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Expansion of quasi-normal modes of black holes in five 
dimensional a11ti-de Sitter space 

Joseph Nicely 
Department of Physics and Astronomy 

University of Tennessee, Knoxville 

Abstract 

I calculate analytically the asymptotic form of quasi-normal (QN) frequencies for black 
holes in five-dimensional Anti de-Sitter (AdS) space. I first discuss the three-dimensional 
case in which exact expressions are obtained. In five dimensions, the wave equation reduces 
to a Heun equation. I perturbatively solve this equation to obtain the first-order correction 
to the QN frequencies. The zeroth order frequencies are found by approximating the Heun 
equation by a hypergeometric equation (valid at large frequencies). My results are in 
agreement with published numerical results. 
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1 Review of Normal Modes 

Before one can understand or clearly define what a quasi-normal mode is, the definition of 
normal modes must be made. Simply, a normal mode is an oscillations in which all particles in 
a system move in sync (but not necessarily in the same phase) with each other. different 
systems there are different methods by which the normal modes are found. 

If a system composed of discrete masses has n degrees of freedom, there will be n normal 
modes. The number of degrees of freedom depends upon the characteristics of the system; e.g. 
n-coupled one-dimensional oscillators have n degrees of freedom; a molecule of n atoms has 3n - 6 
vibrational of freedom (overall there are 3n degrees of freedom, however, 3 are needed 
for translational motion and 3 for rotational). The general motion of a system is a superposition 
(often complicated) of the normal modes of the system. One can extend this discussion to 
include continuous systems (such as waves). By imagining that a string has an infinite number 
of particles on it, one can see that for a string there exists an infinite number of normal modes. 

A basic example of this is two masses connected by a spring to each other and by springs to 
fixed positions (on a wall, for instance). There are only two normal modes for this system (l-d 
example with 2 masses). The masses can move in the same direction with the same velocity (the 
exact same phase), or the two masses can move 1800 out of phase with other. The general 
motion of this system can be expressed as a superposition of these 2 normal modes. 

If damping is introduced into a system (such as friction), the modes are not exactly normal. 
The obtained frequencies are no longer purely real but contain a complex part. This tells us that 
information or energy has been lost. This is basically what defines a quasi-normal mode. 

In the case of a black hole, the event horizon causes the damping to occur. This damping is 
a result of the fact that once information in some form has crossed the event horizon, we can no 
longer know anything about what happens to it. 

2 Introduction 

One may at first believe that this project contains no physics, that this project is entirely 
mathematical without any physical basis. This is not true. This project exemplifies the charac­
teristics of mathematical physics. That is, the solutions of the wave equation I solve are subject 
to limitations imposed by physical restrictions which are peculiar to my problem (explained 
later). These limitations take the form of conditions on the solution that must be met at the 
extremes of the intervals of space and time that are of physical interest [1]. The extremes that are 
interesting in my problem are at large distances (near infinity) and as the distance approaches 
the event horizon. 

Before Einstein's General Theory of Relativity, all forces of nature were defined on spacetime. 
Einstein proposed that gravity, however, is inherent in spacetime itself, as a manifestation of the 
curvature of spacetime (due to the presence of matter or energy). This curvature, and the 
existence of a gravitational field, are impossible to detect locally (in small regions of space), and 
the laws of physics reduce to those of Einstein's Theory of Special Relativity (flat spacetime) [2]. 
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By studying specific solutions to Einstein's equation, such as in a spherically symmetric grav­
itational field, we find that due to the coordinate dependent solutions there exist singularities. 
Singularities in the solution are coefficients that become infinite in certain regimes. By studying 
singularities (which upon a change of coordinates or other examination may not actually be 
singularities), such as in the Schwarzschild case, an object referred to as a black hole was hy­
pothesized. A black hole is a region of spacetime th.at is separated from the rest of the universe 
by an event horizon, which is a surface beyond which nothing escapes. 

