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Abstract. The Community Multiscale Air Quality (CMAQ)
model has been further developed in terms of simulating nat-
ural wind-blown dust in this study, with a series of modifi-
cations aimed at improving the model’s capability to predict
the emission, transport, and chemical reactions of dust. The
default parameterization of initial threshold friction velocity
constants are revised to correct the double counting of the im-
pact of soil moisture in CMAQ by the reanalysis of field ex-
periment data; source-dependent speciation profiles for dust
emission are derived based on local measurements for the
Gobi and Taklamakan deserts in East Asia; and dust hetero-
geneous chemistry is also implemented. The improved dust
module in the CMAQ is applied over East Asia for March and
April from 2006 to 2010. The model evaluation result shows
that the simulation bias of PM10 and aerosol optical depth
(AOD) is reduced, respectively, from −55.42 and −31.97 %
by the original CMAQ to −16.05 and −22.1 % by the re-
vised CMAQ. Comparison with observations at the nearby
Gobi stations of Duolun and Yulin indicates that applying
a source-dependent profile helps reduce simulation bias for
trace metals. Implementing heterogeneous chemistry also re-
sults in better agreement with observations for sulfur diox-
ide (SO2), sulfate (SO2−

4 ), nitric acid (HNO3), nitrous oxides
(NOx), and nitrate (NO−3 ). The investigation of a severe dust
storm episode from 19 to 21 March 2010 suggests that the

revised CMAQ is capable of capturing the spatial distribu-
tion and temporal variation of dust. The model evaluation
also indicates potential uncertainty within the excessive soil
moisture used by meteorological simulation. The mass con-
tribution of fine-mode particles in dust emission may be un-
derestimated by 50 %. The revised CMAQ model provides
a useful tool for future studies to investigate the emission,
transport, and impact of wind-blown dust over East Asia and
elsewhere.

1 Introduction

Natural dust has a wide impact on many different aspects of
the Earth’s system. It reduces atmospheric visibility (Engel-
staedter et al., 2003; Kurosaki and Mikami, 2005; Washing-
ton et al., 2003), deteriorates air quality (De Longueville et
al., 2010; Prospero, 1999), alters the radiative forcing budget
(Liao et al., 2004; Miller et al., 2006; Reddy et al., 2005), and
also affects the cloud properties and precipitation (Rosen-
feld et al., 2001; Forster et al., 2007). Over East Asia, spring
time dust storms often lead to severe air pollution since the
intensively elevated aerosol loadings are dumped over the
most populated areas. The estimated global source of min-
eral dust with diameters below 10 µm is between 1000 and
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8158 J. S. Fu et al.: Model development of dust emission and heterogeneous chemistry

4000 Tg year−1 on a global scale as reported by Intergov-
ernmental Panel on Climate Change (IPCC), and Zhang et
al. (2003) reported annual Asian dust emission as 800 Tg.
East Asian dust mainly originates from two dominant source
regions and their surrounding areas, including the Takla-
makan Desert in northwest China and the Gobi Desert in
Mongolia and northern China (Huang et al., 2010). In spring,
the Mongolian cyclone associated with the East Asian trough
often leads to strong northwesterly near-surface winds (Shao
and Dong, 2006) that lift and transport the eolian dust parti-
cles. East Asian dust can be transported to densely populated
areas over China (Qian et al., 2002), South Korea (Chun et
al., 2001; Park and In, 2003), and Japan (Ma et al., 2001;
Uno et al., 2001) and at times can even be transported across
the Pacific Ocean, reaching as far as the west coast of North
America (Fairlie et al., 2010; Wang et al., 2012; Zhao et al.,
2010). Along the transport pathway, mineral dust particles
also serve as carriers and reaction platforms by taking up
reactive gases such as ozone (O3), nitrogen oxides (NOx),
sulfur dioxide (SO2), nitric acid (HNO3), hydroxyl radicals
(OH), and volatile organic compounds (VOCs). The hetero-
geneous dust chemistry may change the photochemistry, acid
deposition, and production of secondary aerosols in the at-
mosphere. Moreover, East Asian dust is believed to con-
tribute geochemically significant amounts of minerals that
are deposited in the western part of the Pacific Ocean. These
minerals may alter the oceanic primary productivity (Zhang
et al., 2003; Zhuang et al., 1992) as well.

