisfaction and penalty of agreement violations. So, an ideal sched-

ule is one in which all jobs finish exactly on their assigned due dates, or one in which the

performance measure is stabilized according to (Baker and Scudder, 1990) and (Chen et al.,

1998). Apparently, CTV is a nonregular performance measure that penalizes both earliness

and tardiness.
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2.4.2 The Proposed Algorithm

2.4.2.1 Preliminary Results

Let us first observe the structure an optimal schedule should have. We take into account

small-sized problem instances, since for such size of problem instances, an optimal schedule

can be obtained through exhaustive enumeration. We randomly generate a batch of job

sets with job processing times following four kinds of different probability distributions:

uniform, triangular, lognormal, and weibull distributions. Then by enumeration, we obtain

an optimal schedule for each job set on two identical and parallel machines. If there are

more than one optimal schedules, we choose the first one with the minimum CTV obtained

from our procedure. Table 2.7 presents the optimal schedules for eight small-sized problem

instances, with two from each kind of probability distribution.

Table 2.7: The optimal schedules for eight small-sized job sets by exhaustive enumeration, where
“Dbs” stands for “Difference between sums”.

No. Job sets Optimal schedules Sums Dbs
1 M1: 98, 74, 32, 79 283

(Uniform, 9 jobs) 3, 98, 74, 67, 30, 98, 32, 90, 79 M2: 98, 67, 30, 3, 90 288 5

2 M1: 73, 45, 16, 4, 69 207
(Uniform, 10 jobs) 16, 25, 73, 75, 45, 69, 54, 6, 4, 38 M2: 75, 38, 25, 6, 54 198 9

3 M1: 87, 81, 58, 66 292
(Triangular, 9 jobs) 95, 44, 66, 60, 87, 76, 58, 20, 81 M2: 95, 60, 44, 20, 76 295 3

4 M1: 93, 53, 43, 34, 61 284
(Triangular, 10 jobs) 77, 53, 29, 34, 93, 61, 43, 56, 81, 37 M2: 81, 77, 29, 37, 56 280 4

5 M1: 76, 72, 57, 65 270
(Lognormal, 9 jobs) 76, 72, 53, 48, 59, 57, 52, 65, 76 M2: 76, 53, 48, 52, 59 288 18

6 M1: 66, 65, 52, 51, 62 296
(Lognormal, 10 jobs) 52, 65, 62, 51, 42, 59, 66, 79, 54, 64 M2: 79, 59, 42, 54, 64 298 2

7 M1: 101, 97, 47, 83 328
(Weibull, 9 jobs) 129, 33, 2, 101, 47, 97, 74, 96, 83 M2: 129, 74, 33, 2, 96 334 6

8 M1: 144, 112, 29, 57, 74 416
(Weibull, 10 jobs) 40, 29, 144, 118, 57, 76, 141, 33, 112, 74 M2: 141, 118, 33, 40, 76 408 8
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From Table 2.7, we can observe three patterns about optimal schedules, regardless of

what probability distribution their job processing times follow. First, each of the largest

two jobs is placed on the first position of each machine. Second, the job sequence on each

machine is of V shape. That is, the jobs before the smallest job are scheduled at the LPT

rule, while the jobs after the smallest job are scheduled at the SPT rule. Third, if job

processing times are summed up on each machine, then the difference between these two

sums is so small. Based on these observations substantiated by numerous problem instances,

we make the following conjectures:

Conjecture 1. Under λ∗, the m largest jobs should be placed on the first positions of the m

machines, respectively.

Conjecture 2. Under λ∗, the job sequence on each machine is V-shaped.

Conjecture 3. Under λ∗, the sum of job processing times on each machine is very close to

each other.

Conjectures 1 and 2 are the proven properties of Pm|Unres|CTV in (Li et al., 2009).

It is reasonable to make such conjectures since Pm|Res|CTV can be deemed as a spe-

cial case of Pm|Unres|CTV . If idle times are restricted to zero, Pm|Unres|CTV be-

comes Pm|Res|CTV . Conjectures 3 is similar to the property of Pm|Unres|CTV that

C̄i(λ
∗) is equal to C̄j(λ

∗), i �= j, which is the key to prove other dominant properties of

Pm|Unres|CTV . However, C̄i(λ
∗) does not have to equal C̄j(λ

∗) for Pm|Res|CTV , which

makes the proofs of these conjectures difficult.
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2.4.2.2 The Heuristic Algorithm

The Pm|Res|CTV problem is NP-hard since it can be easily reduced to the 1||CTV problem

which is proven to be NP-hard by Kubiak (1993). So, there is no polynomial time algorithm

for this problem. Here we propose a heuristic algorithm, which is inspired by the conjectures

in Subsection 2.4.2.1. The algorithm is described as follows.

Algorithm 1: Balanced Assignment, Verified Schedule (BAVS)

Sort jobs such that p1 ≥ p2 ≥ · · · ≥ pn. /* pi is the processing time of job1

i. */

S(i)← ∅, i = 1, . . . , m; /* S(i) is the job sequence on machine i. No jobs2

are assigned at the beginning. */

for i← 1 to m do3

S(i)← [pi]; /* Assign the largest m jobs to the first positions of4

the m machines. */

end5

for j ← m + 1 to n do6

for k ← 1 to m do7

T (k)← ∑
(S(k)); /* Calculate the sum of job processing times on8

machine k. */

end9

t← argmin{T (k) : k = 1, . . . , m};10

S(t)← [S(t), pj ]; /* Assign job j to the end of the job sequence on11

machine t. */

end12

for i← 1 to m do13

S(i)← V S(S(i)); /* Schedule the jobs on machine i by the Verified14

Schedule (VS) algorithm. */

end15
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Procedure Verified Schedule(VS)
input: J1, J2, · · · , Ju ∈ S(i)

/* J1, J2, · · · , Ju are the jobs assigned to machine i. Assume u > 4
since it is trivial if u ≤ 4. */.
Without loss of generality, assume J1 ≥ J2 ≥ · · · ≥ Ju.1

L← {J1, J2};2

/* L is the left-hand-side job sequence of the smallest job Ju in

the current sequence so far. */

R← {J3};3

/* R is the right-hand-side job sequence of the smallest job Ju in

the current sequence so far. */

for k ← 4 to u− 1 do4

if CTV (L, Jk, Ju, R) ≤ CTV (L, Ju, Jk, R) then5

L← [L, Jk]; /* The job Jk is assigned to the end of L. */6

else7

R← [Jk, R]; /* The job Jk is assigned in front of R. */8

end9

end10

V S(S(i))← [L, Ju, R];11

In the proposed algorithm, we first sort jobs in descending order of job processing times

as in Line 1. From Line 3 to Line 5, we assign the first m jobs to m machines respectively.

This is based on the Conjecture 1. From Line 6 to 12, we assign the next job to the machine

that has the smallest sum of job processing times so far. Repeat this step till all jobs are

assigned. Such assignment is based on Conjecture 3 that the sums of the job processing

times on different machines are balanced. From Line 13 to Line 15, we schedule jobs on each

machine using the Verified Schedule (VS) algorithm (Ye et al., 2007). The VS algorithm is

a heuristic algorithm for the 1||WTV problem and thereby for the 1||CTV problem (due to

the interchangeability of these two problems, see (Merten and Muller, 1972)). It generates a

V-shaped sequence. Such schedule is based on Conjecture 2. Here completes the proposed

algorithm. Since this algorithm involves a balanced assignment and verified schedule, we
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name it BAVS for simplicity. It can be easily seen that the computational complexity of

BAVS is O[n2(� n
m

+ 1
+ 2m)].

2.4.3 Computational Results

2.4.3.1 The Deterministic Case

In the deterministic case of job scheduling, job processing times are deterministic and are

known in advance. In this subsection, we will evaluate the performance of the BAVS heuristic

in the deterministic environment. We consider both small-sized and large-sized problem

instances. Problem instances are generated through four kinds of probability distributions.

They are uniform distribution, triangular distribution, lognormal distribution, and weibull

distribution, respectively.

A) Small-sized Problem Instances

Small-sized problem instances are generated by letting job processing times follow Uni-

form(1, 119), Triangular(10, 60, 110), Lognormal(60, 102), and Weibull(2, 67.7), respectively.

For the sake of uniformness, the mean values of these 4 kinds of probability distributions are

set to be the same and equal to 60. We also set m = 2. For small-sized problem instances,

the BAVS heuristic is compared to the optimal schedules obtained by exhaustive enumera-

tion. For a job set of length n, the exhaustive enumeration includes n!�n
2
� cases when m = 2,

where �x� denotes the biggest integer not greater than x. Therefore, due to computational

costs, we only consider n = 9 and n = 10. Using MATLAB on a Pentium 4 PC with a

3.2GHz CPU and 2GB RAM, the average running time of obtaining an optimal schedule for
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a problem instance is 2.14 minutes for n = 9 and 25.23 minutes for n = 10. Both are based

on 50 cases, respectively.

The comparison criterion for small-sized problem instances is competitive ratio (CR),

which can be calculated by:

CRO =
CTVB − CTVO

CTVO
× 100%

where CTVB and CTVO denote the CTV’s under BAVS and under an optimal schedule,

respectively. The smaller the CRO, the closer the BAVS is to be optimal. Table 2.8 is eight

typical computational outputs for small-sized problem instances.

For further illustration, we randomly choose 50 outputs from each kind of probability

distribution and plot CRO over instance as in Figure 2.5.

Table 2.8: The comparison of the BAVS heuristic with optimal schedules for eight small-sized
instances

No. Optimal schedules CTVO BAVS schedules CTVB CRO

1 M1: 102, 55, 25, 101 M1: 104, 67, 10, 38, 55
(Uniform, 9 jobs) M2: 104, 45, 38, 10, 67 3919.28 M2: 102, 101, 25, 45 3969.50 1.28%

2 M1: 112, 75, 53, 26, 89 M1: 112, 87, 32, 50, 75
(Uniform, 10 jobs) M2: 100, 87, 50, 32, 82 7528.04 M2: 100, 89, 26, 53, 82 7556.99 0.38%

3 M1: 87, 81, 58, 66 M1: 95, 76, 58, 60
(Triangular, 9 jobs) M2: 95, 60, 44, 20, 76 5614.36 M2: 87, 81, 20, 44, 66 5623.44 0.16%

4 M1: 93, 53, 43, 34, 61 M1: 93, 61, 29, 43, 56
(Triangular, 10 jobs) M2: 81, 77, 29, 37, 56 4813.17 M2: 81, 77, 34, 37, 53 4818.67 0.11%

5 M1: 70, 62, 51, 60 M1: 70, 60, 49, 55
(Lognormal, 9 jobs) M2: 63, 55, 42, 49, 57 5138.78 M2: 63, 62, 42, 51, 57 5257.50 2.31%

6 M1: 70, 60, 50, 49, 59 M1: 76, 59, 48, 50, 56
(Lognormal, 10 jobs) M2: 76, 56, 48, 51, 57 6227.60 M2: 70, 60, 49, 51, 57 6230.62 0.05%

7 M1: 148, 66, 49, 82 M1: 148, 82, 45, 66
(Weibull, 9 jobs) M2: 107, 93, 35, 45, 73 6794.00 M2: 107, 93, 35, 49, 73 6862.11 1.00%

8 M1: 60, 56, 38, 9, 58 M1: 70, 56, 31, 34, 41
(Weibull, 10 jobs) M2: 70, 41, 34, 31, 47 3117.88 M2: 60, 58, 9, 38, 47 3219.51 3.26%
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Figure 2.5: The CRo’s for small-sized problem instances with different probability distributions

From Table 2.8 and Figure 2.5, we can easily see that for small-sized problem instances,

the effect of the BAVS heuristic is rather good when compared to the optimal schedules.

