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Research Article
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Background. Due to restorative concerns, bone regenerative therapies have garnered much attention in the field of human
oral/maxillofacial surgery. Current treatments using autologous and allogenic bone grafts suffer from inherent challenges, hence
the ideal bone replacement therapy is yet to be found. Establishing a model by which MSCs can be placed in a clinically
acceptable bone defect to promote bone healing will prove valuable to oral/maxillofacial surgeons. Methods. Human adipose
tissue-derived MSCs were seeded onto Gelfoam® and their viability, proliferation, and osteogenic differentiation was evaluated
in vitro. Subsequently, the construct was implanted in a rat maxillary alveolar bone defect to assess in vivo bone healing and
regeneration. Results. Human MSCs were adhered, proliferated, and uniformly distributed, and underwent osteogenic
differentiation on Gelfoam®, comparable with the tissue culture surface. Data confirmed that Gelfoam® could be used as a
scaffold for cell attachment and a delivery vehicle to implant MSCs in vivo. Histomorphometric analyses of bones harvested
from rats treated with hMSCs showed statistically significant increase in collagen/early bone formation, with cells positive for
osteogenic and angiogenic markers in the defect site. This pattern was visible as early as 4 weeks post treatment. Conclusions.
Xenogenically implanted human MSCs have the potential to heal an alveolar tooth defect in rats. Gelfoam®, a commonly used
clinical biomaterial, can serve as a scaffold to deliver and maintain MSCs to the defect site. Translating this strategy to
preclinical animal models provides hope for bone tissue engineering.

1. Background

Several clinical studies show a need for stronger, faster, and
more reliable bone formation in defects or fractures follow-
ing surgery, disease, or trauma. Cell-based therapies offer
the potential to overcome these challenges, especially in den-
tal and craniofacial healing [1, 2]. This is specifically a chal-
lenge in cases of larger defects or defects that are of
complex anatomical shapes and sizes and require strong,

mature bone regeneration for future implants. Additionally,
in the field of oral and maxillofacial medicine, a relatively
simple tooth extraction procedure, if not controlled, can lead
to significant complications, including infection and osteone-
crosis. Residual ridge resorption, resulting in reduced bucco-
lingual and apicocoronal aspects at the site of extraction, is
another common phenomenon that causes physical and
economic concerns in human patients [3]. Furthermore,
tooth extraction procedures are considered to be a major risk
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factor for bisphosphonate-induced osteonecrosis of the jaw
(ONJ) [4]. If not treated promptly, this disorder can lead to
complex morbidities and the loss of the entire jaw bone.
Hence, there is a need for therapies capable of regenerating
healthy new bone after such procedures, and thus preventing
further complications.

Bone tissue engineering strategies include the use of
viable cells in conjunction with biomaterials or scaffolds. Sev-
eral bone tissue engineering studies have shown preference
for using naïve, adult mesenchymal stem cells (MSCs)
instead of differentiated osteoblasts for bone formation appli-
cations. Cells alone or cells combined with biomaterials may
offer advantages compared to the results associated with the
use of allografts or autografts. Human MSCs (hMSCs) are
naïve multipotent cells which can be isolated from any adult
tissue, including the bone marrow, fat, cord blood, and dental
pulp. Adult MSCs are capable of differentiation to adipo-
cytes, myocytes, chondrocytes, and osteoblasts, with these
stem cell properties having been demonstrated in vitro and
in vivo [5–8]. MSCs are typically expanded in culture,
evaluated for their characteristics, and induced to undergo
osteogenic differentiation, in vitro. Subsequent to the expan-
sion and characterization, they are transplanted in vivo for
therapy. Their efficacy is influenced by the complex in vivo
microenvironment as well as the cellular and molecular
properties of MSCs. Human MSCs have been shown to dem-
onstrate significant beneficial effects on bone healing and
repair of the appendicular, axial, and craniomaxillofacial
bones [9, 10].

Another important component of bone tissue engineer-
ing is the use of scaffolds or biomaterials capable of serving
as a delivery vehicle and a containment agent to hold cells
at the defect site in vivo. Several commercially available mate-
rials have been reported to deliver MSCs, including porous
and gelatin-based scaffolds [11–13]. Even though there are
a number of commercially available cell delivery materials,
prohibitive factors, including high costs or technical chal-
lenges in application, restrict general use. Most importantly,
an ideal bone regeneration scaffold, which is osteoinductive,
osteoconductive, and osseointegrative has yet to be devel-
oped [14, 15]. As a result, autogenous bone grafts remain
the gold standard.