Since natural dust links the biogeochemical cycle of land,
atmosphere, and ocean, understanding the emission, evolu-
tion, and transport of dust is essential for further examin-
ing its impacts on the Earth’s system. Numerical modeling
is one of the most important approaches for systematically
investigating dust. Many global models simulate dust emis-
sions, transport, and depositions. Huneeus et al. (2011) con-
ducted intercomparisons of 15 global models and reported
their simulated aerosol optical depth (AOD) and Ångström
exponent (AE) within a factor of 2 and the deposition and
surface concentration within a factor of 10 with respect to
observations, indicating significant variations among differ-
ent models. Regional models usually represent dust by fol-
lowing the same coherent manner as global models. For ex-
ample, the Weather Research and Forecasting model coupled
with Chemistry (WRF-Chem) (Grell et al., 2005) coupled
with the GOCART scheme (Ginoux et al., 2001) has been
applied to simulate dust emission over central East Asia (Ku-
mar et al., 2014), the United States (Zhao et al., 2010), and
East Asia (Chen et al., 2013). The Sulfur Transport and dE-
position Model (STEM) (Carmichael et al., 2003) used the
COAMPS scheme (Liu and Westphal, 2001) and has been
applied over East Asia (Tang et al., 2004). Regional mod-
els have fine spatiotemporal resolution and multiple physi-
cal parameterizations at the cost of intensive computation.
As compared to global models, regional models may pro-
vide more realistic representations of the surface roughness,

soil moisture, and contents and also allow comparable vali-
dation against surface observations (Darmenova and Sokolik,
2008).

The Community Multiscale Air Quality (CMAQ) model
is a state-of-the-science model and has been applied in nu-
merous regional modeling studies worldwide. Unlike other
models, in which dust is usually treated as a unique aerosol,
the CMAQ distributes dust particles into 19 aerosol species,
such as inorganic aerosols and trace metals. This approach
is consistent with the original design of the CMAQ as an
air quality model, and it also provides a potential platform
to examine the diversities of chemical and physical proper-
ties within dust particles. It enables the model to examine the
mixing status and net effect of natural dust and anthropogenic
aerosols on air quality and regional climate. The validation
of the CMAQ performance is not well understood due to lim-
ited research efforts. Appel et al. (2013) conducted a full year
simulation with CMAQ over the continental United States for
2006 and reported good agreement between simulations and
observations, with the mean bias around ±0.5 µg m−3 and
0.5–1.5 µg m−3 (∼±30 %) for soil concentrations over west-
ern and eastern United States, respectively. But the CMAQ
simulations over other regions underestimate dust emissions
significantly. Fu et al. (2014) reported that the default dust
scheme in the CMAQ underestimated dust emission by 98 %
during a 6-day dust storm episode in 2011. With the model-
ing domain covering the entire Northern Hemisphere, Xing
et al. (2015) also suggested that the CMAQ underestimated
AOD by 30–60 % in areas where dust is dominant, while the
bias was less than ±15 % elsewhere.

The studies mentioned above indicate that the capability
of the CMAQ to simulate natural dust emissions remains
poorly understood. In addition, the current dust scheme in
the CMAQ does not include dust heterogeneous chemistry,
while some studies have revealed the important impact of
dust chemistry on ambient air pollutants with both measure-
ment (Krueger et al., 2004; Matsuki et al., 2005; Usher et al.,
2003) and modeling evidence (Bauer et al., 2004; Bian and
Zender, 2003; Dentener et al., 1996). The objective of this
study is to evaluate and improve the model’s capability to re-
produce dust emission and also to enable the model to treat
the dust heterogeneous chemistry. Section 2 introduces the
method of applying new parameterizations and implement-
ing dust heterogeneous chemistry in the CMAQ, whereas
Sect. 3 summarizes the improved model performance. Sec-
tion 4 discusses the enhanced model capability and remain-
ing uncertainties, and Sect. 5 concludes the paper with a sum-
mary of the findings.
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2 Methodology