B) Large-sized Problem Instances

For large-sized problem instances, we let job processing times follow the four kinds of

probability distributions: Uniform(1, 999), Triangular(10, 550, 940), Lognormal(500, 1002),

and Weibull(2, 564.19), respectively. The mean value is set to be 500 for each kind of

probability distribution. We consider four different numbers of jobs: n = 100, 200, 300, 400.

For each combination of distribution type and n value, we generate 1000 large-sized problem

instances respectively. Furthermore, for each problem instance, we take into account various

different numbers of machines: m takes values from 2 to 20.

To evaluate the performance, the BAVS heuristic is compared to some existing algorithms,

including three basic dispatching rules and three extended existing heuristics. The three

dispatching rules are: first-come-first-served(FCFS) rule, longest-processing-time-first(LPT)

rule, and shortest-processing-time-first(SPT) rule. The three existing heuristics compared

here include EC (Eilon and Chowdhury, 1977), MP (Manna and Prasad, 1999), and GGB
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(Gupta et al., 1990). These three heuristics are not originally developed for the Pm||CTV

problem, but for the 1||CTV problem. Therefore, in order for the comparison with BAVS,

they are extended to the multiple-machine environment. Take the heuristic of EC for exam-

ple. We first apply the EC heuristic to derive an optimal schedule for the 1||CTV problem.

Then according to FCFS rule, these jobs are assigned to the machines. That is, when some

machine is available, the current first job in the generated sequence is assigned to that

machine for processing. If m = 1, the extended heuristics become the original ones.

The comparison criteria are still competitive ratios, but the formula change as follows:

CRZ =
CTVZ − CTVB

CTVB
× 100%, Z ∈ {FCFS, LPT, SPT, E EC, E MP, E GGB}

where CRZ stands for the competitive ratio of the algorithm Z to the BAVS heuristic,

CTVZ stands for the CTV under the algorithm Z, and E EC, E MP, E GGB refer to the

extended EC, MP, GGB heuristics, respectively. The larger the CRZ , the better the BAVS

is than the algorithm Z. By computation, we find that the CRs are greater than 0 for

all considered problem instances, which indicates that BAVS is always better than these

rules and heuristics for the tested problem instances. Since the computational complexity of

E EC, E MP, E GGB is much higher than that of those three dispatching rules, we separate

the comparison of BAVS with the three dispatching rules and the three heuristics.

For the comparison with FCFS, LPT, and SPT, we calculate and plot the average of

CRs of 1000 instances for each combination of m value, n value, and distribution type.

Figures 2.6(a) through 2.6(d) are the plots of the average CR versus the number of machines,
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(b) For the case of Triangular(10, 550, 940)
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(c) For the case of Lognormal(500, 1002)
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(d) For the case of Weibull(2, 564.19)
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Figure 2.6: The performance of BAVS versus FCFS, LPT, and SPT
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according to different distribution types and different numbers of jobs. These plots clearly

show that BAVS is remarkably better than FCFS, LPT, and SPT rules. In some case, CRZ

is even close to 200%, which means that the CTV under the algorithm Z is almost three

times that under BAVS. Moreover, we can observe three trends: BAVS is increasingly better

than SPT and FCFS and is decreasingly better than LPT when m increases.

For the comparison with E EC, E MP , and E GGB, we also consider four kinds of

probability distributions, but only consider the case of n = 100 jobs. For each kind of

probability distribution, we generate 100 problem instances, based on which the average

CR’s are calculated. The value of m is from 2 to 20 as well. Figure 2.7 is the obtained
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Figure 2.7: The performance of BAVS versus E EC, E MP, and E GGB
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CR plot. We observe that BAVS also outperforms these extended heuristics. The more

machines, the larger the average CR’s. This means that the advantage of BAVS over the

three heuristics is more significant when the number of machines increases. We also observe

that from each subplot, corresponding to a same m, the average CR’s are very close to each

other, regardless of what kind of heuristic is compared. This may be because that FCFS

is applied in the extensions of all three heuristics, which reduces the difference among the

heuristics. Although so, the comparison result demonstrates the advantage of BAVS.

2.4.3.2 Special Scenario where m = 1

If we reduce the number of machines to one, the proposed heuristic is actually the VS algo-

rithm for 1||CTV problems (Ye et al., 2007). The VS algorithm is presented to outperform

FCFS, SPT, and Methods 1.1 & 1.2 of Eilon and Chowdhury (1977) in the single machine

situation. Furthermore, the mean CTV derived by the VS algorithm is shown to be ex-

tremely close to the lower bound developed in (Kubiak et al., 2002). This lower bound is for

the 1||CTV problem and is as follows:

LB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
n−1

(n−1)/2∑
i=1

(p1 + p2 + · · ·+ p2i)
2/2 if n is odd,

1
n−1

(n−2)/2∑
i=1

(p1 + p2 + · · ·+ p2i+1)
2/2 if n is even.

We compare the performance of VS with MP and GGB in this subsection, in order to

assess the proposed heuristic from another perspective. Four kinds of probability distribu-

tions and two cases of n = 20 and n = 100 are taken into account. For each combination of

n and distribution type, 1000 problem instances are generated. For each problem instance,
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the CTV’s under VS, MP, and GGB are calculated and compared. In Table 2.9, we present

the comparison result, where NV SM
and NV SG

stand for the numbers of problem instances

(out of 1000) for which VS is better than MP and GGB, respectively. NMP and NGGB stand

for the numbers of problem instances (out of 1000) for which MP and GGB outperform VS,

respectively. NEQM
and NEQG

are the numbers of problem instances (out of 1000) for which

VS and the compared heuristic have the same performance. For example, corresponding to

the scenario of n = 20 and uniform distribution, among 1000 problem instances, there are

176 problem instances for which VS is better than MP, 158 instances for which MP is better

than VS, and 666 instances for which VS and MP have the equal CTVs. Table 2.9 shows

that VS and MP have the approximate performances, but the computational complexity of

VS is apparently lower than that of MP (Manna and Prasad, 1999; Ye et al., 2007). Table

2.9 also shows that VS significantly outperforms GGB for large job sets and is worse than

GGB for small job sets. These indicate the effectiveness of VS.

Table 2.9: The comparison of VS with MP and GGB, which is based on 1000 problem instances
for each combination of n and distribution type.

VS versus MP VS versus GGB
n Distribution

NV SM
NMP NEQM

NV SG
NGGB NEQG

Uniform 176 158 666 237 661 102

20
Triangular 191 199 610 165 699 136
Lognormal 187 209 604 213 499 288
Weibull 169 187 644 200 633 167
Uniform 352 316 332 946 54 0

100
Triangular 325 304 371 691 309 0
Lognormal 327 379 294 626 374 0
Weibull 312 322 366 780 220 0
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2.4.3.3 Special Problem Instances

In the case that a job’s processing time is far larger than those of other jobs, the LPT

algorithm appears to be optimal for the Pm|Res|CTV problem. The following are two

examples.

Example 1: Schedule a job set J = {2, 9, 3, 17, 27, 4, 24, 10, 392} on 2 identical and

parallel machines. An optimal schedule with the minimum CTV is:

M1: 392

M2: 27 24 17 10 9 4 3 2

where the CTV is 11752.5. Clearly, this schedule is of LPT rule.

Example 2: Schedule a job set J = {19, 11, 22, 579, 17, 6, 7, 8, 15} on 2 identical and

parallel machines. An optimal schedule with the minimum CTV is:

M1: 579

M2: 22 19 17 15 11 8 7 6

where the CTV is 29341.61. This schedule is of LPT rule, too.

2.4.4 Summary

This section considers the scheduling problem of n jobs on m identical and parallel machines

so as to minimize job completion time variance (CTV), which is closely related to service

uniformness and stability. We focus on the restricted case, which does not allow idle time in-

sertion before machines start to process jobs. By observing the patterns of optimal schedules

for various problem instances, we conjecture three properties of the optimal schedules and
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propose a simple but efficient heuristic algorithm, denoted by BAVS. The performance of the

BAVS heuristic is tested in the deterministic environment. Both small-sized and large-sized

problem instances are considered. These problem instances are generated by four kinds of

probability distributions: uniform, triangular, lognormal, and weibull distributions. The

computational results show that the BAVS heuristic is near-optimal for small-sized problem

instances and significantly outperforms some existing scheduling algorithms such as FCFS,

LPT, SPT, and the extended EC, MP, GGB heuristics for large-sized problem instances.

The performance of BAVS is studied as well in the special scenario where m = 1. We also

discuss the optimal scheduling method for some special problem instances.

2.5 Class-based CTV on a Single Machine: 1||CB-CTV

2.5.1 Motivation

Previous literature on CTV minimization deals with problems mainly from the viewpoint of

the system. In this point of view, jobs are assumed to be independent of each other, which

is often not practical in the real world. In general, some jobs are related to some other jobs.

For instance, jobs requested by the same user, such as multiple requests to a web server

from the same client, often need to be considered together as a class. Thus, the system CTV

performance measure may result in the dissatisfaction of a certain user with the service,

because CTV of the jobs belonging to this user may be very large even though the overall

CTV of all jobs in the system has reached the minimum. Consequently, the dissatisfaction

with the service may cause the user to leave a system and turn to its rival. Such a result
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is undesirable to service providers. It is necessary, therefore, to investigate CTV minimiza-

tion problems from the viewpoint of users. The Class-based CTV (CB-CTV) minimization

problem arises accordingly. CB-CTV is closely related to service stability since it penalizes

both earliness and tardiness, and it is further related to customer satisfaction because it

takes into account customer preferences. CB-CTV minimization has wide applications in

many areas such as packet scheduling for Internet communications and reservation systems,

modern manufacturing systems, supply chain management, and others where it is desirable

to achieve service stability while considering customer preference. Since CTV is important

from the perspective of the system, reducing the overall CTV is taken as the secondary

objective in this section.

In the following we present several dominant properties for CTV problems and prove that

CB-CTV problems can be transformed into a series of CTV problems on a single machine.

In addition, computational results are presented for both small and large problem instances

and a trade-off relationship between CB-CTV and the overall CTV is revealed.

2.5.2 Problem Definition

In this section, we consider the problem of scheduling L-class jobs on a single machine.

All jobs are released at time zero and their processing times are known deterministically.

Preemption is not allowed, i.e., jobs cannot be interrupted during their processing. Also, we

assume that there is no setup time between two consecutive jobs. These assumptions are the

same as those adopted by Eilon and Chowdhury (1977); Kanet (1981); Merten and Muller
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(1972). Our objective is to find an optimal scheduling sequence that minimizes

CB-CTV =

L∑
i=1

ni

n
CTVi (2.8)

where L is the number of classes, n is the total number of all jobs, ni is the number of jobs

in the ith class, and CTVi is the CTV of jobs in the ith class. CTVi is computed as follows:

CTVi =
1

ni − 1

ni∑
j=1

(Cij − C̄i)
2 (2.9)

where Cij is the completion time of the jth job in the ith class and C̄i is the mean completion

time of the jobs in the ith class.