Gelfoam®, a gelatin-based material, is commonly used as
a contact hemostat in healthcare facilities. A porous, pliable,
and cost-effective material, Gelfoam® is also referred to as
hydrolyzed collagen and is comprised of a proteinous mate-
rial, which is generally prepared by boiling skin, tendons,
ligaments, and/or bones with water. Hence, Gelfoam® does
not by itself demonstrates any osteogenic properties, and
thus can be used to deliver and evaluate the effect of MSCs
on bone healing without any confounding factors. A study
showed promising results for Gelfoam® as a hMSC delivery
vehicle by analyzing loading kinetics, cellular distribution,
cellular density using several biochemical assays, and its
biocompatibility using a rabbit joint model [16].

We hypothesized that hMSCs will readily attach and pro-
liferate on degradable clinical grade Gelfoam® structures and
that delivery of xenogeneic cells via this nonbioactive vehicle
in a rat maxillary tooth extraction model will promote repair

and restoration of bone tissue at defect sites. As the
implanted material does not have inherent osteobiologic
properties, bone tissue regeneration capacity of the examined
treatment will allow for evaluation of the osteogenic potential
of MSCs alone in vivo. Based on the potential of MSCs to dif-
ferentiate toward multiple lineages, including bone, it is
anticipated that the application of a reservoir of these naïve
cells, maintained at the site of injury via a bioinert structure,
will result in enhanced repair of damaged tissue.

2. Methods

2.1. Biochemicals and Disposables. All biochemicals, cell
culture supplements, and disposable tissue culture supplies
were purchased from Thermo Fisher Scientific unless other-
wise noted.

2.2. Gelfoam® as a Scaffold Material. Commercially obtained
Gelfoam®, Pfizer, is a purified gelatin material derived from
porcine skin that is stored at 15-30°C until use (Pfizer USP,
Michigan, USA). Materials for in vitro and in vivo experi-
ments were cut to size from bulk sheets.

2.3. Isolation, Ex Vivo Expansion, and In Vitro Osteogenesis of
HumanMesenchymal Stem Cells. Stromal vascular fraction of
cells was obtained from human adipose tissue from patients
undergoing panniculectomies in accordance to a protocol
approved by the IRB at the University of Tennessee Medical
Center. Informed client consent was obtained prior to the
harvest. The hMSCs were isolated, ex vivo expanded, and
induced to undergo osteogenesis as described earlier [17].
Briefly, the hMSCs were grown to 80–90% confluency and
then harvested with 0.05% trypsin/EDTA for cryopreserva-
tion (80% FBS, 10% DMEM/F12, 10% DMSO), or split and
seeded into new flasks for in vitro assays and expansion,
respectively. All experiments were performed using cells
from passage 2–6 in complete growth media (DMEM/F12,
1% penicillin-streptomycin/amphotericin B, 10% FBS).

MSCs obtained were confirmed for their identity by their
morphology, potential to undergo trilineage differentiation,
and expression of specific protein markers, using methods
reported earlier [17].

In vitro experiments were performed on identical passage
numbers of hMSCs seeded simultaneously on Gelfoam® and
the tissue culture substrates. Growth and osteogenic differen-
tiation of hMSCs on the two substrates were carried out
simultaneously.

2.4. RNA Extraction, cDNA Synthesis, and qPCR. RNA was
extracted from both control hMSC cultures, grown on a poly-
styrene coated tissue culture surface and Gelfoam®-
embedded hMSCs at days 7 and 21 of differentiation. Total
RNA was isolated using TRIzol extraction agent (Thermo
Fisher) as per the manufacturer’s protocol and as reported
earlier [18]. Briefly, total RNA was prepared and further
purified using a RNeasy mini kit (Qiagen); cDNA was pre-
pared using a high-capacity cDNA reverse transcription kit
(Applied Biosystems); and qPCR analysis of the expression
of the bone-specific markers osteopontin (OPN) and osteo-
calcin (OCN) was carried out using SYBR green master mix
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(Thermo Fisher) with GAPDH serving as the housekeeping
gene using MX3005P real-time PCR cycler (Agilent).

