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and cell-to-cell variability in the copy number of proteins
inherited from parent cells during cell division [10]. Ex-
trinsic noise can affect the dynamics of cellular constitu-
ents locally in a specific signaling pathway or globally
over the entire cell. In Figure 1, we summarize the effects
of intrinsic and extrinsic fluctuations in the NF-κB sig-
naling networks. The full effect of extrinsic noise should
include “all” external stochastic effects that influence the
cell, particularly the temporal fluctuations in the cellular
kinetic conditions. However, in Ref. [10], Spencer et al.
identified the most important source of extrinsic noise
as the protein copy number inherited from the parent
cell during cell division. Large cell-to-cell variations in
the copy number of enzyme and regulatory protein
could randomize the likelihood and the speed of any
intracellular biochemical reaction. This means we can
effectively “lump” all the effects of protein copy num-
ber variations into variations in kinetic rate constants.
This is an attractive approach, because rate constants
are an input into a variety of biochemical pathway
modeling techniques.
A pathway modeling framework that uses deterministic

or stochastic differential equation models requires a priori
knowledge of the structure of the biochemical reaction net-
work, mathematical functional forms for the biochemical
reactions, and associated reaction rate constants. Since li-
mited or incomplete information is often all that is available
to modelers, a computational model is often parameterized
by using a nonlinear fitting algorithm. A conventional
parameterization scheme identifies a single set of kinetic
parameter values by minimizing the χ2 distance between
experimental data and a prediction made by the model.
Sloppy Cell and other similar parameterization algorithms
include experimental errors in the parameterization by fit-
ting to a rather large experimental error bar [16]. But both

conventional and Sloppy Cell parameterization schemes
assume a deterministic and homogeneous biological re-
sponse to a stimulus and aren’t designed to handle the
heterogeneous, stochastic behavior of single cells and its
dependence on extrinsic noise.
In order to capture extrinsic noise and its effect on intra-

cellular response, we propose a novel parameterization
method, the “statistical ensemble” (SE) scheme, named after
a key concept in statistical physics [17]. A cell is regarded as
a complex system comprising a large number of compo-
nents and elementary interactions among them. A popula-
tion of cells consists of a large number of replicates,
each with different microscopic intracellular states. The
statistical ensemble average, or macroscopic observable, is
equated with the cellular response averaged over the popu-
lation of cells. The ensemble is generated by assigning ran-
domly sampled values of kinetic rate constants and copy
numbers of regulatory proteins to each cell in the ensemble.
All other external noisy systems that interact with the cell,
but which are not modeled explicitly, are treated as extrin-
sic noise. The effect of the noise is included in the sampling
that produces the randomized microscopic state of each
cell in the ensemble.
A key point is that the resulting dynamic response of the

ensemble of cells is no longer a single output but is a dis-
tribution of heterogeneous responses. Each response can be
computed independently, which allows for parallelism in
the computation. An equal weight is assigned to the re-
sponse from each replicate, to calculate the ensemble
averaged cellular response. The SE scheme thus enables
modeling of the irregular, dissimilar, and diverse individual
cellular behaviors while reproducing the macroscopically
observable population-level response.
In the most general sense, the success of the SE scheme

depends on identifying and characterizing the biologically
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Figure 1 Intrinsic and extrinsic noise as the source of the cell-to-cell variability in cellular responses in the NF-кB signaling networks.
Intrinsic noise refers to the pure probabilistic nature of individual biochemical reactions in the signaling networks. Extrinsic noise refers to random
interactions of the signaling networks with the external stochastic systems and originates from three sources: (i) fluctuating number of transcriptional
regulators upstream of the signaling networks, (ii) fluctuating number of proteins inherited from parent cells, and (iii) different stages of their cell cycle.
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correct distribution of extrinsic noise for the system of
interest, so that its effects can be encoded in the random
sampling of cellular microstates. In this work, we use ex-
perimental population-level data to parameterize the range
of feasible kinetic rate constants and copy numbers of spe-
cific molecules, and then sample uniformly around the
mid-point of the range to generate cellular microstates.
We illustrate the power of even this simplified SE ap-
proach for modeling the NF-кB signaling system.
NF-кB is a pleiotropic regulator of gene control and