For illustration, we give an example as follows. Suppose that there are three classes of

jobs required to be scheduled on a single machine. These jobs are as follows:

Class I: 20, 5 ; Class II: 14, 2, 12 ; Class III: 8, 4, 1, 16

Here and throughout the section, we denote jobs by their processing times. Assume they are

scheduled in the following way: 12, 1, 4, 20, 14, 8, 5, 16, 2. Then the completion times of

the jobs in these three classes are 37, 64; 51, 82, 12; and 59, 17, 13, 80 respectively. Hence,

the CTVs of the three classes are 364.5, 1230.3, and 1066.3, respectively. Thus, the CB-CTV

of this scheduling sequence is 2
9
∗ 364.5 + 3

9
∗ 1230.3 + 4

9
∗ 1066.3 = 965.

Using exhaustive enumeration, we can obtain an optimal sequence of the above example

that minimizes CB-CTV and takes reducing the overall CTV as the secondary objective.

This optimal schedule is 20, 5, 16, 4, 1, 8, 14, 2, 12. The obtained minimum CB-CTV is
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35.07 and the respective CTVs of the three classes are 12.5, 57.33, and 29.67. On the other

hand, the overall CTV of this optimal sequence is 426.36. If we schedule these jobs without

the consideration of the classes, we can obtain an optimal sequence which has the minimum

overall CTV through enumeration. This sequence is 20, 16, 8, 5, 2, 1, 4, 12, 14 and the

corresponding overall CTV is 314.36, while the CB-CTV of this sequence is 208.74 with the

respective inner-class CTVs of 420.5, 241, and 78.67. We summarize these results into Table

2.10, where * denotes the optimal value.

From Table 2.10, we observe that when the overall minimum CTV is desired, CB-CTV

is not minimized. The corresponding CB-CTV (208.74) has a large deviation from the pos-

sible minimum CB-CTV (35.07). The jobs from the same class receive the greatly different

treatment, which are represented by their large inner-class CTVs (420.5, 241, 78.67) com-

pared with (12.5, 57.33, 29.67). This implies that the jobs of the same class under CB-CTV

minimization gain stabler services than under the overall CTV minimization without the

consideration of classes. This inner-class CTV reduction leads to user satisfaction in the

viewpoint of users with regard to service stability. It is the difference between the overall

CTV and CB-CTV that motivates our research on the CB-CTV minimization problem.

Table 2.10: An example of a small problem instance for CB-CTV and overall CTV minimization.

optimal sequence CTV1 CTV2 CTV3 CB-CTV CTV

Class-based 20, 5, 16, 4, 1, 8, 14, 2, 12 12.5* 57.33* 29.67* 35.07* 426.36
Non-class-based 20, 16, 8, 5, 2, 1, 4, 12, 14 420.5 241 78.67 208.74 314.36*
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2.5.3 Dominant Properties for CTV and CB-CTV Problems

The CTV problem has been discovered to have a number of dominant properties. The

following properties are summarized from the literature.

Property 5. For any scheduling sequence R, CTV of R is equal to WTV of R′, where R′

is the antithetical schedule of R (Theorem H in (Merten and Muller, 1972)).

Property 6. The scheduling sequence that minimizes WTV is antithetical to the scheduling

sequence that minimizes CTV (Corollary H.1 in (Merten and Muller, 1972)).

Property 7. CTV remains unchanged when reversing the order of the last n− 1 jobs (The-

orem K in (Merten and Muller, 1972)).

Property 8. For CTV minimization problems, an optimal scheduling sequence is of the

form of (n, n − 2, . . . , n − 1). That is, the largest job is arranged at the first position, the

second longest job is arranged at the last position, and the third longest job is arranged at

the second position (Theorem 1 in (Hall and Kubiak, 1991)).

Property 9. The optimal sequence for a WTV minimization problem is V-shaped (Theorem

B in (Eilon and Chowdhury, 1977)).

Property 10. The optimal sequence for a CTV minimization problem is V-shaped. (the

combination of Property 6 and Property 9)

In view of these properties, it will be very desirable if a CB-CTV minimization problem

can be transformed into CTV minimization problems. If so, we can apply these properties

to solve the CB-CTV minimization problem. We will prove this property later.
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We use the following notation to represent job scheduling sequences:

pij = the processing time of the jth processed job in the ith class;

Xi = the ith job block that separates the jobs in a certain class.

To illustrate our notation, consider only the qth class. A possible scheduling sequence may

be of the following form:

p21, p31, pq1, pq2, p22, p11, p32, pq3, pL1, p23, pq4, pq5, pq6, . . . , pLnL
, pqnq , p36, p2n2 , . . .

Then we can denote this scheduling sequence by the following:

X0 , pq1, pq2, X1 , pq3, X2 , pq4, pq5, pq6, X3 , . . . , Xs−1 , pqnq , Xs (2.10)

where s is an appropriate integer.

Lemma 4. CTVq is smaller in the following schedule than in Schedule (2.10):

X0 , pq1, pq2, . . . , pqnq , X1 , X2 , X3 , . . . , Xs−1 , Xs (2.11)

Proof. First, we prove a special case: there is only one block among the qth class in Schedule

(2.10). That is, CTVq is smaller in the schedule

X0 , pq1, pq2, . . . , pq(m−1), pqm, . . . , pqnq , X1 , X2 (2.12)

than in the schedule

X0 , pq1, pq2, . . . , pq(m−1), X1 , pqm, . . . , pqnq , X2 (2.13)
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where 2 ≤ m ≤ nq.

The following notation is used in the proof of this special case:

k: the sum of processing times of jobs in the block X1;

V : CTVq by Schedule (2.12);

V ′: CTVq by Schedule (2.13);

Ci: completion time of job pqi in Schedule (2.12), i = 1, 2, . . . , nq;

C ′
i: completion time of job pqi in Schedule (2.13), i = 1, 2, . . . , nq.

It is easy to show that

C ′
i = Ci, i = 1, 2, . . . , m− 1

C ′
i = Ci + k, i = m, m + 1, . . . , nq

According to Kanet (1981), CTV has an alternative form: V =
nq∑
i=1

nq∑
j=i+1

(Cj−Ci)
2. Hence,

V ′ − V =

nq∑
i=1

nq∑
j=i+1

(C ′
j − C ′

i)
2 −

nq∑
i=1

nq∑
j=i+1

(Cj − Ci)
2

=
m−1∑
i=1

nq∑
j=m

(Cj + k − Ci)
2 −

m−1∑
i=1

nq∑
j=m

(Cj − Ci)
2

=
m−1∑
i=1

nq∑
j=m

[(Cj + k − Ci)
2 − (Cj − Ci)

2]

=

m−1∑
i=1

nq∑
j=m

[k(2Cj − 2Ci + k)]

> 0 (since k > 0 and Cj > Ci)

So, CTVq is smaller in Schedule (2.12) than in Schedule (2.13).
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Next we prove the lemma. First we move the block Xs−1 in Schedule (2.10) to the exact

back of pqnq . According to the above special case, the new schedule has a smaller CTVq.

Again, by moving the block Xs−2 to the exact back of pqnq , we obtain a schedule in which

CTVq is smaller than in the last schedule. Keep moving blocks in this fashion until the block

X1 is moved and Schedule (2.11) is obtained. Since the schedule after each move produces a

smaller CTVq than in the former schedule, Schedule (2.11) has a smaller CTVq than Schedule

(2.10).

Lemma 5. CTVq keeps a constant, as long as the scheduling form satisfies: i)No jobs from

other classes are scheduled among the qth class, i.e., no blocks exist among the qth class; and

ii)The inner-class scheduling order of the qth class keeps unchanged.

Proof. Let S1 and S2 be any two schedules that satisfy the above two conditions. Denote

job completion times of the qth class in S1 by {C1, C2, . . . , Cnq}. Then job completion times

of the qth class in S2 will be {C1 + h, C2 + h, . . . , Cnq + h}, where h is an appropriate real

number. Let C̄ ′, CTV ′ and C̄, CTV be mean completion times and CTVs of the qth class

in S1 and S2 respectively. Then

C̄ ′ =
1

nq

nq∑
i=1

(Ci + h) =
1

nq

nq∑
i=1

Ci + h = C̄ + h

CTV ′ =
1

nq − 1

nq∑
i=1

(Ci + h− C̄ ′)2 =
1

nq − 1

nq∑
i=1

(Ci − C̄)2 = CTV

This completes the proof.
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Theorem 1. Regardless of the intra-class scheduling order, the scheduling form

p11, . . . , p1n1 , p21, . . . , p2n2 , . . . , pL1, . . . , pLnL
(2.14)

has a smaller CB-CTV than any scheduling form that has the same inner-class scheduling

order as Schedule (2.14) and in which there exists at least one class whose jobs are not

scheduled consecutively.

Proof. Consider a schedule in which there is at least one class whose jobs are not scheduled

consecutively. Gather the jobs of the same class at the position where that class first appears,

for scheduling consecutively and without changing inner-class scheduling order. Then the

scheduling form will become Schedule (2.14) or a similar schedule that only changes intra-

class scheduling order, compared with Schedule (2.14). Lemma 5 guarantees that the change

of intra-class order does not change every class’s CTV. Thus, Schedule (2.14) and similar

schedules have the same CB-CTV. On the other hand, Lemma 4 indicates that, every class’s

CTV in Schedule (2.14) or a similar schedule is smaller than in the original schedule. Hence,

by definition, CB-CTV of Schedule (2.14) or a similar schedule is smaller.

Corollary 3. A CB-CTV minimization problem can be transformed into a series of CTV

minimization problems. That is, the following equation holds:

Min
λ∈Λ

(
L∑

i=1

ni

n
CTVi(λ)

)
=

L∑
i=1

(
ni

n
Min
λi∈Λi

(CTVi(λi))

)
(2.15)
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where λ, Λ, and CTVi(λ)(i = 1, . . . , L) are respectively a schedule of all jobs of L classes,

the schedule set composed of all possible λ, and the CTV of the ith class under the schedule

λ, while λi(i = 1, . . . , L), Λi(i = 1, . . . , L), and CTVi(λi)(i = 1, . . . , L) are respectively a

schedule of all jobs of the ith class, the schedule set composed of all possible λi, and the CTV

of the ith class under the schedule λi.

Proof. Since Schedule (2.14) or a similar schedule that only changes intra-class scheduling

order has a smaller CB-CTV, as long as every class’s jobs are further scheduled in the way

such that the class’s CTV is at a minimum, a minimal CB-CTV is achieved.

According to Corollary 3, to obtain the optimal scheduling sequence with the minimum

CB-CTV, we only need to schedule jobs by their classes and schedule jobs of each class in

the way that their inner-class CTVs are the minimum. This transformation dramatically

simplifies the problem since there have been a lot of heuristics that can be used for CTV

minimization problems, such as those in (Eilon and Chowdhury, 1977; Kanet, 1981; Manna

and Prasad, 1997, 1999; Vani and Raghavachari, 1987).

2.5.4 Computational Results

We have bridged CB-CTV minimization problems with CTV minimization problems. Never-

theless, it is necessary to investigate the relationship between the overall CTV and CB-CTV.

In this section, we compute scheduling sequences for the overall CTV and CB-CTV minimiza-

tion respectively for the same small or large program instances. Assume that the processing
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times of jobs follow a uniform distribution, taking values from the integers between 1 and 20

for small problem instances and the integers between 1 to 150 for large problem instances.

2.5.4.1 Small Problem Instances

For small instances, we consider two instances from n = 9 jobs, L = 3 classes and two

instances from n = 10 jobs, L = 5 classes respectively. In Table 2.11 there are four small

problem instances and job classes are distinguished by semicolons.