Several preliminary experiments were run to determine
ideal qPCR protocol, PCR mix, and annealing temperatures.
qPCR was run using ABsolute Blue qPCR Mix (Thermo
Fisher Scientific), with each reaction comprising of 5.0μL
cDNA solution, 12.5μL ABsolute Blue SYBR Green ROX,
5.0μL RNase Free Water, and 2.5μL of the appropriate
primers. All primer sequences and PCR conditions were
derived from a previously published report [5].

2.5. Animals and Surgical Procedure. 8-10 week old mixed
gender Sprague Dawley rats (n = 36) were commercially
obtained (Harlan Laboratories).

Animal procedures were performed in accordance with a
protocol approved by the University of Tennessee, Institu-
tional Animal Care and Use Committee (IACUC). Bone
defects were generated using procedures modified from those
described earlier [19–21]. Briefly, rats under anesthesia were
placed in a supine position, and the mandible was opened to
expose the maxillary surface. 1st and the 2nd maxillary molars
were removed from one side, and the resulting void spaces in
the alveolar processes were then levelled using a microdrill to
form a slot-shaped trough in which the scaffold could be
readily implanted. Defects were washed thoroughly with ster-
ile saline to remove residual tissue debris. Scaffold material
with and without cells was firmly placed in each defect prior
to closure of the site with resorbable sutures. The side oppo-
site to the defect was left intact to serve as a reference during
histological analysis. The rats were fed a soft gel (Nutra-Gel,
Bio-Serv) throughout the study period to prevent damage to
surgical sites by standard dry pellet form food. Animals were
sacrificed at weeks 1, 4, and 12 after surgery. Rats were
divided into two groups with 6 rats per group per time point.
One group received Gelfoam® alone, while the other group
was treated with Gelfoam® loaded with 1 × 106 hMSCs,
which were seeded onto Gelfoam® 30-60 minutes prior to
implantation.

2.6. Histomorphometry. Samples were harvested after sacri-
fice and subjected to histomorphometric processing and
analyses as reported earlier [18]. All bones were fixed in
Decal A for at least 24 hrs, following which, they were
immersed in Decal B for at least 48 hrs for decalcification.
Subsequently, 5μm sagittal sections were obtained and
stained with hematoxylin and eosin (H&E) and Masson tri-
chrome for analysis.

H&E staining was used to subjectively evaluate adverse
reaction, if any due to either the Gelfoam® or the Gelfoam®
+hMSCs construct. Masson’s trichrome staining was evalu-
ated and quantitated using Fiji software [22]. Two micro-
graph images of each slide were taken at 2.5x. Images
included both the region where the alveolar bone defect was
created and the region of the corresponding contralateral
intact tooth and alveolar bone. Image colors were split into
channels and threshold was adjusted to generate binary
masks highlighting bone tissue surface. Regions of interest
(ROI) were identified by using the rectangular selection tool
to set the parameters of the alveolar bone tissue where the

intact tooth is shown rooted. This selection was then trans-
ferred to an analogous site on contralateral defect side to
maintain equal area and shape of the measured region. The
percentage of bone tissue area coverage (BTAC) for ROIs of
each image was calculated (Equation (1)). For each rat, the
percentage of bone tissue area coverage in the defect region
was divided by that in the intact region to obtain a bone
regeneration ratio (BRR) for each defect (Equation (2)).
The bone regeneration of the control (Gelfoam® only) and
the Gelfoam®+hMSC-treated rats was compared at each time
point of sacrifice (1, 4, and 12 weeks).

P × CountB
P × CountT

= BTAC ð1Þ

Equation (1) is for determining bone tissue area coverage
(BTAC) for a given binary image in which the tissue of inter-
est has been set to the maximum value. The measured pixel
count for maximum value pixels is divided by the total count
of image pixels. This ratio represents the fractional area cov-
erage of the tissue of interest.

BTACD
BTACI

= BRR ð2Þ

Equation (2) is for determining the bone regeneration
ratio (BRR) of a given complimentary set of intact and defect
images. The bone tissue area coverage (BTAC) for the defect
image of the set (BTACD) is divided by that of the intact
image (BTACI). The ratio represents the level of bone forma-
tion within the defect site as compared with that of the native
structure.