plays significant roles in various cellular functions such as
differentiation of immune cells, development of lymphoid
organs, and immune activation [18-20]. NF-кB shuttling
between the nucleus and cytoplasm is auto-regulated
by the NF-кB signaling module, which consists of IкB
(inhibitor кB), IKK (IкB kinase), and NF-кB. In the ab-
sence of stimulus, IкB forms a hetero-dimeric complex
with NF-кB, preventing NF-кB from entering into the
nucleus. Upon stimulation, phosphorylated IKK catalyses
the degradation of IкB from the IкB-NF-кB complex and
frees up NF-кB whose nuclear localization initiates tran-
scription of NF-кB target genes such as inflammatory cyto-
kines (TNFα, IL-1, IL-6), chemotactic cytokines (MIP-1a),
Th1 and Th2 response activation (IFN and IL-10), and
lastly, but most importantly, negative regulators (IкBα,
IкBβ, IкBε, and A20) which terminate the NF-кB signaling.
Based on current knowledge of NF-кB signaling, Hoffmann
et al. constructed a complex biochemical reaction network
for the NF-кB signaling pathway consisting of IKK, NF-кB,
and three IкB isoforms and transformed it into a set of or-
dinary differential equations with dozens of unknown ki-
netic parameter values [21]. After identifying a single set of
parameter values yielding the best fit of the model to popu-
lation level experimental data, they used their model to elu-
cidate the role of each of three IкB isoforms: IкBα induces
oscillatory shuttling of NF-кB while IкBβ and IкBε damp
the oscillations [21]. Lipniacki et al. extended the model,
showing that an additional negative regulator A20 has a de-
finitive role as a NF-кB signal terminator, by deactivating
IKK phosphorylation [22-24]. Using fluorescence micros-
copy, Nelson et al. and several other groups showed a re-
markably heterogeneous intracellular response for this
signaling network at the single-cell level; some cells
exhibited sustained oscillatory shuttling of NF-кB while
others exhibited non-oscillatory behavior [25-33].
In this paper, we model extrinsic noise via randomization

of the kinetic parameters of the IKK-NF-кB-IкB-A20 sig-
naling system and predict several distributions of dynamical
NF-кB responses. The signaling network we model is
shown in Figure 2 and consists of IKK, cytoplasmic and nu-
clear NF-кB, and two groups of negative regulators (three
isoforms of IкB and A20). Using the statistical ensemble
(SE) scheme, we demonstrate that extrinsic noise, modeled
as fluctuations in kinetic parameter values, can generate the

observed experimental population-level response as the SE
average, as well as a heterogeneous distribution of indivi-
dual cellular responses. In section Results.A we show that
the SE average of key biochemical species concentrations in
the NF-кB signaling network can be accurately fit to experi-
mental population-level data for wild type and various mu-
tant cases. In section Results.B, we predict the distributions
of various dynamic characteristics of NF-кB cellular re-
sponses. In section Results.C, we make a prediction about
dosage-dependent NF-кB responses in single cells, i.e., the
dosage-dependent distribution of various NF-кB dynamic
characteristics in individual cells. Lastly, in section
Results.D, we predict that both dose-response curves from
individual cells and their SE average are sigmoidally shaped.