Similar to the example in subsection 2.5.2, the overall CTV and CB-CTV of these prob-

lem instances cannot be minimized at the same time. Because of their small size, we can use

exhaustive enumeration to obtain optimal sequences with CTV minimization. The compu-

tation of the minimum CB-CTV is based on Corollary 3 and realized by using enumeration

to obtain the minimum CTV of each class and combining them. Since there is a total of

(2L · L!) optimal sequences for CB-CTV minimization, we choose the one with the smallest

CTV. The computational output is shown in Table 2.12, where * denotes the optimal value,

"N/A" stands for "not applicable", CB means that the optimal sequences are obtained

under CB-CTV minimization, and NCB means that the optimal sequences are obtained

under the overall CTV minimization (i.e., non-class-based CTV minimization).

Table 2.11: Four small problem instances.

Instances Job processing times
1 3, 13; 6, 5, 15; 11, 19, 7, 12
2 18, 15; 8, 4, 20; 16, 13, 1, 6
3 6 10; 2 20; 12 9; 11 7; 5 16
4 20 5; 13 10; 18 16; 1 17; 9 19
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Table 2.12: CB-CTV vs. CTV for four small problem instances. It shows consistently smaller
CTV for individual class under CB-CTV minimization than under the overall CTV minimization.

Optimal sequences CTV1 CTV2 CTV3 CTV4 CTV5 CB-CTV CTV
1) CB: 19, 12, 7, 11, 13, 3, 15, 6, 5 4.5* 30.33* 158.25* N/A N/A 81.44* 644.11

NCB: 19, 15, 11, 7, 3, 5, 6, 12, 13 648 289.33 588.33 N/A N/A 501.93 476.78*
2) CB: 20, 4, 8, 16, 13, 1, 6, 18, 15 112.5* 37.33* 70.92* N/A N/A 68.96* 761.19

NCB: 20, 16, 15, 6, 4, 1, 8, 13, 18 1250 710.33 372.33 N/A N/A 680.04 572.61*
3) CB: 20, 2, 16, 5, 10, 6, 11, 7, 12, 9 18* 2* 40.5* 24.5* 12.5* 19.5* 716.1

NCB: 20, 12, 11, 9, 5, 2, 6, 7, 10, 16 144.5 760.5 200 420.5 840.5 473.2 533.78*
4) CB: 19, 9, 20, 5, 17, 1, 13, 10, 18, 16 12.5* 50* 128* 0.5* 40.5* 46.3* 1226.01

NCB: 20, 18, 17, 10, 9, 1, 5, 13, 16, 19 1800 392 2520.5 200 1458 1274.1 1021.34*

From Table 2.12, we can observe that there is a trade-off between CB-CTV and the

overall CTV. That is, if the overall CTV is minimized, inner-class CTVs may be large.

Namely, CB-CTV is large. Conversely, if CB-CTV is minimized, inner-class CTVs will be

optimal, while the overall CTV deviates from its optimum. In other words, the improvement

of CB-CTV performance is obtained at the cost of sacrificing the overall CTV performance.

Let CTV i
Im(i = 1, 2, . . . , 5), CB-CTVIm, and CTVS denote the performance improvement of

inner-class CTVs, CB-CTV and the performance sacrifice of the overall CTV respectively.

Then they can be measured by respective decrease or increase percentages as follows:

CTV i
Im =

CTV i
NCB − CTV i

CB

CTV i
NCB

∗ 100% i = 1, 2, . . . , 5 (2.16)

CB-CTVIm =
CB−CTVNCB − CB−CTVCB

CB−CTVNCB
∗ 100% (2.17)

CTVS =
CTVCB − CTVNCB

CTVNCB

∗ 100% (2.18)

where CTV i
CB(i = 1, 2, . . . , 5), CB-CTVCB, CTVCB, CTV i

NCB(i = 1, 2, . . . , 5), CB-CTVNCB,

and CTVNCB denote inner-class CTVs, CB-CTV and the overall CTV of optimal sequences
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under the class-based and the non-class-based situations respectively. Through the calcula-

tion with regard to the above four small problem instances, the values of these performance

indices are listed in Table 2.13.

According to Table 2.13, the overall CTV performance sacrifices when the objective is

to minimize CB-CTV. However, the CTV performance of an individual class is improved

dramatically, which is more significant from a user’s perspective. For example, in Table

2.12, the CTV of class 4 of instance 4 under CB-CTV minimization is equal to 1/400 of that

under the overall CTV minimization. Since users are independent of each other, they receive

a better service under CB-CTV minimization than under the overall CTV minimization.

Also, the rate of the overall CTV performance sacrifice is much smaller than that of CB-

CTV performance improvement. It indicates that the objective defined by us is desirable.

2.5.4.2 Large Problem Instances

For large instances, we consider 4 instances from L = 3 classes and n = 100 jobs and 4

instances from L = 5 classes and n = 100 jobs. For the first 4 instances, the job number of

each class is 20, 30, and 50 respectively. For the last 4 instances, the job number of each class

is the same 20. Because of their large size, these instances can not be listed. For the same

reason, it is extremely computationally costly if not impossible to use exhaustive enumeration

Table 2.13: Performance indices comparison for four small problem instances.

No. CTV 1
Im CTV 2

Im CTV 3
Im CTV 4

Im CTV 5
Im CB-CTVIm CTVS

1 99.31% 89.52% 73.1% N/A N/A 83.77% 35.1%
2 91% 94.74% 80.95% N/A N/A 89.86% 32.93%
3 87.54% 99.74% 79.75% 94.17% 98.51% 95.88% 34.16%
4 99.31% 87.24% 94.92% 99.75% 97.22% 96.37% 20.04%
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to obtain optimal sequences. Hence, two recently developed algorithms, Verified Spiral (VS)

and Balanced Spiral (BS), are used in this section to approximately solve the problem (Ye

et al., 2007). These two algorithms show better performance than some existing algorithms

such as FIFO (First-In-First-Out), SPT (Shortest Processing Time), and EC1.2 (Method

1.2 in (Eilon and Chowdhury, 1977)). Note that these two algorithms are developed for

WTV minimization problems, but since optimal sequences of CTV and WTV minimization

problems are antithetical, they can be modified and applied to CTV minimization problems.

We simply describe these two modified algorithms as follows.

Assume a single machine needs to process a job set p1, p2, . . . , pn, where p1 ≤ p2 ≤ . . . ≤

pn. VS method is as follows:

1. According to Schrage’s conjecture, place the job pn in the first position, the job pn−1

in the second position, and the job pn−2 in the last position. The shortest job p1 is placed

in the position between pn−1 and pn−2.

2. Select the longest job from the unscheduled jobs. Place it either exactly before the

job p1 or exactly after the job p1, depending on which way produces a smaller CTV of the

job sequence so far.

3. Repeat Step 2 until all the jobs are scheduled.

BS method is as follows:

1. Place the job pn in the first position, the job pn−1 in the second position, and the job

pn−2 in the last position. Let sequence Lt = {pn−1} and sequence Rt = {pn−2}. Denote by

SUMLt and SUMRt respectively the sums of the processing times of the jobs in Lt and Rt.
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2. If SUMLt < SUMRt, append the largest job from the unscheduled jobs to sequence

Lt, and update SUMLt; If SUMLt ≥ SUMRt, prepend the largest job from the unscheduled

jobs to sequence Rt, and update SUMRt.

3. Repeat Step 2 until all the jobs are scheduled.

The computational output for the eight instances is shown in Table 2.14, where * de-

note the optimal value and "VS" or "BS" means the algorithm used for that corresponding

instance.

Table 2.14 demonstrates that, for large problem instances, there is still a trade-off between

CB-CTV and the overall CTV minimization. In addition, although the overall CTV becomes

larger when pursuing the minimum CB-CTV, each class’s CTV is reduced significantly. The

performance improvement of each class’s CTV aligns with users’ needs and such class-based

service stability will lead to user satisfaction with regard to service stability and consistency.

For large instances, the rate of the overall CTV performance sacrifice is also much smaller

than that of CB-CTV performance improvement, which indicates the desirability of our

Table 2.14: Performance comparison of CB-CTV and overall CTV for eight large problem in-
stances.

No. CTV 1
Im CTV 2

Im CTV 3
Im CTV 4

Im CTV 5
Im CB-CTVIm CTVS

1 (VS) 95.31% 92.39% 73.3% N/A N/A 81.7% 47.35%
2 (VS) 96.07% 89.1% 75.66% N/A N/A 85.05% 46.03%
3 (BS) 95.12% 90.64% 77.12% N/A N/A 85.2% 50.41%
4 (BS) 95.85% 90.64% 74.83% N/A N/A 85.61% 43.54%
5 (VS) 95.18% 96.67% 96.23% 94.09% 95.97% 95.64% 48.72%
6 (VS) 96.07% 95.71% 95.61% 95.63% 95.06% 95.69% 51.8%
7 (BS) 94.8% 96.58% 94.91% 95.38% 96.15% 95.53% 45.7%
8 (BS) 95.63% 94.72% 97.04% 95.51% 94.24% 95.51% 48.45%
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objective. The relatively larger overall CTV performance sacrifice rates in large instances

than in small ones are caused by the size of job set and the values of processing times.

2.5.5 Summary

In this section we consider CB-CTV minimization problems on a single machine, a generalized

case of CTV minimization in which jobs are assumed to come from one class. CTV is a non-

regular performance measure which penalizes both earliness and tardiness. It conforms to

the Just-In-Time philosophy in manufacturing systems. CB-CTV minimization further takes

into account the variability reduction from the customers’ point of view to achieve service

stability and consistency. CTV minimization problems have been studied extensively with

many dominant properties in the literature, while little study has been done to CB-CTV

minimization. We prove that a CB-CTV minimization problem can be transformed into a

series of CTV minimization problems. Hence, we bridge 1||CB-CTV and 1||CTV problems,

which allows us to apply well developed properties and methods of CTV problems to CB-

CTV problems which are NP-hard.

Computational tests are conducted for both small and large problem instances. In the

small-problem scenario, the optimal sequence for the overall CTV and CB-CTV minimization

is obtained by exhaustive enumeration. In the large-problem scenario, we apply two recently

developed algorithms (VS and BS, which have been shown in (Ye et al., 2007)) to calculate

the overall CTV and CB-CTV. Note that for the CB-CTV minimization, since there are

at least (2L · L!) optimal sequences that have the minimum CB-CTV, the one with the

smallest CTV is chosen. Both scenarios show that there is a trade-off between CB-CTV and
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the overall CTV. However, the reduction of individual class’s CTV is more significant than

the sacrifice of the overall CTV. From the perspective of customers, it is more desirable to

achieve CB-CTV minimization for class-based service stability and consistency.
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Chapter 3

Scheduling for Supply Chain

Coordination

3.1 Introduction

A supply chain consists of a number of stages at which value is added to a product. These

stages include the supply of raw materials, product manufacturing, packaging, transporta-

tion, distribution, and so on. Effectively managing a supply chain has advantages such as

operating cost reduction. Successful examples of supply chain management include business

giants like Wal-Mart supermarkets, Dell Computers, and Amazon.com.

Good management of a supply chain inevitably need the cooperation of all stages in the

supply chain. This requires the coordination of decision making among the stages. In the

review of supply chain management research, Thomas and Griffin (1996) demonstrate the

necessity of studying coordination issues in supply chains. In another survey, Sarmiento and

72



Nagi (1999) further point out that for achieving reduced inventory levels, greater coordination

among different stages of a supply chain is desired.