2.7. Immunohistochemistry. Unstained histological sections
were subjected to immunohistochemical (IHC) staining to
detect and analyze expression of proteins associated with
bone, collagen, and vasculature structure formation. OPN
and fibronectin (FN) expression correlate to early bone for-
mation and cellular attachment, respectively, while the
hematopoietic stem cell marker, CD34, represents angiogenic
functions. Paraffin-embedded sections for IHC staining were
prepared according to a standard protocol (Abcam IHC Pro-
tocol). Briefly, samples were deparaffinized in xylenes and
rehydrated using decreasing concentrations of ethanol, end-
ing with washing in distilled water. Antigen retrieval was per-
formed utilizing a heated target retrieval agent (DAKO).
Samples were exposed to 1% Triton in PBS and subsequent
protein blocking solution prior to addition of primary anti-
bodies. Biotinylated secondary antibody solutions targeting
primary antibody host species IgG were followed by the addi-
tion of streptavidin-horseradish peroxidase (HRP). A Nova
Red (Vector) kit was then utilized to stain HRP-labeled sur-
face proteins for analysis.

Imaging of IHC-stained slides was performed with a
Leica DMi1 light microscope at 5x magnification. Captured
images were combined utilizing a FIJI stitching plugin,
designed by Dr. Preibisch, to generate full tissue section
images.
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2.8. Statistical Analyses. For the RT-qPCR gene expression
analysis, expression levels of each gene were normalized with
GAPDH, serving as a housekeeping gene. Gene expression of
the tissue culture seeded hMSCs was evaluated to ensure the
accuracy of the real-time PCR conditions. Gene expression
fold levels of both the Gelfoam®+hMSCs and tissue culture
seeded hMSCs groups’ were analyzed at day 21 relative to
day 7. Fold changes for each gene were calculated using the
2-ΔΔCT formula (Applied Biosystems). Data was statistically
analyzed using Student’s t test with p < 0:05.

For the quantitative analysis of the rat alveolar bone heal-
ing, the level of bone formation obtained from the BRR
values was analyzed using two-way ANOVA to evaluate the
time (weeks of treatment) and group (scaffold alone and scaf-
fold with MSCs) effects. Post hoc multiple comparisons were
performed with Tukey’s adjustment. Statistical significance
was set at p < 0:05. All analyses were conducted using SAS
9.4 TS1M4 for Windows 64x (SAS Institute Inc., Cary, NC).

3. Results

3.1. Progenitor Cells Isolated from the Stromal Vascular
Fraction Are MSCs.Mesenchymal stromal cells were isolated
from the stromal vascular fraction and subsequently

expanded ex vivo to generate numbers sufficient for in vitro
and in vivo applications. Prior to in vivo applications, the
expanded cells were characterized in vitro to prove that they
are indeed MSCs. We generated primary cultures of adipose
tissue-derived hMSCs, which were characterized in vitro
using methods described earlier [17]. Subjective evaluation
demonstrated that the cells adhered to the tissue culture
polystyrene surface and exhibited a fibroblast-like morphol-
ogy during in vitro culturing and serial passaging. Using flow
cytometry, cells were found to be >99.8% positive for CD29,
CD44, CD73, CD90, and CD105. CD34 (hematopoietic),
CD106 (endothelial), CD45 (leukocyte), and HLA-DR
(MHC Class II) were detected at 28.3%, 4.26%, 2.43%, and
2.49%, respectively (Figure 1(a)). During passaging, the
expression of CD34 significantly reduced to <5%, suggesting
that serial passaging of hMSCs under the given cell culture
conditions yielded a relatively homogenous culture of cells.
Thus, the overwhelming majority of the cultured cells express
the expected CD markers found on MSCs with minimal con-
tamination of other cell types.

Additionally, we demonstrated the potential of hMSCs to
differentiate into osteocytes, adipocytes, and chondrocytes
(trilineage differentiation) in vitro. When isolatedMSCs were
induced with lineage-specific cocktail, they did undergo

(a)

(A) (C)

(B) (D)

(E)

(F)

(b)

Figure 1: In vitro characterization of human MSCs. Immunophenotyping of hMSCs by flow cytometry (a) and trilineage differentiation (b).
For immunophenotyping, hMSCs were stained with the indicated antibodies and then analyzed by flow cytometry. Cells strongly express the
markers (CD29, CD44, CD73, CD90, CD105) associated with the MSCs, while expression of hematopoietic (CD34, CD45, HLA-DR) and
endothelial (CD106) markers is markedly reduced. Black open histograms indicate isotype-matched controls for each antibody; colored
open histograms represent positive reactivity. Trilineage differentiation assays of hMSCs shows representative images of alizarin red, oil-
red-o, and Alcian blue staining of osteocytes (B), adipocytes (D), and chondrocytes (F), after in vitro differentiation. Corresponding
undifferentiated hMSCs (A, C, E) are shown as controls.
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differentiation into the expected cell types compared to the
controls, which were incubated in the absence of lineage-
specific media. Alizarin red, oil-red-o, and Alcian blue
staining confirmed the presence of calcium (osteocytes),
lipids (adipocytes), and glycosaminoglycans (cartilage),
respectively (Figure 1(b)). Therefore, the isolated progeni-
tor cells met the specific criteria, and hence were indeed
MSCs.