By studying the equations that describe the curvature of spacetime assuming maximal sym­
metry, one finds that there are three different types of spacetime allowed by Einstein's equation 
(for the three different types of curvature). One notices immediately that the first possibility 
is one that we all are familiar with, zero curvature. This is the spacetime of special relativity 
(referred to as Minkowski space, or fiat spacetime). The second case, that of positive curvature, 
is the one many believe our universe is approximately described by now (it is referred to as de 
Sitter space). Lastly, there is the possibility of negative curvature (anti-de Sitter space or AdS). 
An interesting feature of anti-de Sitter space is that information from infinity can reach us in a 
finite amount of time. 

reason for the investigation (and thus the reason for my project) is that in recent years, 
the study of quasi-normal modes (QNM) has received renewed interest due to the fact that the 
QN frequencies are in the suggested region of the gravitation wave detectors. The AdS/CFT 
(Conformal Field Theory) correspondence has also sparked an extensive investigation of the 
QNM in asymptotically AdS spacetimes. According to the AdS/CFT correspondence, a black 
hole corresponds to a thermal state in CFT. A perturbation of the black hole corresponds to 
a perturbation of the thermal state, and the decay of the perturbation corresponds to a return 
to thermal equilibrium. The QN frequencies, therefore, provide one with the timescale for the 
return to thermal equilibrium. 

Numerical simulations in black hole dynamics, ranging from the collision of two black holes 
to the formation of black holes in a gravitational collapse, which are just perturbations of the 
system, show that QNMs dominate the response. QNMs also allow us to test the stability of 
the event horizon in the face of small perturbations and we are also given information about the 
global characteristics of the black hole (mass, charge, angular momentum) by analyzing their 
characteristic waveform. 

The QNMs are obtained by solving the wave equation and imposing appropriate boundary 
conditions. The wave equation is subject to the conditions that the waves are ingoing at the 
horizon and the wavefunction vanishes at infinity (since the black hole potential diverges at 
infinity), the boundary of AdS space. Due to these boundary conditions, the QNM are complex. 

In this paper, I will first solve for exact solutions of the QNMs. In three dimensions, the wave 
equation reduces to a hypergeometric equation from which exact expressions can be obtained. 
In higher dimensions, e.g.) five, an analytical solution is not possible and only numerical results 
can be obtained for the frequencies. The wave equation reduces to a Heun equation in five 
dimensions, which I solve perturbatively to obtain the corrections, here first order, to the QN 
frequencies. The zeroth order frequencies are obtained by approximating the wave equation by 
a hypergeometric equation. 
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3 Quasi-normal frequencies in 3-dimensions 

The metric for a large AdS black hole reads 

1 
( 

2 d-3) L2d 2 2 r rh 2 r 2 2 2 
ds = - L2 2 - d-3 dt + d-3 + r (dx 1 + ... + dXd _ 2) 

r h r r2 - b ;:r r- 3 

(1) 

where rh is the radius of the horizon, L is the AdS radius, and d is the number of dimensions 
in which one is working. Normally, we only experience four dimensions (three spatial and one 
time). However, due to the nature of the AdS/eFT correspondence (where there is an additional 
"holographic" dimension to which only gravitons can escape into) one deals with five dimensions. 
I wish to solve the scalar wave equation for a massless scalar 

(2) 

where go(3 is the metric and 9 = det go(3' Using the metric (2), we obtain 

(3) 

This wave equation is exactly the same as the wave equation everyone is familiar with, except in 
negatively curved spacetime. The wave equation describes an oscillation in a field (electromag­
netic, gravitational, etc.). 