Results
Statistical ensemble average of key biochemical species
concentrations in the NF-кB signaling network is fit to
experimental population-level data
The wild type case
For this reaction pathway, the statistical ensemble (SE)
scheme generates significant cell-to-cell variability in
protein dynamics. Yet the SE averages agree well with
population-level experimental data (Electro Mobility
Shift Assay (EMSA) or western blot) for key biochemical
species concentrations as shown in Figure 3. For the nu-
clear NF-кB profiles in Figure 3(A), the first translocation
times (timing of the first peak) of the individual NF-кB
profiles (in blue) are almost identical, while the first ma-
xima (amplitude of the first peak) vary significantly with
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Figure 2 Biochemical network model for the IKK-IкB-NF-кB-A20
signaling module. Top panel: A schematic description of our
comprehensive model for NF-кB signaling. The arrows indicate
activation and the perpendicular lines denote inhibition. Bottom
panel: the model consists of IKK (IкB kinase), IкB isoforms (IкBi, i= α, β, ε),
and A20. NF-кBn and IкBin denote their nuclear components. Squares
are for proteins; hexagons are for mRNA. Black arrows indicate either
association or dissociation or degradation of proteins; red (blue) arrows
denote mRNA (protein) synthesis.
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a variance up to 100% of the SE average (in red). How-
ever, both the timings and amplitudes of subsequent peaks
exhibit significant cell-to-cell variability. Consequently the
SE average is a strongly damped oscillatory pattern with
rapid decay of subsequent peak amplitudes. Thus, the effect
of extrinsic noise on this observable is a “masking effect
of averaging over a population of asynchronous curves”,
just as for intrinsic noise [34]. The large variation in the
first-peak amplitude of nuclear NF-кB concentration in
Figure 3(A) originates from the IKK profile in Figure 4(C),
where the IKK concentration time courses from individual
cells also exhibit significant differences in their first max-
imum. This induces large variation in the first minimum of
IкB isoforms as shown in Figures 3(B)-(D). Thus, the cell-
to-cell variation in kinetic rate constants regulating the
levels of both pre-activated IKK (IKKn) and activated IKK

(IKKa) is the source of similar variation in the first maximum
of nuclear NF-кB concentration [35]. Likewise, the asyn-
chronous behavior of the individual nuclear NF-кB profiles
after two hours, as shown in Figure 3(A), originates from
the cell-to-cell variability in the second-peak amplitude of
the IкB isoforms in Figures 3(B)-(D).

The mutant case - double knocked-out IкB isoforms and
knocked-out A20
To simulate the dynamics of mutants, we set the mRNA
synthesis rates for two of the three IкB isoforms and A20
to zero. For the IкBβ and IкBε knocked-out mutant shown
in Figure 5(A), the peaks of the SE average correspond
closely to the peaks of population-level experimental data
(EMSA) at 15 min, 2.5 hours, 4 hours, and 5.5 hours. The
individual profiles of nuclear NF-кB concentration are

Figure 3 Individual time-series curves (blue lines) and the ensemble average (red line) of key protein concentration for an ensemble
of 1000 replicates of the wild type NF-кB signaling system. Computational results are compared side-by-side with population-level
experimental data from Ref. [20]. Panel (A): nuclear concentration of NF-кB. Panels (B), (C), (D) are respectively cytoplasmic concentrations of
IкBα, IкBβ, and IкBε proteins.
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much more oscillatory (about half the curves exhibit
sustained oscillations as shown in Figure 6) than for the
wild type data (only 10% are sustained oscillations in
Figure 6). But, the SE average of this mutant is a damped
oscillatory pattern, with a bit more dynamic variation than
that of the wild type. This is again mainly due to “the
masking effect of averaging over a population of asynchron-
ous curves”. For the IкBα and IкBε knocked-out and the
IкBα and IкBβ knocked-out mutants shown in Figure 5(B)
and 5(C), the SE averages of nuclear NF-кB show a “single-
peaked” pattern similar to the population-level EMSA data,
though the timings of the peaks differ by 1 hour. The
single-peak amplitudes vary significantly with a variance as
large as 100% of the SE average. For the A20 knocked-out mu-
tant in Figure 4(B) and 4(D), both the SE averages of nuclear
NF-кB and IKK profiles exhibit single-peaked patterns in good
agreement with the population-level experimental data. Again,
the individual nuclear NF-кB profiles differ significantly. For all
the mutants, though their SE averages for nuclear NF-кB

profiles exhibit simple dynamic patterns, the cell-to-cell vari-
ability is large due when extrinsic noise is included in the
model.