3.2. Cytocompatibility of Gelfoam®. After proving the MSC
nature, cells were seeded on Gelfoam® to verify cell

adherence, distribution, and viability using DiI imaging
(Figure 2(a)) and MTS proliferation assay for 6 days
(Figure 2(b)), respectively. Detection of cell fluorescence
and an observed linear increase in the absorbance with time
indicated that cells were adhered to, were distributed uni-
formly on the material constructs, and that the viability and
proliferation characteristics on Gelfoam® were similar to
cultures grown on polystyrene surfaces. These results dem-
onstrated that Gelfoam® is noncytotoxic, permits cell adher-
ence, distribution, and does not hinder proliferation of
MSCs. Furthermore, though Gelfoam® samples became

(a)
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Figure 2: In vitro adherence and viability of hMSCs. The adherence and viability of hMSCs on Gelfoam® was evaluated using DiI imaging (a)
and MTS assay (b). Representative image shows the red cytoplasmic fluorescence of hMSCs adhered to Gelfoam® after 6 days. A portion of
the image is out of focus because of the 3D nature of the scaffold. Proliferation of hMSCs on Gelfoam® is comparable to cells seeded on tissue
culture polystyrene surface for 2, 4, and 6 days. The absorbance at 490 nm is directly proportional to the number of living and proliferating
cells. Tissue culture surface and Gelfoam® without any cells in the same culture conditions were used as blanks to obtain normalized values at
each time point.
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pliable and spongy after media absorption, the matrix of the
material did not lose its structural integrity within the study
time period. As a result, Gelfoam® served as an effective
means for containing cells after initial attachment.

3.3. hMSCs Maintain Osteogenic Capacity on Gelfoam®. We
next evaluated the osteogenic differentiation potential of
hMSCs by profiling the expression of genes strongly associ-
ated with osteogenesis. We wanted to ensure that MSCs
retained their osteogenic potential in presence of Gelfoam®.
We used qPCR to assess the expression of two commonly
used osteoblast markers, osteopontin (OPN) and the tran-
scription factor, RUNX2 [23]. Quantitative PCR results of
control cultures, i.e., hMSCs induced to undergo osteogenic
differentiation on a tissue culture substrate, showed that both
genes were expressed at both days 7 and 21 with significant
upregulation of 4- and 2-fold difference, respectively, with
time. Results confirmed that hMSCs underwent osteogenesis
within this time period on the tissue culture polystyrene sur-

face and that RNA extraction, cDNA synthesis, and PCR
procedures were accurate. Using the parameters validated
for the control cells, the expression of both markers was
detected in Gelfoam®-embedded hMSCs at both time points
(Figure 3(a)). There was a significant upregulation of 1.8- and
1.2-fold difference for OPN and RUNX2 expression, respec-
tively, when Gelfoam®-embedded hMSCs progressed from
day 7 to 21. Even though the relative change is slightly less
than that observed in the control cultures, the changes in
OPN and RUNX2 verified that hMSCs embedded in Gel-
foam® do undergo osteogenesis with time and that the pres-
ence of Gelfoam® did not affect their osteogenic potential.