I start with three dimensions to show the methods by which I will be solving the more difficult 
five dimensional case. In three dimensions (d = 3), the wave equation is given by 

(4) 

I will be solving this equation in the interval r E [rh' 00], I solve it inside the horizon (r E [0, rh])' 
This is just computationally advantageous. Separating variables, I write the wavefunction as 

w(t, r, x) = T(t)'Ij;(r)X(x) (5) 

I then substitute this into (4) to obtain differential equations in X, T, and R. The resulting 
separated differential equations read 

T" = -w2T 

X" = _p2X 

r4( r2 _ 1)'Ij;" + r~ (3 r2 _ 1)'Ij;' _ [p2r~L2 _ ~2 L4 ] 'Ij; = ° 
h r~ r r~ r2 (;2 - 1) 

h 

The solutions in (6) and (7) are easily found. The wavefunction may then be written as 
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(7) 
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\II = ei(wt-px)'ljJ(r) (9) 

The radial equation (8) is a little more difficult to solve. To find its solution, I make the 
substitution y = ::;. My differential equation then becomes 

Th 

y(1 - y)'ljJ"(y) + (1 - 2y)'ljJ'(y) + (~ + p2) 'ljJ = 0 
1- y y 

(10) 

where 

(11 ) 

To find the solution, I must examine the behavior of the differential equation when I impose 
my boundary conditions. The boundary conditions (that is the extremes of physical interest I 
mentioned before) are at large distances (as r -t 00, or y -t 00), as one approaches the event 
horizon (r -t rh, or Y -t 1), and as y -t 0 (the black hole singularity). Mathematically, these 
singularities are found by examining the coefficient of the 'ljJ" term. Here, there are three singular 
points, as I have stated (they are y = 0, 1,00). By studying the behavior of the wavefunction as 
y -t 1 (near the horizon), I obtain two linearly independent solutions (since it is a second order 
differential equation). 

(12) 

where 'ljJ+ is outgoing and 'ljJ_ is ingoing at the horizon. By examining the behavior at the black 
hole singularity (y -t 0), I obtain a second set of linearly independent solutions 

(13) 

One of my conditions (from the Introduction) my solutions would have to obey to obtain the 
QNMs is that the wave be purely ingoing at the horizon. This amounts to 'ljJ f'.J 'ljJ_ as y -t 1. By 
combining my expressions for the extreme behavior and introducing a function of y to account 
for other behavior (to obtain a full solution of the radial equation (10)), I write 

'ljJ(y) = y±iP(1 _ y)-iW F(y) (14) 

By substituting this expression into (10), the differential equation reduces to a hypergeometric 
equation which reads 

y(1 - y)F"(y) + {I ± 2ip - (2 - 2i(w =F p))y}F'(y) + (w =F p)(w =F P + i)F(y) = 0 (15) 

The solution is the hypergeometric function F( a, (3; ,; y) where 

a = 1 - i(w =F p) 

(3 = -i(w =F p) 

,= 1 ± 2ip 
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We thus have a solution in the form 

F(y) = F(1 - i(w =f p), -i(w =f p); 1 ± 2ip; y) (16) 

which is a mixture of ingoing and outgoing waves, and it diverges as y ---+ 00. To study the 
behavior near the horizon (y ---+ 1), I use the hypergeometric identity 

f(,)f(,-~-a) 
F(1 - a,~; ,; y) = f(, _ a)f(, _ ~) F(a,~; a + ~ -, + 1; 1 - y) 

'Y-a-t3f(,)f(a+~-,) . . 
+(I-y) f(a)f(~) F(,-a,,-~,,-~-a+l,l-y) (17) 

From this expression, I see that as y ---+ 1, the argument of the hypergeometric functions on the 
right-hand side becomes zero. When this occurs, the hypergeometric function is equal to one 
(one can see this by expanding the hyper geometric function as a series in powers of (1 - y)). 
Therefore, the first term on the right hand side of (17) approaches a constant as y ---+ 1. The 
second term is singular as y ---+ 1 and contributes to an incoming wave at the horizon. Therefore, 
it should not contribute to the quasi-normal modes. This will be the standard way by which I find 
my quasi normal frequencies. I will observe the behavior of my solutions near the singularities. 
Any piece that does not remain well behaved (finite) will be removed. This will be accomplished 
by setting its coefficient equal to zero. From this condition on the coefficient, I will have a way 
to calculate the quasi-normal frequencies. This implies that the argument of one of the gamma 
functions in the denominator (chosen here to be f(~)) on the second term on the right-hand side 
of (17) must be equal to a negative integer (since this will cause the gamma function to diverge 
to infinity), that is, I obtain 

w = ±p - in , n = 1,2, ... (18) 