There are many aspects with respect to coordinated supply chain decision making. One of

them is coordinate scheduling among different stages, which is called supply chain scheduling

(Hall and Potts, 2003). It is concerned with the coordination of scheduling decisions among

different decision makers in a supply chain. Due to different standpoints, decision makers

usually have disagreement on the scheduling decision of a series of operations such as the

manufacturing of products. This leads to scheduling conflict. Adopting a decision maker’s

optimal schedule will increase the cost of other decision makers and thus the cost of the

whole supply chain. Therefore, in order to optimize the supply chain’s cost, a coordinated

scheduling decision is necessary.

Chapter 2 studies scheduling problems simply from the viewpoint of a stage in a supply

chain. The optimal schedules considered in Chapter 2 only apply to the stage itself. In this

chapter, scheduling problems are addressed within the scope of a supply chain.

3.2 Literature Review

Hurter and Van Buer (1996) study a problem of coordination between printing and distribu-

tion of a medium-sized morning newspaper. The printing facility produces several different

products (e.g., different versions), and has an ideal sequence in which newspapers are pro-

duced so that the total production time is minimized. On the other side, the distribution
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department may desire a sequence in which newspapers for the most distant distribution cen-

ter are produced first. The objective of Hurter and Van Buer (1996) is to reduce the number

of vans required to deliver the newspapers to drop-off points, while satisfying the vehicle

capacity and time constraints. They first solve several instances of the capacitated vehicle

routing problem with time windows and then design a production schedule that supports

the resulting routes. Assuming that the printing and distribution departments cooperate on

this schedule, they compare their results with the prevailing practice using the data from a

medium-sized newspaper company. The results show a significant decrease in distribution

costs and time.

Hall and Potts (2003) evaluates the benefits of coordinated decision making in a supply

chain that involves a supplier, multiple manufacturers, and multiple customers. The supplier

makes deliveries to several manufacturers, who in turn supply several customers. They de-

velop models that minimize the total scheduling and batch delivery costs. They demonstrate

that coordination between a supplier and a manufacturer may reduce the total scheduling

cost by values in a range of at least 20% up to arbitrarily close to 100%, depending upon

the scheduling objective being considered.

Chen and Hall (2007) investigate the conflict and cooperation issues in an assembly

systems, which includes a manufacturer and multiple suppliers. The suppliers provide parts

to the manufacturer for the assembly of products. All suppliers are regarded as a unit,

since they have consistent antagonistic interest with the manufacturer. Various models

are analyzed based on the relative bargaining power between these two decision makers.

They evaluate the conflicts between respective optimal schedules and show the benefits of
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cooperation of decision makers. Both conflict cost and cooperation saving are substantial in

many scenarios.

Dawande et al. (2006) also study the conflict and cooperation issues. What is different

is that they examine a supply chain that involves a manufacturer and a distributor. The

manufacturer makes products that are shipped to customers by the distributor. Two specific

problems are addressed, with the manufacture focusing on minimizing unproductive time

and the distributor desiring to minimize customer cost measure in the first problem and to

minimize inventory holding cost in the second problem. They evaluate the conflict of each

party, which is the relative increase in cost that results from using the other party’s optimal

schedule. They consider several practical scenarios about the level of cooperation between

the manufacturer and the distributor, and they demonstrate the significance of cost saving

via cooperation.

Using limited buffer storage capacity, Agnetis et al. (2006) study models for re-sequencing

jobs between a supplier and several manufacturers with different ideal sequences. They

describe efficient solution procedures for a variety of objectives and identify the conditions

under which the total cost is reduced via cooperation.
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3.3 Scheduling Coordination in a Production and Dis-

tribution System

3.3.1 Problem Description

we are concerned with a two-echelon supply chain that involves a manufacturer and a dis-

tributor. The manufacturer produces products for retailers, and the distributor delivers

finished products to retailers. Retailers may order multiple different products from the man-

ufacturer. In such a case, these products are regarded as a single order. In other words, a

retailer corresponds to an order. Assume that all retailers place their orders at time zero,

and the products in each order are supposed to be produced consecutively. No setup time

exists between the production of two adjacent orders. Moreover, the production of an order

cannot be interrupted once its production starts. We also assume that, once an order is

finished producing, the products are immediately delivered to the corresponding retailer.

Additionally, the delivery is assumed to be instant, i.e., the completion time of an order is

the time the corresponding retailer receives the order.

Each retailer order has a due date, before which the products should be received. If the

delivery of an order misses its due date, the distributor is subject to penalty for lateness.

The least penalty is negative impression. Therefore, the distributor desires such a production

schedule for the retailers’ orders, under which the maximum lateness of the orders is mini-

mized. On the other hand, in order to achieve high production efficiency, the manufacturer

takes the minimization of the mean completion time of the orders as its objective. Since
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the manufacturer and the distributor have different objectives, a conflict arises with respect

to the production schedule of the retailers’ orders. This is because, an optimal production

schedule for the manufacturer is usually not an optimal one for the distributor, and vice

versa.

This section studies the resulting conflict, which is to be measured from both viewpoints

of the manufacturer and the distributor respectively. In addition, we discuss the cooperation

between the two parties and investigate cooperation savings. The following notation is to be

used in the section:

n: the number of retailers’ orders

λ: the optimal production schedule of orders for the manufacturer

γ: the optimal production schedule of orders for the distributor

pi(S): the processing time of the i-th order under a schedule S

di(S): the due date of the i-th order under a schedule S

Ci(S): the completion time of the i-th order under a schedule S

Li(S): the lateness of the i-th order under a schedule S

C̄(S): the mean completion time of the orders under a schedule S

Lmax(S): the maximum lateness of the orders under a schedule S

F (S): the performance measure of the schedule S for the manufacturer

G(S): the performance measure of the schedule S for the distributor
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Ci(S), Li(S), C̄(S), Lmax(S), F (S), and G(S) are defined as below:

Ci(S) =

i∑
k=1

pk(S)

Li(S) = Ci(S)− di(S)

C̄(S) =
1

n

n∑
i=1

Ci(S)

Lmax(S) = max
1≤i≤n

Li(S)

F (S) = C̄(S)

G(S) = Lmax(S)

3.3.2 The Analysis of Conflict

As mentioned in Subsection 3.3.1, the manufacturer and the distributor have different opin-

ions on the orders’ production schedule. The manufacturer desires a schedule under which

the mean completion time is minimized, whereas the distributor tends to have a schedule

under which the maximum lateness is the minimum. According to scheduling literature

such as (Pinedo, 2002), the Shortest-Processing-Time-first (SPT) rule and the Earliest-Due-

Date-first (EDD) rule are optimal for the manufacturer and the distributor, respectively. In

general, the schedule generated by the SPT rule is different from the one generated by the

EDD rule. Therefore, a scheduling conflict arises between the manufacturer and the distrib-

utor. In order to have a quantitative notion of the conflict, we develop two mathematical

measures for it, from the perspectives of the manufacturer and the distributor respectively.
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These two measures, denoted by Confm and Confd, are defined as follows:

Confm =
C̄(γ)− C̄(λ)

C̄(λ)
∗ 100% , (3.1)

Confd =
Lmax(λ)− Lmax(γ)

Lmax(γ)
∗ 100% , (3.2)

where λ and γ are the respective optimal schedules for the two parties (i.e., the schedules

generated by the SPT and EDD rules, respectively).

3.3.2.1 Numerical Examples

First we investigate the conflict from specific numerical examples. To this end, we simulate

some small-sized problem instances. Table 3.1 presents four instances, with the first two

instances including 10 orders each and the last two including 20 orders each. The processing

times and the due dates of the orders are arbitrarily set to follow uniform distributions

of Uniform(1, 50) and Uniform(1, 100) respectively. Furthermore, for reasonability we set

di > pi, i = 1, · · · , n. It is easy to find the optimal two schedules λ and γ for each instance,

by the SPT and EDD rules respectively. Then by the formulas (1) and (2), we calculate

the corresponding conflict measures as in Table 3.2. We use processing times to represent

orders in schedules λ and γ. Large values of Confm and Confd in Table 3.2 indicate that

the scheduling conflict between the manufacturer and the distributor is very significant.

Therefore, some actions must be taken to lessen the conflict. An effective action is to

cooperate with each other.
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Table 3.1: Problem Instances

1) Job Number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Processing Time: 13, 47, 7, 27, 45, 48, 17, 22, 24, 8
Due Date: 14, 54, 73, 40, 87, 63, 25, 98, 65, 23

2) Job Number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Processing Time: 1, 1, 10, 30, 3, 19, 32, 36, 35, 5
Due Date: 46, 45, 36, 68, 70, 73, 48, 56, 46, 72

3) Job Number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
Processing Time: 7, 1, 33, 37, 2, 6, 45, 39, 30, 35, 49, 28, 39, 31, 50, 3, 50, 11, 46, 34
Due Date: 47, 5, 47, 80, 29, 70, 72, 73, 74, 63, 99, 82, 54, 60, 51, 89, 62, 96, 83, 62

4) Job Number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
Processing Time: 22, 30, 6, 16, 32, 45, 49, 2, 6, 21, 5, 15, 34, 49, 20, 42, 7, 43, 12, 4
Due Date: 34, 58, 14, 87, 33, 49, 99, 97, 95, 46, 34, 17, 83, 65, 33, 75, 30, 87, 63, 6

Table 3.2: Numerical Results of the Conflict for Problem Instances

No. Individual Optimal Schedules Confm Confd

1) λ: 7, 8, 13, 17, 22, 24, 27, 45, 47, 48
27.54% 21.88%

γ: 13, 8, 17, 27, 47, 48, 24, 7, 45, 22
2) λ: 1, 1, 3, 5, 10, 19, 30, 32, 35, 36

60.72% 17.17%
γ: 10, 1, 1, 35, 32, 36, 30, 3, 5, 19

3) λ: 1, 2, 3, 6, 7, 11, 28, 30, 31, 33, 34, 35, 37, 39, 39, 45, 46, 49, 50, 50
34.71% 7.76%

γ: 1, 2, 7, 33, 50, 39, 31, 50, 34, 35, 6, 45, 39, 30, 37, 28, 46, 3, 11, 49
4) λ: 2, 4, 5, 6, 6, 7, 12, 15, 16, 20, 21, 22, 30, 32, 34, 42, 43, 45, 49, 49

36.77% 9.42%
γ: 4, 6, 15, 7, 32, 20, 22, 5, 21, 45, 30, 12, 49, 42, 34, 16, 43, 6, 2, 49
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3.3.2.2 Properties of the Conflict

Before presenting some properties of the conflict, we first prove that the Longest-Processing-

Time-first (LPT) rule and the Latest-Due-Date-first (LDD) rule maximize the mean com-

pletion time and the maximum lateness, respectively.

Lemma 6. For the single machine scheduling problem, the LPT rule maximizes the mean

completion time.

Proof. Without loss of generality, suppose that there are n jobs to be scheduled on a

single machine. Let pi be the processing time of the i-th job under a certain schedule,

i = 1, 2, · · · , n. Then the completion time of the i-th job

Ci =
i∑

k=1

pk, i = 1, 2, · · · , n

So the mean completion time of jobs under this schedule is:

C̄ =
1

n

n∑
i=1

Ci =
1

n

n∑
i=1

i∑
k=1

pk =
1

n

n∑
i=1

(n + 1− i)pi

Therefore, in order to maximize the mean completion time, the n jobs should be scheduled

in such an order that p1 ≥ p2 ≥ · · · ≥ pn. That is, the LPT rule is optimal for maximizing

the mean completion time.