3.4. Specific Integrin Proteins May Mediate Cell Adherence
and Osteodifferentiation of hMSCs on Gelfoam®. We next
evaluated the role of integrins (the major genes encoding
for cell adhesion proteins), if any, in cell attachment and sub-
sequent osteogenic differentiation processes. Using the
parameters validated for the control cells (hMSCs
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Figure 3: qPCR expression. Gene expression of the osteogenic-specific (a) and integrin subunit (b) genes. Relative fold differences in the
expression of genes between days 7 and 21 during osteogenic differentiation of hMSCs on Gelfoam® were calculated using the delta-delta
Ct method (Applied Biosystems). GAPDH was used as the housekeeping gene.
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undergoing osteogenic differentiation on tissue culture sub-
strate), the expression profile of integrin subunits α2, α3,
α5, α6, β1, β3, and β5 at days 7 and 21 after osteogenic
induction of hMSCs embedded in Gelfoam® were analyzed
(Figure 3(b)). As cells differentiated from day 7 to day 21,
all the integrin subunits except α2 and α5 maintained rela-
tively consistent expression profiles. The consistent expres-
sion throughout the differentiation process is evident with
the fold level changes close to 1. The α2 subunit showed a sig-
nificant upregulation over the course of differentiation, sug-
gesting it to be the major cell adhesion protein; while α5
was downregulated indicating that it may not be involved
in osteogenesis. Results suggest that the adherence, and
potentially the osteogenic differentiation, of hMSCs on Gel-
foam® could be mediated via specific integrin subunits.

3.5. Rat as an Animal Model to Evaluate hMSCs in a Tooth
Extraction Defect. After confirming cytocompatibility of Gel-
foam® and verifying that the material does not impede the
osteogenic capacity of seeded hMSCs, we next implanted
cell-seeded constructs in a rat maxillary alveolar tooth extrac-
tion defect model. All rats recovered quickly after surgery
and returned to drinking, eating, and grooming within 48
hours. During the experimental period, the rats exhibited
normal behavior without any weight loss or postoperative
complications.

3.6. Histomorphometric Analyses. Special stains of H&E and
Masson trichrome were used for histomorphometric analy-
ses. As anticipated and verified by the examination of
H&E-stained slides, there was no evidence of adverse reac-
tion due to either Gelfoam® or the hMSCs when implanted
in vivo. Masson trichrome staining was evaluated for the
formation of early new bone and filling of the defects.
Representative images from samples containing Gelfoam®
alone and those containing Gelfoam®+hMSCs are shown
(Figure 4(a)). The top panels of these images show the entire
maxillary region, with the intact tooth on the left and the
defect on the right side, to aid in understanding the orienta-
tion and the anatomy of the rat maxilla, whereas the lower
panels show a high-resolution image of the defect subjective
assessment of the Masson trichrome staining of treatment
groups which showed no significant bone formation by week
1, yet soft tissue in each defect, shown in red, was apparent.
Early collagen and bone formation structures attempting to
refill the defect were observed at 4 weeks in the rats treated
with Gelfoam® alone. Though osteoblast activity was appar-
ent in these samples, the majority of new tissue did not
appear to be solid/mineralized and instead presented as a
loose and irregular connective tissue. Rats treated with Gel-
foam®+hMSCs in contrast, demonstrated defects that
appeared to be filled largely with structures indicating solid/-
mineralized bone by week 4. As some regions of the per-
ceived bone formation lacked mineralization, this suggests
that osteoblast activity was still underway. At week 12 in rats
treated with Gelfoam® only, defects had been completely
filled, yet the light blue to purple color of the stained tissue
indicated incomplete loose bone tissue formation. Compara-
tively, Gelfoam®+hMSC-treated defects demonstrated com-

plete filling of the defect region with mineralized bone at
week 12. Taken together, it is evident that the rats that
received Gelfoam®+hMSCs showed significantly higher fill-
ing of the defect and new bone formation starting at week 4
and progressing into week 12.

The Masson trichrome-stained samples illustrated in
Figure 4(a) were quantitated and analyzed and the data is
shown in Figure 4(b). No significant differences were
observed at any time point in the rats treated with Gelfoam®
alone. In contrast, there were significant differences in early
bone formation/collagen in rats treated with Gelfoam®
+hMSCs between weeks 1 and 4 and between weeks 1 and
12. There was no statistical difference in bone regeneration
between weeks 4 and 12. The hMSC-treated rats showed
quantitatively more consistent accumulation of collage-
n/early bone formation structures than the rats treated with
Gelfoam® alone. It appeared that the regeneration process
started as early as 4 weeks. Furthermore, and most impor-
tantly, the level of bone formation between weeks 1 and 4
was roughly 2-fold significantly higher in the rats treated
with Gelfoam®+hMSCs compared to the group with Gel-
foam® alone. Comparatively, the level of bone formation
between weeks 1 and 12 was not statistically different
between the two treatment groups, suggesting an enhanced
and early bone healing in presence of hMSCs.