Dependence of SE average on heterogeneity
In Figure 7 we show how to use population-level experi-
mental data as a constraint when choosing a heteroge-
neity factor χ, defined as the interval size of the uniform
distribution from which kinetic rate constants are sampled,
as inputs to the pathway model. Centering the kinetic rate
constants at their reference values, we vary χ and observe
how heterogeneous the individual cell profiles of nuclear
NF-кB become. Note that the SE average of nuclear NF-кB
becomes less oscillatory for higher values of χ in Figure 7.
For a small χ = 10% in Figure 7(A), all individual curves re-
main in phase with each other, making the SE average also
highly oscillatory. For higher values of χ = 50% and χ = 70%
in Figures 7(C) (χ = 50%) and 7(d) (χ = 70%), a large fraction
of individual curves are sustained oscillations, but quickly

Figure 4 Individual time-series curves (blue lines) and the ensemble average (red line) of key protein concentrations are obtained for
an ensemble of 1000 replicates of a wild type (A, C) and an A20 knocked-out mutant (B, D). Computational results are compared with
population-level experimental data from Ref. [36]. Top panels: nuclear concentration of NF-кB. Bottom panel: IKK concentration.
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become out of phase, resulting in an SE average that is
strongly under-damped. Because higher χ values cover a
larger sampling space, individual nuclear NF-кB curves
bifurcate into different classes of patterns: some are
sustained oscillatory while others are single-peaked.
Thus, if the population-level experimental data exhibit
sustained oscillations versus damped oscillations versus
single-peak profiles, the variation in single-cell profiles
induced by χ can be used to guide sampling from an ap-
propriate range of heterogeneity when generating input
rate constants.
In this subsection, we showed how the SE method with its

many replicates is a model for a population of cells in a he-
terogeneous set of intracellular states. By varying the

heterogeneity factor χ for sampling kinetic parameters used
as inputs to the pathway model, fits to experimental data
can be produced even when population-averaged data and
single-cell data exhibit different characteristics, as in the NF-
кB signaling system. In the next subsection, we discuss the
distribution of single-cell NF-кB responses in more detail.

Prediction of distributions of individual cellular responses
for the wild type and mutants
Distributions of dynamic features
In Figure 8, we summarize the output of our SE compu-
tational model for distributions of single-cell responses
for the wild type and the mutants discussed in the previ-
ous sub-section. Six dynamic features are shown: the

Figure 5 Individual time-series curves (blue lines) and the ensemble average (red line) of key protein concentrations for an ensemble
of 1000 replicates of a IкB double gene knocked-out mutant. Computational results (left column) are compared with population-level
experimental data (right column) from Ref. [20]. Panel (A): IкBβ and IкBε knocked-out mutant. Panel (B): IкBα and IкBβ knocked-out mutant. Panel
(C): IкBα and IкBε knocked-out mutant.
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amplitude of the first peak (First Maximum), the timing
of the first peak (First Translocation Time), the time
between the first and the second peaks (First Period), the
level of the first minimum (First Minimum), the amplitude
of the second peak (Second Maximum), and the asymptotic
Steady State value. Surprisingly, for each dynamic feature,
there is a significant amount of overlap between the distri-
butions for the wild type and those of the mutants. This
implies that if we used a conventional modeling scheme
which fits a single set of parameter values and outputs a
single representative time-series of intracellular response,
we could draw incorrect conclusions as to the effect of a

knocked-out gene on cellular response. To avoid this, we
compute the entire distribution of responses and look
for significant changes when genes are knocked out. In
Figure 8(A), the distributions of the First Maximum are
the same for both the mutants and the wild type. This dy-
namic feature is thus not an indicator of the physiological
defects caused by the knock-out genes. In Figure 8(B), the
distribution of the First Translocation is shifted to the
right for the A20 knocked-out mutant and to the left for
IкBβ and IкBε double knocked-out mutant, whereas the
wild type and two other mutants have similar distribu-
tion. In Figure 8(C), only the wild type and the IкBβ