This result gives us a discrete set of complex frequencies, as expected [4]. From this, we can 
rewrite (16) 

F(y) = F(1 - n, -n; 1 ± 2ip; y) (19) 

which is a polynomial of order n - 1 that is constant at y = 1 and as y ---+ 00 it behaves as 

This solution then exhibits the proper behavior as y ---+ 00 (i.e. 'ljJ rv y-l and W rv 0). 

4 Quasinormal Frequencies in 5-dimensions 

In five dimensions (d = 5), the wave equation for a massless scalar becomes 

(20) 
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where \72 ~ + ~ + ~. By assuming the wavefunction is of a separable form (as performed 
UX I UX 2 UX3 

in the three dimensional case) 

(21) 

we are led to similar separated differential equations as found in the three-dimensional case. The 
wavefunction now takes the form 

'W ei(wt-fi-x)'ljJ(r) (22) 

radial differential equation, after I make the substitution y = 5-, reads 
Th 

(23) 

where 

studying the behavior of (23) near the singularities (found again by looking at the coefficient 
of the 'ljJ" term and noticing where it would become equal to zero or diverge, I isolate the behavior 
of the wavefunction at the singularities y ± 1. I then write 

'ljJ(r) (y 

One can also examine the behavior at large y, from which one obtains 

Since I am interested in a solution that vanishes at the boundary of AdS space, the solution must 
behave as 'ljJ '" y-h+ as y ~ 00. Then equation (23) reduces to 

[
w iw 
-(=t=- ± 1 - i)y - (i -
2 4 4 

-------7/ - 1] F'(y)+ 

ft:] F(y) o (24) 

large w (large frequencies), the constant terms in (24) are small when compared to the other 
terms and can be dropped in the region of physical y 2:: 1. I then approximate (24) by 
the hypergeometric equation 

(25) 

To bring this to the exact form of the Hypergeometric equation, I must then make another 
substitution 

z 
2 

(26) 
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This then reduces (25) to the normal form of the hypergeometric equation which now reads 

z(1- Z)F" + [(~ - i~ - (3 - (i +2
1
)W)z] F' ~ C~ 1- i) F = 0 (27) 

From which it is easy to determine two linearly independent solutions of (27) 

UI(Z) F(a+, a_; c; z) ,U2 zl-CF(l + a+ - c, 1 + a_ - c; 2 c; z) (28) 

where a+, a_ , c are given by 

(29) 

(30) 

3 iw 
c -

2 2 
(31) 

Since I am interested in solutions which are well behaved at the horizon (z = 0), the acceptable 
solution of (27) is Ul (Eq (28)). By examining the behavior at the boundary of AdS space (z ---+ 

00), I obtain another solution to (27) (by looking up standard hypergeometric transformations) 

a_ + 1; _1_) 
1-z 

(32) 

As z ---+ -00, I have K '" z-a+ which corresponds to 1/J '" y-h+, leading to 1/J '" 0 . This is the 
type of behavior that I want. To find the behavior of K near the horizon, I express K as a linear 
combination of Ul and U2' From basic hypergeometric identities, I obtain 

where 

Ao 

For the correct behavior at the horizon (that is, it is well behaved), I demand 

Bo = 0 

from which I obtain two different conditions, 

a+ = -n + 1 ,n 1,2,3, ... 

or 
c - a_ = -n + 1 ,n 1,2,3, ... 