Lemma 7. For the single machine scheduling problem, the LDD rule maximizes the maxi-

mum lateness.
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Proof. By contradiction. Let S be an optimal schedule that maximizes the maximum late-

ness. Assume that S does not follow the LDD rule, that is, there exists at least a pair of

adjacent jobs i and j, where job i is processed before job j and di < dj. We interchange jobs

i and j and denote the new schedule by S ′. See Figure 3.1.

Let Ck and Lk (C ′
k and L′

k) be the completion time and the lateness of some job k under

the schedule S (S ′). On the one hand, by the definition of job completion time, it is clear

that C ′
i > Ci (In fact, C ′

i = Ci + pj). Therefore, C ′
i − di > C ′

i − di, i.e., L′
i > Li. In addition,

it is easy to derive that C ′
i = Cj. Since di < dj , we have C ′

i − di > Cj − dj, i.e., L′
i > Lj .

Then

L′
i > Li

L′
i > Lj

}
=⇒ L′

i > max{Li, Lj}

On the other hand, for k �= i or j, L′
k = Lk since C ′

k = Ck. Therefore, max
1≤i≤n

L′
i ≥ max

1≤i≤n
Li.

This violates the assumption that S is optimal for maximizing the maximum lateness. This

completes the proof.

Theorem 2. The conflict extent between the manufacturer and the distributor depends on

the relationship between the processing times and the due dates of the orders. If it is the

case that an order’s processing time is longer, its due date is later, then there is no conflict

i j

ij

Schedu le S

Schedu le S '

Figure 3.1: A pairwise interchange of jobs i and j
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between the two parties. Contrarily, if it is true that an order’s processing time is longer, its

due date is earlier, then the conflict is the largest. In other cases, the conflict is in between.

Proof. Without loss of generality, assume that p1 ≤ p2 ≤ · · · ≤ pn.

First consider the case where the longer an order’s processing time, the later its due date.

Obviously it follows that d1 ≤ d2 ≤ · · · ≤ dn. Since the SPT and the EDD rules are the

optimal production schedules of retailers’ orders for the manufacturer and for the distributor

respectively, in this concerned case the two parties have the same optimal schedules λ = γ =

{1, 2, · · · , n} and therefore there is no conflict.

In the completely opposite case where the longer an order’s processing time, the earlier

its due date, it holds that d1 ≥ d2 ≥ · · · ≥ dn. For the manufacturer, the optimal schedule is

λ = {1, 2, · · · , n}, which is according to the SPT rule. While for the distributor, the optimal

schedule is γ = {n, n − 1, · · · , 2, 1}, which is based on the EDD rule. By Lemma 6, γ

maximizes the desired performance measure of the manufacturer, i.e., the mean completion

time. This results in the largest Confm by the formula (3.1). Similarly by Lemma 7, λ

maximizes the adopted performance measure of the distributor, i.e., the maximum lateness.

This leads to the largest Confd by the formula (3.2).

In other cases than the above two, since the derived optimal schedule of one party does

not maximize the performance measure of the other party, the conflict is between zero and

the largest.
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Theorem 3. Both measures of the conflict between the manufacturer and the distributor are

confined in their own ranges. Assume that p1 ≤ p2 ≤ · · · ≤ pn, the ranges are:

0 ≤ Confm ≤
∑n

k=1 kpk∑n
k=1(n + 1− k)pk

− 1 , (3.3)

0 ≤ Confd ≤
max
1≤i≤n

{∑n
k=i psk

− dsi
}

max
1≤i≤n

{∑i
k=1 psk

− dsi
} − 1 , (3.4)

where {s1, s2, · · · , sn} is a permutation of {1, 2, · · · , n} and satisfies ds1 ≤ ds2 ≤ · · · ≤ dsn.

Proof. According to their definitions, it is clear that Confm ≥ 0 and Confd ≥ 0. Now let

us focus on the upper bounds, which is denoted by Conf ∗
m and Conf ∗

d , respectively.

First consider Confm. By the SPT rule, the optimal schedule for the manufacturer is

λ = {1, 2, · · · , n}. Contrarily, by Lemma 6 the worst schedule is {n, n − 1, · · · , 2, 1}. We

denote this schedule by α. Based on Theorem 2, when si = n + 1− i(i = 1, 2, · · · , n), i.e.,

dn ≤ dn−1 ≤ · · · ≤ d1, the optimal schedule for the distributor is {n, n − 1, · · · , 2, 1} = α,

and the largest conflict arises. Hence,

C̄(λ) =
1

n

n∑
i=1

Ci(λ) =
1

n

n∑
i=1

i∑
k=1

pk =
1

n

n∑
k=1

(n + 1− k)pk ,

C̄(α) =
1

n

n∑
i=1

Ci(α) =
1

n

n∑
i=1

n∑
k=n+1−i

pk =
1

n

n∑
k=1

kpk ,

Conf ∗
m =

C̄(α)− C̄(λ)

C̄(λ)
=

∑n
k=1 kpk∑n

k=1(n + 1− k)pk
− 1 .

Then consider Confd. By the EDD rule, the optimal schedule for the distributor is

γ = {s1, s2, · · · , sn}. Contrarily, by Lemma 7 the worst schedule (denoted by β) is β =
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{sn, sn−1, · · · , s2, s1}. From another perspective, β is the optimal schedule for the manufac-

turer when it holds that psn ≤ psn−1 ≤ · · · ≤ ps2 ≤ ps1 , i.e., si = n + 1− i(i = 1, 2, · · · , n).

Under this scenario, there exists the largest conflict. Then we have

Csi
(γ) =

i∑
k=1

psk
, i = 1, 2, · · · , n ,

Lmax(γ) = max
1≤i≤n

{Li(γ)} = max
1≤i≤n

{Csi
(γ)− dsi

} = max
1≤i≤n

{
i∑

k=1

psk
− dsi

} ,

Csi
(β) =

n∑
k=i

psk
, i = 1, 2, · · · , n ,

Lmax(β) = max
1≤i≤n

{Li(β)} = max
1≤i≤n

{Csi
(β)− dsi

} = max
1≤i≤n

{
n∑

k=i

psk
− dsi

} ,

Conf ∗
d =

Lmax(β)− Lmax(γ)

Lmax(γ)
=

max
1≤i≤n

{∑n
k=i psk

− dsi
}

max
1≤i≤n

{∑i
k=1 psk

− dsi
} − 1 .

This completes the proof.

3.3.3 Cooperation Mechanisms and Savings

From Subsection 3.3.2, it is evident that the conflict is significant. The cooperation is there-

fore needed between the manufacturer and the distributor. As is known, the performance

measures F (S) and G(S) are desired to minimize for the two parties, respectively. To some

degree F (S) and G(S) can be regarded as the costs the two parties incur when the schedule

S is adopted for the production of the retailers’ orders. This perspective is used in (Chen

and Hall, 2007) as well.
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3.3.3.1 Cooperation Mechanisms

Based on the relative bargaining power between the manufacturer and the distributor, below

we propose cooperation mechanisms and analyze the resulting savings.

A) Manufacturer Dominates, Distributor Negotiates

In this scenario, the manufacturer is dominant and it will adopt the schedule that benefits

it, i.e., it will use its own optimal schedule λ. For the distributor, however, this schedule is

usually not good. So the distributor wishes to persuade the manufacturer to use some alter-

native schedule θ through providing the manufacturer some incentive μ. According to the

bargaining theory of Nash (1950, 1953), the incentive must be enough for the manufacturer

to accept the alternative schedule. In mathematical words, this incentive μ must satisfy

F (θ)− μ ≤ F (λ) and G(θ) + μ ≤ G(λ). Simultaneously, the distributor certainly desires its

cost (i.e., G(θ) + μ) to be the minimum. Therefore, the distributor needs to find a set of

(θ, μ) that solves the following optimization problem:

min G(θ) + μ (3.5)

s.t. F (θ)− μ ≤ F (λ) (3.6)

G(θ) + μ ≤ G(λ) (3.7)

μ ≥ 0 (3.8)

Theorem 4. Let θ∗ be the schedule that minimizes F (θ) + G(θ), and μ∗ = F (θ∗) − F (λ).

Then (θ∗, μ∗) solves the above optimization problem (3.5-3.8).
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Proof. First prove the feasibility of (θ∗, μ∗). By the definition of μ∗, the constraint (3.6)

follows. By the definition of θ∗, F (θ∗)+G(θ∗) ≤ F (λ)+G(λ). So G(θ∗)+ (F (θ∗)−F (λ)) ≤

G(λ), i.e., the constraint (3.7) is satisfied. In addition, the constraint (3.8) naturally follows

due to the definitions of μ∗ and λ.

Now prove the optimality of (θ∗, μ∗). Consider an arbitrary feasible solution (θ, μ). By

the constraint (3.6), we have μ ≥ F (θ)− F (λ). Hence, G(θ) + μ ≥ G(θ) + [F (θ)− F (λ)] ≥

F (θ∗) + G(θ∗)− F (λ) (by the definition of θ∗). This lower bound can be achieved by using

the feasible solution (θ∗, μ∗). This completes the proof.

Theorem 5. The cost saving of the distributor from the cooperation with the manufacturer

is [F (λ) + G(λ)]− [F (θ∗) + G(θ∗)].

Proof. Without the cooperation, the cost of the distributor is G(λ), since the manufacturer

is the dominant party and the schedule λ is adopted. While with the cooperation, based on

Theorem 4 the cost becomes G(θ∗) + μ∗ = F (θ∗) + G(θ∗)−F (λ). Therefore, the cost saving

is G(λ)− [G(θ∗) + μ∗] = [F (λ) + G(λ)]− [F (θ∗) + G(θ∗)].

Remark 1. Since θ∗ is the schedule that minimizes F (θ) + G(θ), the cost saving is nonneg-

ative. On the other hand, the cost of the manufacturer is constant regardless of there is a

cooperation or not, since the constraint (3.6) is binding at (θ∗, μ∗). In spite of so, the manu-

facturer still needs cooperation, because at least one of the advantages from the cooperation

lies in that there is a favorable relationship between it and the distributor.
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B) Distributor Dominates, Manufacturer Negotiates

In this scenario, the distributor has dominant bargaining power over the manufacturer. So

generally the distributor will use its own optimal schedule γ. However, this schedule γ is

usually not a favorable schedule for the manufacturer. Therefore, the manufacturer needs

to provide an incentive ν that is attractive enough to persuade the distributor to adopt an

alternative schedule η (Nash, 1950, 1953). This incentive should satisfy G(η) − ν ≤ G(γ)

and F (η) + ν ≤ F (γ). In addition, the manufacturer desires its cost after cooperation as

minimum as possible. Therefore, it is confronted with the following optimization problem:

min F (η) + ν (3.9)

s.t. G(η)− ν ≤ G(γ) (3.10)

F (η) + ν ≤ F (γ)) (3.11)

ν ≥ 0 (3.12)

Theorem 6. Let η∗ be the schedule that minimizes F (η) + G(η), and ν∗ = G(η∗) − G(γ).

Then (η∗, ν∗) solves the above optimization problem (3.9-3.12).