2.1 Improvement of the CMAQ wind-blown dust
emission module

The process of wind-blown dust emission is controlled by
a number of environmental variables, including wind speed,
soil texture, land use type, vegetation cover, and soil mois-
ture. Dust deflation is favored by dry soil with low and sparse
vegetation and constrained by high soil moisture. The dust
emission scheme employed in the CMAQ is developed by
Tong et al. (2016). The emission (vertical flux) of the dust
F (g m−2 s−1) was estimated based on a modified Owen’s
equation (Owen, 1964):

F =

M∑
i=1

N∑
j=1

K ×A×
ρ

g
× Si ×SEP× u∗× (u2

∗− u
2
∗t i,j )

for u∗ > u∗t i,j , (1)

where M is the erodible land use type, N is the soil texture
type, and K is the ratio of vertical to horizontal flux calcu-
lated based on the amount of clay (clay %) within the soil:

K =

{
100.134×(clay %)−6,when:clay%< 20%
0.0002, when:clay%> 20%

. (2)

The value of K (0.0002) for clay percentage > 20 % is
used here following the recommendation of Marticorena and
Bergametti (1995). A is a scaling factor (set as 32.0 in
this study), ρ is air density, g is gravitational acceleration
(9.8 m s−2), Si is dust source area for land type i, and SEP
is the soil erodibility factor, which is calculated based on the
fraction of clay, silt, and sand of the soil as

SEP= 0.08× clay+ 1.0× silt+ 0.12× sand. (3)

u∗ is the friction velocity, and u∗t i,j is the threshold fric-
tion velocity for soil type j and land use type i. More de-
tails of the dust emission algorithm have been given in Tong
et al. (2016). Equation (1) is applied only when the model-
calculated friction velocity exceeds the designated threshold
value. Therefore, the value of threshold friction velocity is
critical to determine the onset and magnitude of dust emis-
sion in the CMAQ model.

In the CMAQ dust module, the threshold friction veloc-
ity is dynamically calculated based on the presence of non-
erodible elements and the change in soil moisture (Tong
et al., 2016). The effect of non-erodible elements is repre-
sented by wind energy partitioning following Marticorena et
al. (1997). The effect of soil moisture on dust emission is
implemented following a two-step approach proposed by Fé-
can et al. (1999). First, the maximum water holding capacity
(Wmax) for each soil type is determined based on the amount
of clay in the soil:

Wmax = (0.0014× clay+ 0.17)× clay. (4)

Table 1. Value of the saturation soil moisture limit (Sl).

Land cover Shrubland Mixed shrub/ Barren or sparsely
grass land vegetated

Soil type

Sand 0.395 0.135 0.068
Loamy sand 0.410 0.150 0.075
Sandy loam 0.435 0.195 0.114
Silt loam 0.485 0.255 0.179
Silt 0.476 0.361 0.084
Loam 0.451 0.240 0.155
Sandy clay loam 0.420 0.255 0.175
Silty clay loam 0.477 0.322 0.218
Clay loam 0.476 0.325 0.250
Sandy clay 0.426 0.310 0.219
Silty clay 0.482 0.370 0.283
Clay 0.482 0.367 0.286

In the case of soil moisture exceeding Wmax, the threshold
friction velocity is then adjusted (Marticorena et al., 1997) as

u∗t i,j = u∗ci,j ×Zi,j × fsoilm i,j , (5)

where u∗ci,j is the initial threshold friction velocity constant,
and Zi,j is the surface roughness adjusting factor calculated
with surface roughness length from the meteorology field,
calculated as

Z =
C1

C1× lnZruf−C2
. (6)

The constants C1 = 32 and C2 =−5 used in this equa-
tion are derived from field measurement data from Gillette
et al. (1980) and the relationship between roughness length
and friction velocity described in Marticorena et al. (1997).