3.7. Immunohistochemical Assessment. IHC evaluation of
unstained histological sections for osteopontin (OPN)
(Figure 5(a)), fibronectin (FN) (Figure 5(b)), and CD34
(Figure 5(c)) verified expression of these proteins within the
tissue, for all rats at week 4, supporting the healing of the
bone defect observed and described in the Masson
trichrome-stained samples. Notable expression of OPN was
observed in the soft tissue covering the palatal side as well
as within the center of defects. Morphological comparison
of surfaces stained for OPN within defects appeared to dem-
onstrate a more uniform patterning within the Gelfoam®
+hMSC-treated samples, in contrast to the chaotic formation
in the Gelfoam®-only treated defects. FN expression was
observed to be concentrated in the soft tissue covering
defects, similar to OPN staining, as well as throughout the
defects, indicating matrix formation within treated regions.
Similar to morphological observations in OPN-stained
samples, FN appeared more uniformly organized in the
Gelfoam®+hMSC-treated sample as compared to the
Gelfoam®-only treatment group. CD34 expression was
heavily pronounced in both the treatment groups, within
the defects and the surrounding tissue indicating presence
of hematopoietic cells.

4. Discussion

Relative to bone marrow, the adipose tissue is a commonly
used source of MSCs for oral/maxillofacial surgeons in bone
tissue engineering [24]. The stromal vascular fraction of the
adipose tissue is one of the commonly used sources of MSCs,
and hence, an important tissue to regenerative medicine sci-
entists and researchers [7, 25]. Adipose tissue-derived MSCs
can be isolated relatively easily with less pain to the donor
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Figure 4: Continued.
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and in greater quantities. MSCs express specific markers
(CD29, CD44, CD90, and CD105), demonstrate adipogenic,
osteogenic, and chondrogenic potentials and enhancement
of angiogenesis and immunomodulatory function, and have
been used in the repair and regeneration of craniomaxillofa-

cial injuries. Multiple reports have been published demon-
strating the use of MSCs in the repair of calvarial and
mandibular bone defects in rodent models [26–28]. Rela-
tively speaking, there are less reports on tooth extraction
models in rats and mouse models. This can partially be

Week 12 Gelfoam only Gelfoam+hMSCs

Full tissue

Defect site

Intact

Palate

Defect Intact

Palate

Defect

(c)
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Figure 4: Qualitative and qualitative histomorphometry. Representative images depicting Masson trichrome stained coronal plane of the
alveolar bone regions from rats treated with Gelfoam® alone and Gelfoam®+hMSCs for 1 (a), 4 (b), and 12 (c) weeks are shown. The
intact and the defect sites are labelled in full tissue images, and the defect region has been expanded below respective images. Bone
regeneration ratio values (d) from images demonstrate the level of bone formation within the defect site between week 1 and weeks 4 and
12, respectively, for both Gelfoam® alone and Gelfoam®+hMSCs. There is a statistically significant bone regeneration in 4 weeks in the
presence of hMSCs.
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Figure 5: Continued.
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attributed towards the technical challenges associated with
creating the defect and postop care in a small rodent model.

In the in vitro and in vivo assays described in this study,
the bioinert scaffold, Gelfoam®, was used to deliver and con-
tain hMSCs to the injury site. Gelfoam® is generally available
and commonly used in the medical field as a hemostat.
Known to be a compressible, porous, pliable, water insoluble,
sponge-like material with absorptive properties, Gelfoam®
also is completely absorbed by soft tissues in four to six weeks
with little or no tissue reaction. We demonstrated that the
material is cytocompatible with hMSCs and that cells are
not hindered in the adherence, proliferation, or osteogenic
potential when seeded on constructs. Though scaffolds
became spongy after hydration by the media (in vitro) and
body fluids (in vivo), the matrix appeared to maintain its
structure throughout the study period. As Gelfoam® is not
considered to be bioactive, the observed osteogenic differen-
tiation of seeded cells is attributed to exposure to a 3D envi-
ronment, which readily offers a mode of cell adhesion and
permits multidirectional growth as compared to that
observed along the 2D surface of the tissue culture polysty-
rene dish. This 3D growth pattern is more favorable to the
formation of nodular cell clusters, which are hallmarks of cell
osteodifferentiation [29].