From (36), I obtain one set of quasi-normal frequencies 

wn = 2(n + 1)(1 - i) 
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(34) 

(35) 

(36) 

(37) 

(38) 



and from (37), I obtain a second set 

Wn = -2(1 + i)(n +~) (39) 

which was expected. I will be working with the second set (39) of quasi-normal frequencies. Since 
I am dealing with large frequencies (large n), the two expressions asymptotically (as n ----* 00) 
have the same imaginary part but opposite real parts. This is expected from the wave equation 
and is similar to the three-dimensional case. It is redundant to study both sets. The above 
approximation to the Heun equation, K, can be used as the basis for the calculation of corrections 
to the quasi-normal frequencies. I can thus write (27) as 

(Ho + HdF = 0 (40) 

where 

Ho = z(l - z)F + (- - - - (3 - )z F - - - - 1 - 1, F = 0 " [3 iw (i + l)w 1 I W (iW .) 
2 2 2 2 4 

( 41) 

and 

1 (d 1 ) 
HI = 2(2z _ 1) dz + 2(n + 2) ( 42) 

The zeroth order equation 

HoFo = 0 ( 43) 

has already been solved (hypergeometric equation (32)), and the solution was chosen as 

Fo =K ( 44) 

By treating HI as a perturbation, I can expand the wavefunction 

F=Fo+FI + ... ( 45) 

and solve (40) perturbatively. That is, by writing out the product between the perturbation (40) 
and the expansion in the wavefunction (45), I obtain 

HoFo + H IFo + HoFI + ... = 0 

From (43), I obtain the first-order equation 

HoFI = -HIFo 

which is an inhomogeneous equation for Fl. Therefore, to find the first order perturbation, I 
must solve for Fl' The expression I obtain to find FI (found using variation of parameters) is 

(46) 

where W is the Wronskian of UI ,U2 which is 
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(47) 

does not alter the behavior of Fo K at infinity. To find its behavior near the horizon, it is 
convenient to introduce the expression 

(48) 

As A -7' 0, one sees that bFI remains finite near the horizon (z rv 0). By applying the same 
method as I have done before, by combining all of the terms that remain finite and well behaved 
at the horizon with each other and then combining all of the terms that do not remain well 
behaved, I will have an equation I can then solve to find the quasi normal frequencies. Since 
(48) remains finite, I can add it to (46) without it affecting the pieces that I want to investigate 
later (the terms that are not well behaved). I thus have (after I allow A -7' 0), 

( ) 10 uIHIFo 10 u2HIFo 
bF1(z) + FI(z) U2 Z W - Ul W 

-00 -00 

(49) 

I know that UI is finite (well behaved) near the horizon and that U2 is not. By isolating U2 in 
my expression (49), I can obtain the corrections to the modes. I thus write 

(50) 

Where Al is the piece that is well behaved and finite near the horizon, and thus the segments 
that I want (but do not need to calculate). Bl , however, is the segment which is not well behaved 
at the horizon, and is given by the same expression as in (49). Thus, 

where 

10 uIHIFo 

-00 W 

1 
UI= -K 

Ao 

(51) 

and Ao is given by (34). I now have a method by which I can solve for the corrections to the 
quasi-normal frequencies. To first order, the quasi-normal frequencies are found by solving 

Bo + Bl = 0 (52) 

where Bo is given by (34). I set Bo 0 before, but this zeroth-order equation must be corrected. 
The correction to Bo is small. This correction I call E. One can see where the correction is made 
by correcting (37), that is 

c a_ -n + 1 + E 

I first obtain the general expression for epsilon that I will calculate. I can do this by solving for 
E in Bo. Therefore, by using 

r(x + 1) = xr(x) (53) 
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and applying it to the general case, I obtain 

f(E-n+1) 

From this, Bo reads 

( _l)n-l 

E( n I)! 
(54) 

I)! 
E+ ... (55) 