Proof. First prove the feasibility of (η∗, ν∗). The constraint (3.10) follows by the definition

of ν∗. The left-hand side of the constraint (3.11), F (η∗) + ν∗ = F (η∗) + G(η∗) − G(γ), is

less than or equal to F (γ) by the definition of η∗. In addition, the definitions of ν∗ and γ

guarantee the satisfaction of the constraint (3.12).
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Now prove the optimality of (η∗, ν∗). Given an arbitrary feasible solution (η, ν), by the

constraint (3.10), we have ν ≥ G(η) − G(γ). Hence, F (η) + ν ≥ F (η) + [G(η) − G(γ)] ≥

F (η∗)+G(η∗)−G(γ) (by the definition of η∗). This lower bound is achieved by the solution

(η∗, ν∗). This completes the proof.

Theorem 7. The cost saving of the manufacturer from the cooperation with the distributor

is [F (γ) + G(γ)]− [F (η∗) + G(η∗)].

Proof. Since the distributor has dominant bargaining power, its own optimal schedule γ

is used. So the cost of the manufacturer without the cooperation is F (γ). While with

the cooperation with the distributor, based on Theorem 6 the cost of the manufacturer is

F (η∗) + ν∗ = F (η∗) + G(η∗) − G(γ). Therefore, the cost saving from the cooperation is

F (γ)− [F (η∗) + G(η∗)−G(γ)] = [F (γ) + G(γ)]− [F (η∗) + G(η∗)].

Remark 2. The cost saving is nonnegative since η∗ minimizes F (η) + G(η). However, the

cooperation does not reduce the cost of the distributor, because the constraint (3.10) is

binding at (η∗, ν∗). Although so, the distributor still needs to accept the incentive and co-

operate with the manufacturer, in view of the maintaining and development of the favorable

relationship between the two parties.

Remark 3. θ∗ and η∗ actually represent the same schedule that minimizes 1||{C̄ + Lmax}. A

property for such a schedule is developed as follows.
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Property 11. If processing time and due date is agreeable, the SPT (or EDD) rule is optimal

for the 1||{C̄ +Lmax} problem; If processing time and due date is not agreeable, two adjacent

jobs are scheduled in the SPT rule for the 1||{C̄ + Lmax} problem if the following condition

holds:

min{pi, pj , |di − dj|} ≤ |pi − pj|
n

(3.13)

where pi, pj are two adjacent jobs, n is the number of jobs, and | · | represents the absolute

value.

Proof. First we prove the first part. If processing time and due date is agreeable, i.e., ps ≤ pt

implies ds ≤ dt, s, t ∈ {1, 2, · · · , n}, then the sequence generated by the SPT rule is the same

as that generated by the EDD rule. In addition, it is well known that the SPT and EDD

rules are optimal for the 1||C̄ and 1||Lmax problems, respectively. Therefore, the SPT (or

EDD) rule is optimal for the 1||{C̄ + Lmax} problem.

Now we prove the second part (by contradiction). There are two cases for this part. First

consider the case where pi > pj and di < dj. Assume that in an optimal schedule S, job i

precedes job j. Interchange jobs i and j as shown in Figure 3.2. Denote the new schedule

by S ′. Let Ci(C
′
i) and Li(L

′
i) be the completion time and lateness of the i-th job under the

schedule S(S ′), and let C̄(C̄ ′) and Lmax(L
′
max) be the mean completion time and maximum

lateness of jobs under the schedule S(S ′).

It is easy to know that, C̄ − C̄ ′ =
pi−pj

n
. Since C ′

i = Cj and di < dj, we have C ′
i − di >

Cj − dj, i.e., L′
i > Lj . Further, L′

i − Lj = dj − di. Also, it is obvious that C ′
i > Ci. So

L′
i > Li. Further, L′

i − Li = pj. Additionally, it is evident that C ′
i > C ′

j . Since di < dj , we
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Figure 3.2: The interchange of job i and job j

have L′
i > L′

j . Besides, Lk(k �= i or j) is constant whether the interchange occurs or not.

Therefore, from L′
i > Li, L′

i > Lj , and L′
i > L′

j , we have that L′
max ≥ Lmax. Specifically,

L′
max − Lmax ≤ min{pj , dj − di}.

Under the considered situation, Equation 3.13 is equivalent to min{pj, dj − di} ≤ pi−pj

n
.

Hence, if Equation 3.13 holds, then L′
max − Lmax ≤ C̄ − C̄ ′, i.e., C̄ ′ + L′

max ≤ C̄ + Lmax.

This violates that S is an optimal schedule for the 1||{C̄ + Lmax} problem. Therefore, job i

should be scheduled after job j. That is, the adjacent jobs i and j should be scheduled in

the SPT rule.

Consider the other case where pi < pj and di > dj. Consider the schedules S and

S ′ as represented in Figure 3.2, with the same notation. In a similar way, we can derive

that C̄ ′ − C̄ =
pj−pi

n
and Lmax − L′

max ≤ min{pi, di − dj}. If Equation 3.13 holds, then

Lmax − L′
max ≤ C̄ ′ − C̄, i.e., C̄ + Lmax ≤ C̄ ′ + L′

max. Therefore, in this case job i should be

scheduled preceding job j. In other words, jobs i and j should be scheduled in the SPT rule.

Combining these two cases, the second part of the property holds.
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3.3.3.2 Lower Bounds of Relative Cost Savings

Let Savm and Savd be the relative cost savings via cooperation for the manufacturer and

the distributor, respectively. Based on Theorems 5 and 7, we define them as follows:

Savm =
[F (γ) + G(γ)]− [F (θ∗) + G(θ∗)]

F (γ)
∗ 100% , (3.14)

Savd =
[F (λ) + G(λ)]− [F (θ∗) + G(θ∗)]

G(λ)
∗ 100% , (3.15)

where λ, γ, and θ∗ are defined as above.

Below we develop a heuristic algorithm for obtaining a schedule that reduces 1||{C̄ +

Lmax}. Denote the derived schedule by δ. Obviously, F (δ) + G(δ) ≥ F (θ∗) + G(θ∗) since θ∗

minimizes F (·)+G(·). Therefore, lower bounds of the relative cost savings for the manufac-

turer and the distributor are:

Savm ≥ [F (γ) + G(γ)]− [F (δ) + G(δ)]

F (γ)
∗ 100% , (3.16)

Savd ≥ [F (λ) + G(λ)]− [F (δ) + G(δ)]

G(λ)
∗ 100% . (3.17)

Here is the proposed heuristic, which is inspired by both the SPT and EDD rules. First

calculate the product of processing time and due date for each job, and then schedule jobs

in increasing order of the products. In other words, the job with the smallest product of

processing time and due date is scheduled first, the job with the second smallest product is

scheduled second, the job with the k smallest product is scheduled k-th, and the job with

the largest product is scheduled last.
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Using the problem instances in Table 3.1, we derive the job sequences by the heuristic

and compute the lower bounds according to the expressions (3.16) and (3.17). The output is

demonstrated in Table 3.3, where LbSavm and LbSavd stand for the lower bounds of relative

cost savings for the manufacturer and the distributor, respectively. The results show the

significant reduction of savings for both the manufacturer and the distributor.

3.3.4 Summary

In this section, we study scheduling coordination in a production and distribution system

that consists of a manufacturer and a distributor. The manufacturer produces products

and the distributor delivers the finished products to the downstream retailers. Each retailer

order has a due date associated with it. The distributor is penalized for late deliveries. So

in order to reduce lateness fees, the distributor desires a production schedule that minimizes

the maximum lateness of the orders. However, the manufacturer tends to minimize the

mean completion time of the orders in the pursuit of high production efficiency. Therefore,

a conflict regarding the orders’ production scheduling arises between the manufacturer and

the distributor, due to different scheduling objectives. In this section, the resulting conflict

Table 3.3: Examples of Lower Bounds of Relative Cost Savings

No. The Schedules by the Heuristic LbSavm LbSavd

1) δ: 13, 8, 17, 7, 27, 24, 22, 47, 48, 45 10.09% 10.41%
2) δ: 1, 1, 3, 10, 5, 19, 32, 35, 36, 30 30.16% 8.79%
3) δ: 1, 2, 3, 7, 6, 11, 33, 31, 39, 34, 35, 30, 28, 50, 39, 37, 50, 45, 46, 49 23.70% 6.07%
4) δ: 4, 6, 5, 2, 7, 15, 6, 20, 22, 12, 21, 32, 16, 30, 45, 34, 42, 49, 43, 49 24.54% 7.38%
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is measured and studied. Moreover, based on different scenarios of the relative bargain-

ing power between the two parties, cooperation mechanisms are proposed and the resulting

cooperation savings are investigated. In addition, we reveal a property of the optimal coop-

eration schedule. Furthermore, a heuristic algorithm for deriving a cooperation schedule is

proposed and lower bounds of relative cost savings are developed.
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Chapter 4

Conclusions

4.1 Summarized Work

This dissertation studies scheduling problems for service stability and for supply chain co-

ordination as well. They are illustrated in Chapters 2 and 3, respectively. In Chapter

2, service stability is represented by the performance measure of completion time variance

(CTV), and several job scheduling problems with CTV minimization are studied. CTV is

a non-regular performance measure since it is not nondecreasing in completion times. CTV

minimization means that jobs are desired to be completed within a relative concentrated

period of time. Thus, both earliness and tardiness are undesirable. This point conforms

to the popular Just-in-time (JIT) philosophy, which desires that jobs are completed neither

early nor tardy. This is because that early completion increases inventory cost while tardy

completion results in customer dissatisfaction. In Sections 2.3 and 2.4, job scheduling prob-

lems with CTV minimization are addressed on multiple identical parallel machines, with the
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unrestricted case and the restricted case, respectively. Restriction here means that machines

do not have idle times before they begin to process jobs. In other words, at time zero, all

machines must begin processing jobs in the restricted case. However, in the unrestricted

case, machines can have any length of idle times before they begin processing jobs. In these

two sections, several dominant properties of each problem are discovered, and for each prob-

lem an efficient heuristic algorithm is developed based on the discovered properties. The

performance of each heuristic algorithm is compared with optimal schedules when problem

instances are small and compared to existing scheduling algorithms when problem instances

are large. Numerical examples demonstrate that each proposed heuristic algorithm is near-

optimal when considering small-sized instances and greatly outperforms existing algorithms

when considering large-sized instances. In Section 2.5, job scheduling problem is taken into

account from different perspective: users’ perspective. The problem is investigated in the

single-machine environment. The concerned performance measure is class-based completion

time variance. Jobs are assumed to come from several users. The study of this problem is

motivated by the phenomenon that the CTV of jobs from a user may be very large even if

the overall CTV of the system is minimized. However, for the standpoint of the users, they

do not care the overall CTV. It will cause dissatisfaction of the users if the overall CTV is

taken as the only scheduling objective. So in this section the class-based completion time

variance (CB-CTV) is regarded as the dominant objective while the overall CTV is adopted

as a second objective. The CB-CTV problem is proven to be able to be transformed into

multiple CTV problems. This discovery significantly simplifies the CB-CTV problem, since

many favorable properties of the CTV problem have been developed. Furthermore in this
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section, the tradeoff between CB-CTV minimization and the overall CTV minimization is

examined.

Chapter 3 studies scheduling problems for supply chain coordination, which is also de-

noted by supply chain scheduling. Different from Chapter 2, this chapter considers scheduling

problems from the perspective of a supply chain. In recent years, supply chain coordination

has been gaining more and more attention from both the academia and the industry. Fierce

competition makes the firms in a supply chain pay more attention to the overall performance

of the supply chain rather than of itself. The coordination in a supply chain is crucial. On

the other hand, scheduling is widely needed in practice. Therefore, coordinated scheduling

among decision makers in a supply chain are important. Because of different standpoints,

decision makers of different stages in a supply chain usually have different opinions with

respect to the scheduling operation decision at a certain stage. Accordingly, conflicts arise.