Though alizarin red staining is considered to be the gold
standard to evaluate in vitro osteogenesis, it could not be used

in this study due to nonspecific absorbance of the stain by
Gelfoam®, and as a result, evaluation was carried out utilizing
the expression of osteogenic-specific genes to confirm cell
adhesion and osteogenic differentiation. OPN is known to
be expressed in osteoblasts during bone formation and
remodeling [30]. RUNX2 is a transcription factor that is
expressed during osteoblast differentiation and potentially
upregulates the expression of bone matrix proteins [31].
The expression profiles of OPN and RUNX2 indicated the
osteogenic capacity of the hMSCs seeded on Gelfoam®.

Similarly, the expression profiles of the various integrin
subunits during osteogenesis were interesting. Integrin
expression is known to be a relevant biomarker of successful
cell adhesion. Integrins are also important in signal transduc-
tion during differentiation and osteogenesis [32, 33]. Integ-
rins exist and are functional in the cells as heterodimers of
alpha and beta subunits, and hence, it was necessary to eval-
uate the expression of these subunits independently. The
minor changes in expression levels from day 7 to day 21 of
the integrin subunits in the hMSCs embedded in Gelfoam®
indicate that all the subunits, primarily α2 and not α5 are
needed in the adhesion and subsequent osteogenic differenti-
ation of hMSCs. Overall, the gene expression profile of the
integrin subunits and the osteogenic genes of hMSCs embed-
ded in Gelfoam® indicated that cell adhesion and osteogenic
capabilities were not affected by Gelfoam®, and hMSCs

Palate

Intact

Defect Palate

Intact

Defect

Gelfoam only Gelfoam+hMSCs

(c)

Figure 5: Immunohistochemistry. Representative images depicting immunohistochemical staining (Nove Red) of decalcified bone samples
with OPN (a), FN (b), and CD34 (c) are shown. Histological sections from rats treated with Gelfoam® alone and Gelfoam®+hMSCs for 4
weeks are shown. The anatomical regions are labelled. Black dotted lines indicate region of interest illustrated in the 10x magnification.
Note the areas of relatively organized pattern of staining in the hMSC-treated defects.
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exhibit normal molecular and cellular properties, further
confirming that the material was cytocompatible.

A relatively complex and challenging rat model was
used to evaluate the in vivo osteogenic potential of hMSCs
delivered within a bioinert vehicle. This model offered a
means of initial in vivo assessment of biocompatibility
and regeneration potential of MSCs as rats tolerate the
xenogenic implantation of MSCs very well. Previous stud-
ies from our laboratory demonstrate lack of immunologic
or an adverse reaction when MSCs of xenogenic (goat or
equine) origin are implanted in Sprague Dawley rats [34,
35]. Even though this model is convenient, cost effective,
and considered to be ideal to test the performance of
new implant and grafting materials in pretranslational
studies, challenges due to the small animal size and the
complex anatomy of the oral/maxillofacial region were
apparent. Despite these challenges, histomorphometric
data analyses showed that there was a statistically signifi-
cant increase in the level of bone formation within 4
weeks when the defects were treated with hMSCs. This
significance was observed relative to the defects treated
with the Gelfoam scaffold alone, and proved our hypothe-
sis. Subjective evaluation of the Masson trichrome staining
revealed a more consistent and organized pattern of solid
bone tissue regeneration in the group treated with hMSCs.
This was further supported by IHC assessment of samples
from both study groups at week 4 postsurgery. Stainings
illustrated the presence of key osteogenic, cell matrix,
and angiogenic proteins within the defect region at this
time point. The Gelfoam®+hMSC-treated samples demon-
strated a more organized morphological distribution of
these proteins compared to the chaotic pattern in Gel-
foam® alone samples. Our data strongly suggests that
xenogenic adipose tissue-derived MSCs exhibit a potential
to regenerate bone when delivered and contained using a
scaffold. Future studies with large animal models are nec-
essary to validate observations and elucidate mechanism(s)
responsible for induced healing and repair of bone defects
by MSCs.

5. Conclusions

We have demonstrated that xenogeneic hMSCs, delivered
and contained at the bone injury site via a bioinert scaffold,
promoted enhanced regeneration of maxillary bone defects.
The relative availability and ease of collection for adipose-
derived MSCs coupled with the observed osteogenic poten-
tial when applied and maintained within a bone defect
presents a promising bioactive additive for bone tissue engi-
neering materials. Application of such cell-based material
platforms therefore offers a feasible and effective approach
for the clinical restoration of oral/maxillofacial bone
defects.
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