Figure 6 Distributions of four dynamic patterns of the individual time-series curves of nuclear NF-кB profiles for an ensemble of 1,000
replicates of the wild type, A20 knocked-out mutant, and three IкB genes double knocked-out mutants. A few examples of four dynamic
patterns are plotted in the top panel: (A) single-peaked pattern (blue), (B) under-damped oscillation (red), (C) hyperbolic pattern (black), and (D)
sustained oscillation (yellow) where color within a parenthesis denotes color in the bottom panel. Individual time-series curves are classified as
one of the four dynamic patterns.
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and IкBε double knocked-out mutant have well-defined
periods of roughly 2 hours; the First period of other
mutants is too broadly distributed to define an average.
In Figure 8(D), the ratio of the First Minimum to the
First Maximum indirectly measures the spikiness of the
oscillations; the smaller the ratio, the spikier the tem-
poral profile becomes. Only the wild type and the IкBβ
and IкBε double knocked-out mutant exhibit a spiky re-
sponse. In Figure 6(F), the ratio of the Steady State to the
First Maximum provides useful information about the
relative magnitude and strength of the negative regulators
of IкB isoforms and A20. Since the distributions of the
First Maximum are the same for the wild type and mutants,
we conclude that the smaller steady-state level of nuclear
NF-кB concentration infers stronger negative feedback.
The mutants ordered by steady-state level are as follows:
A20 knocked-out mutant < IкBα and IкBε knocked-out
mutant < IкBα and IкBβ knocked-out mutant < IкBβ
and IкBε knocked-out mutant < wild type. The relative
strength of the negative regulators can then be inferred:
A20 > IкBα > IкBε > IкBβ. Of course, this ordering is con-
sistent with the choice of nominal values for the respective
kinetic rate constants, as listed in Table 1.

Distribution of dynamic patterns
The individual time-series of the nuclear NF-кB concentra-
tions can be classified into one of four dynamic patterns

(damped oscillation, sustained oscillation, single peaked,
and monotonic-increasing patterns) as shown in Figure 6.
The underlying mechanism for each dynamic pattern is
rather simple. The monotonic-increasing (or over-damped)
pattern originates from strong negative feedback loops,
while the single-peaked pattern results from weak negative
feedback loops. The oscillatory patterns arise from
intermediate-strength negative feedback loops. But it re-
mains an open question to correlate each dynamic pattern
with a specific cellular physiology [37-39]. To elucidate this
connection, we stimulate the ensemble of NF-кB signaling
networks with the same signal strength (TR = 1), for both
the wild type and mutants. We then classify a thousand in-
dividual temporal profiles into one of the four dynamic pat-
terns. The distributions of the patterns are represented by
bar graphs in Figure 6 which shows that both the wild type
and mutants exhibit at least two different patterns of re-
sponse under the same strength of stimulation. For the wild
type, most of the nuclear NF-кB profiles have a damped-
oscillatory pattern, with less than 10% of the profiles as
sustained-oscillatory. This indicates a damped-oscillatory
response is the most probable, and it is robust against per-
turbation of the network parameter values. For the mutant
with a knocked-out A20 gene, both single-peaked and
damped-oscillatory patterns are nearly equally probable.
But the damped oscillatory profiles are very similar to a
single-peaked pattern. Thus for this mutant, a damped-

Figure 7 Dependence of the individual time-series curves (blue lines) and the statistical ensemble average (red line) of nuclear NF-кB
profiles for a mutant with IкBβ and IкBε genes double knocked-out, on the heterogeneity factor χ (the interval size of the uniform
distribution or kinetic rate parameters). (A) χ = 10% ; (B) χ = 30% ; (C) χ = 50% ; (D) χ = 70%.
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