The coordination is therefore needed to resolve the conflicts. Section 3.3 investigates a

production and distribution system consisting of a manufacturer and a distributor. The

manufacturer produces products and the distributor delivers products to retailers. Each

retailer order is associated with a due date. The distributor is punished if a late delivery

occurs. If the manufacture focuses on its own operation efficiency and the distributor is only

concerned with lateness penalty, then a disagreement exists on the production scheduling

policy of the retailers’ orders. In this section, from both viewpoints of the manufacturer

and the distributor, scheduling conflicts are measured and analyzed. According to different

scenarios of the relative bargaining power between the manufacturer and the distributor,

cooperation mechanisms are proposed and cooperation savings are investigated. In addition,
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a heuristic algorithm is proposed for obtaining a coordinated schedule, and lower bounds of

relative cost savings are provided.

4.2 Potential Applications

The study results of this dissertation can be widely applied to the real world. Firstly, the

developed heuristic algorithms for job scheduling problems on identical parallel machines

with CTV minimization can be employed in the situations where service stability is highly

desired, such as Internet package dispatching and other web services. It also can be used

in the circumstances where JIT is favored, for example, Toyota Production System (TPS).

Secondly, the result of the CB-CTV scheduling problem can be used in the scenarios where

user preference is very important. There are so many such examples since customer satis-

faction is increasingly important for a company. Thirdly, coordinated scheduling in a supply

chain can be applied to almost all supply chains, since all supply chains involve scheduling

problems and require the coordination among the decision makers in supply chains.

4.3 Future Work and Directions

In Sections 2.3 and 2.4, some assumptions are made to simplify the problems. Later on,

we may release several assumptions for future research. For instance, we may consider the

different release times of jobs, and we may allow preemption during job processing. Moreover,

these two sections only consider a single performance measure of CTV. Combining CTV with

other performance measures is another feasible research direction. For example, we can study
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the scheduling problem of n jobs on m identical and parallel machines with the objective

of minimizing both CTV and the mean completion time. Additionally, both the sections

only consider the deterministic cases of the problems where the processing times of jobs are

known in advance. However, in the real world the processing times are often unknown and

random, which leads to the research of the stochastic versions of Pm||CTV problems.

Section 2.5 deals with CB-CTV minimization problems on a single machine. Future re-

search can be conducted under the parallel-machine environment, denoted by Pm||CB-CTV .

Also, this section only addresses the deterministic CB-CTV minimization problems. The

stochastic case of CB-CTV minimization problems is open for future study. Furthermore, it

is of interest to investigate some variations of the CB-CTV minimization problem in which

bi-criteria is considered to minimize a combination of regular and non-regular performance

measures.

As for Section 3.3, we consider the simple performance measures of scheduling, the mean

completion time and the maximum lateness. Future research can take into account more

complicated performance measures such as maximum tardiness, completion time variance,

and so forth. Additionally, instead of single machine environment, we also can consider the

scheduling problem on multiple machines. The system Section 3.3 considers is a production

and distribution system. The scheduling problem in other systems is still open for explo-

ration. Moreover, the scheduling decision coordination issue among multiple (more than

two) decision makers is another possible research direction.
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Axsäter, S. (2006). Inventory Control. New York: Springer, 2nd edition.

Baker, K. and Scudder, G. (1990). Sequencing with earliness and tardiness penalties: a

review. Operations Research, 38(1):22–36.

Banker, R. and Khosla, I. (1995). Economics and operations management: a research per-

spective. Journal of Operations Management, 12:423–425.

Brucker, P. (2004). Scheduling Algorithms. Springer, 4th edition.

Cai, X. and Cheng, T. (1998). Multi-machine scheduling with variance minimization. Dis-

crete Applied Mathematics, 84:55–70.

Chandra, P. and Fisher, M. (1994). Coordination of production and distribution planning.

European Journal of Operational Research, 72:503–517.

101



Chen, B., Potts, C., and Woeginger, G. (1998). A review of machine scheduling: complexity,

algorithms, and approximation. Kluwer, Dordrecht.

Chen, Z.-L. and Hall, N. G. (2007). Supply chain scheduling: Conflict and cooperation in

assembly systems. Operations Research, 55(6):1072–1089.

Cheng, T. and Sin, C. (1990). A state-of-the-art review of parallel-machine scheduling

research. European Journal of Operational Research, 47:271–292.

Chopra, S. and Sodhi, M. S. (2004). Managing risk to avoid supply-chain breakdown. MIT

Sloan Management Review, 46(1):52–61.

Dawande, M., Geismar, H. N., Hall, N. G., and Sriskandarajah, C. (2006). Supply chain

scheduling: Distribution systems. Production and Operations Management, 15(2):243–261.

De, P., Ghosh, J. B., and Wells, C. E. (1992). On the minimization of completion time

variance with a bicriteriaextension. Operations Research, 40(6):1148–1155.

Eilon, S. and Chowdhury, I. G. (1977). Minimizing waiting time variance in the single

machine problem. Management Science, 23(6):567–575.

Gajpal, Y. and Rajendran, C. (2006). An ant-colony optimization algorithm for minimizing

the completion-timevariance of jobs in flowshops. Int. J. Production Economics, 101:259–

272.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Kan, A. H. R. (1979). Optimization and

approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete

Mathematics, 5:287–326.

102



Gupta, M. C., Gupta, Y. P., and Bector, C. R. (1990). Minimizing the flow-time variance

in single-machine systems. Journal of the Operational Research Society, 41:767–779.

Gupta, M. C., Gupta, Y. P., and Kumar, A. (1993). Minimizing flow time variance in a

single machine system using geneticalgorithm. European Journal of Operational Research,

70:289–303.

Hall, N. and Potts, C. (2003). Supply chain scheduling: batching and delivery. Operations

Research, 51(4):566–584.

Hall, N. G. and Kubiak, W. (1991). Proof of a conjecture of schrage about the completion

time varianceproblem. Operations Research Letters, 10:467–472.

Hoogeveen, H. and Vestjens, A. P. A. (1996). Optimal on-line algorithms for single-machine

scheduling. In Cunningham, W., McCormick, S., and Queyranne, M., editors, Proceedings

of the Fifth Conference on Integer Programming and Combinatorial Optimization, volume

1084, pages 404–414. Springer. Lecture Notes in Computer Science.

Hurter, A. P. and Van Buer, M. G. (1996). The newspaper production/distribution problem.

Journal of Business Logistics, 17(1):85–107.

Kanet, J. J. (1981). Minimizing variation of flow time in single machine systems. Management

Science, 27:1453–1459.

Kubiak, W. (1993). Completion time variance on a single machine is difficult. Operations

Research Letter, 12:49–59.

103



Kubiak, W., Cheng, J., and Kovalyov, M. Y. (2002). Fast fully polynomial approxima-

tion schemes for minimizing completiontime variance. European Journal of Operational

Research, 137:303–309.

Lee, H. L., Padmanabhan, V., and Whang, S. (1997). Information distortion in a supply

chain: The bullwhip effect. Management Science, 43(4):546–558.

Lee, H. L., So, K. C., and Tang, C. S. (2000). The value of information sharing in a two-level

supply chain. Management Science, 46(5):626–643.

Lee, H. L. and Whang, S. (2000). Information sharing in a supply chain. International

Journal of Manufacturing Technology and Management, 1(1):79–93.

Leung, J. Y.-T., editor (2004). Handbook of Scheduling: Algorithms, Models and Performance

Analysis. Chapman & Hall/CRC, 1st edition.

Li, X., Chen, Y., Sun, Y., and Sawhney, R. (2009). On the minimization of job completion

time variance on identical parallel machines. (Submitted).

Manna, D. K. and Prasad, V. R. (1997). Pseudopolynomial algorithms for ctv minimization

in single machinescheduling. Computers and Operations Research, 24(12):1119–1128.

Manna, D. K. and Prasad, V. R. (1999). Bounds for the position of the smallest job in com-

pletion time varianceminimization. European Journal of Operational Research, 114(2):411–

419.

Megow, N. and Schulz, A. (2004). On-lline scheduling to minimize average completion time

revisited. Operations Reaesrch Letters, 32(5):485–490.

104



Merten, A. and Muller, M. (1972). Variance minimization in single machine sequencing

problems. Management Science, 18(9):518–528.

Mittenthal, J. and Raghavachari, M. (1993). Stochastic single machine scheduling with

quadratic early-tardy penalties. Operations Research, 41:786–796.

Mittenthal, J., Raghavachari, M., and Rana, A. (1993). A hybrid simulated annealing ap-

proach for single machine schedulingproblems with non-regular penalty functions. Com-

puters and Operations Research, 20(2):103–111.

Nash, J. F. (1950). The bargaining problem. Econometrica, 18:155–162.

Nash, J. F. (1953). Two-person cooperative games. Econometrica, 21:128–140.

Pinedo, M. (2002). Scheduling Theory, Algorithms, and Systems. Prentice-Hall, Inc., 2nd

edition.

Prasad, V. R. and Manna, D. K. (1997). Minimization of expected variance of completion

times on single machine for stochastic jobs. Naval Research Logistics, 44:97–108.

Sarmiento, A. and Nagi, R. (1999). A review of integrated analysis of production-distribution

systems. IIE Transactions, 31:1061–1074.

Schrage, L. (1975). Minimizing the time-in-system variance for a finite jobset. Management

Science, 21(5):540–543.

Silver, E., D.F., P., and P., R. (1998). Inventory Management and Production Planning and

Scheduling. New York: Wiley, 3rd edition.

105



Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E. (2003). Designing & Managing the

Supply Chain: Concepts, Strategies & Case studies. McGraw-Hill/Irwin.

Thomas, D. and Griffin, P. (1996). Coordinated supply chain management. European Journal

of Operational Research, 94:1–15.

Tomlin, B. (2006). On the value of mitigation and contingency strategies for managing

supply chain disruption risks. MANAGEMENT SCIENCE, 52(5):639–657.

Vani, V. and Raghavachari, M. (1987). Deterministic and random single machine sequencing

with varianceminimization. Operations Reserach, 35(1):111–120.

Viswanathkumar, G. and Srinivasan, G. (2003). A branch and bound algorithm to mini-

mize completion time varianceon a single processor. Computers and Operations Research,

30(8):1135–1150.

Xu, X. and Ye, N. (2007). Minimization of job waiting time variance on identical parallel

machines. IEEE Transactions on Systems, Man, and Cybernetics, Part C., 37(5):917–927.

Ye, N., Li, X., Farley, T., and Xu, X. (2007). Job scheduling methods for reducing waiting

time variance. Computers and Operations Research, 34:3069–3083.

106



Vita

Yuerong Chen received both B.S. degree in Information Sciences and M.S. degree in Prob-

ability and Statistics from College of Mathematical Sciences, Nankai University, Tianjin,

China. In the spring of 2006, she joined as a graduate research assistant the Intelligent In-

formation Engineering and Systems Laboratory (IIESL) at the Department of Industrial and

Information Engineering, The University of Tennessee at Knoxville. She is expected to com-

plete her Doctor of Philosophy degree in 2009. She has published several peer-review journal

and conference papers. She received Best Master’s Thesis Award from Nankai University in

2005 and Best Paper Award from the 2007 Industrial Engineering Research Conference. She

is an IIE member.

107


	Scheduling for Service Stability and Supply Chain Coordination
	Recommended Citation

	page-thesis.dvi