However, before I calculate B 1 , I must make another substitution. It is convenient to reverse the 
limits of integration in (51). I therefore make the substitution 

z =-x (56) 

For any n, the expression for Bl becomes 

where K is given by (32). Therefore, by substituting (57) and (55) into (52) and solving for E, I 
obtain 

f(a_ - 2) 
E = ------------~---

f(a_ - n)f(3) 

x ~ 2 ~ 100 K(~ + 2(n + l))K 
o 2(2x + l)(a_ - (n - l)x-a_+n- I (1 + x)-(a_+n+2) 

(58) 

By using these relations, one will be able to determine the numerical value for E for any n. The 
asymptotic value of n (as n -+ 00) is (from numerical analysis [3]) 

E = 0.002775 - O.Olli (59) 

I will calculate the first-order correction to WI. From (37) for n 1 I obtain c = a_, which means 

K = Fo (1 (60) 

and 
(61) 

Su bstituting this into (51), I obtain 

100 (1 + x)-a+(~ + 3)(1 + x)-a+ 
BI = dx dx 

o 2(2x + l)(c - l)x-c(l + x)-(a++a_-c+I) 
(62) 

which I can compute using 

100 xJ.L(1 + x)-V 
dx = B(l + J.L, v - J.L)F(l, 1 + J.Li 1 + v; -1) 

o 2x + 1 
(63) 
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where B(x, y) is the Beta function and F is just the hypergeometric function, I obtain 

B _ f( a_ 1 )f(l + a+ - a_) [ ( ) ( )] 
1- f(a+) F1,1+a_;1+a+;-1 F1,1+a_;a+; 1 (64) 

which I can simplify using a Gaussian recursion relation 

a+ 
(65) 

Equation (63) then reads 

(66) 

By substituting in my expression for the Beta function I obtain 

B 
_ f(a_ 1 )f(l + a+ - a_) a~ ( ) 

1 - f(a+) 2(c _ l)a+(a+ + 1) F 2, a_ + 1; a+ + 2;-1 (67) 

By substituting in my expressions for a+ and a_ into (61), I find that 

1 ----" __ 1 )...,....,..f_(3_), -3 + 3i )F(2 1 + 3i. 4 + 3i. -1) 
f(2 + 50 25 ' 2 ' 2 ' 

(68) 

To find the correction to the quasi normal frequencies, I also need Bo, which is given by (55) for 
n = 1, 

Bo 
f(c - l)f(l + a+ - a_) 

f(a+)f(E) 

By applying (53) as was done in the general case, I obtain 

Now I can solve for the correction, E, 

By substituting in my expressions for B 1 , a+, and a_, I obtain 

E= 
-3 3i 3i 3i 
50 + 25)F(2, 2 + 1;"2 + 4; -1) 

(69) 

(70) 

(71) 

(72) 

which can be calculated numerically by expanding F in a Taylor series. My mentor, Dr. Siopsis, 
wrote the code that can be used to find the value of E. He obtained 

E = 0.038 0.021i (73) 

I can now compare my obtained value of E with that in [3] for n = 1. The value obtained through 
numerical analysis [3] is E 0.0398-0.0844i. My result (73) is close to the number found through 
numerical analysis. In relation to the asymptotic value of E, one should obtain the correct value 
of the asymptotic E from my expression (58), by taking the n -+ 00 limit. 
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5 Conclusion 

I have found the lowest correction for the first-order quasi-normal modes for a scalar per­
turbation of an AdS black hole. The numerical value I obtained analytically for the lowest 
quasi-normal mode in (73) is in agreement with what has already been found through numerical 
analysis. One should be able to use my expression (58) to find E for all values of n. Future 
research should involve computing my expression in the asymptotic limit (n -t 00) and checking 
agreement with the numerical result (59). Though the expressions one would obtain from my 
expression would be very complex, one should be able to determine the value of E. 
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