And fsoilm i,j is the moisture adjustment factor calculated
using a revised Fécan formulation (Fécan et al., 1999):

fsoilm i,j =


1.0, forSm ≤Wmax(
1.0+ 1.21× (Sm−Wmax)

0.68)0.5,
for Wmax ≤ Sm < Sl

(7)

where Sm is soil moisture andSl is the saturation soil moisture
limit determined by soil textures. The values of Sl are given
by the North American Mesoscale (NAM) modeling system
(Rogers et al., 2009), as summarized in Table 1.

Previously, the values of initial threshold friction velocity
constant were taken from observed data from wind tunnel
experiments conducted by Gillette and coworkers (Gillette
et al., 1980, 1982). Fu et al. (2014) reported the u∗ci,j used
in the CMAQ has an average value of 0.7 m s−1 among all
soil types, which is too high to generate enough dust parti-
cles over East Asia. Fu et al. (2014) used a fixed value of
0.3 m s−1 based on a study of local measurements in a north-
ern desert in China (Li et al., 2007). Although this smaller
threshold helps generate a higher production of dust emission
during the 6-day simulation episode from 1 to 6 May 2011,

www.atmos-chem-phys.net/16/8157/2016/ Atmos. Chem. Phys., 16, 8157–8180, 2016



8160 J. S. Fu et al.: Model development of dust emission and heterogeneous chemistry

Figure 1. (a) Land cover categories, (b) soil types, and (c) comparison of initial friction velocity threshold constants in default (blue markers)
and revised (black markers) dust schemes for shrubland (top), mixed shrub- and grassland (middle), and barren or sparsely vegetated (bottom)
land cover.

the arbitrarily designated threshold value for all land covers
and soil categories prevents the model from reproducing spa-
tial and temporal variations of dust emission. In this study,
we have conducted a reanalysis of the field data (Gillette
et al., 1980, 1982) and revised the threshold friction veloc-
ities through removing the double counting of soil mois-
ture in the CMAQ dust emission modeling. In these field
campaigns, some of these experiments were performed un-
der rather dry conditions, but for other samples the effect
of soil moisture cannot be ignored. Therefore, these values
reported from field experiments are not always suitable for
being used directly as the initial threshold friction velocity
constant, which is assumed to represent extremely dry condi-
tions. Meanwhile, in the CMAQ dust module, dynamic soil
moisture data are used to adjust threshold friction velocity.
Therefore, we need to convert the wet-condition data into
threshold values under dry conditions. Otherwise, there will
be the double counting of soil moisture in some cases.

We took a three-step approach to calibrate the threshold
friction velocity. First, the value of soil moisture was ex-
tracted for each sample from the raw field dataset (courtesy
from Dale Gillette, retired). Next, these data were used to
feed the Fécan formula (Fécan et al., 1999) to derive the dry-
condition threshold velocity by casting soil moisture back
to zero. We have reprocessed the data for the soil and land
use types measured by Gillette (1980, 1982). In the case of
missing data for certain soil types, we have chosen the values

with the soil composition closest to a measured type follow-
ing the USDA soil composition diagram (Fig. 1 of Gillette
et al., 1980). Finally, the revised values of u∗ci,j are imple-
mented in the CMAQ. To our knowledge the double-counting
issue affects the dust emission module in CMAQ only be-
cause the microphysical parameterization is developed based
on Gillette et al. (1980) data. It also explains the significant
underestimations of dusty by CMAQ as reported in Appel et
al. (2013) and Fu et al. (2014). The comparison of the de-
fault and revised constants is summarized in Fig. 1c. As the
double-count of soil moisture has been corrected, the revised
constants are lower than the default ones. The majority of
land cover in the Gobi is categorized as shrubland, where the
revised initial threshold friction velocity constants are signifi-
cantly lower than the default values for all soil types as shown
in Fig. 1c, indicating that the revised scheme is expected
to produce higher dust emissions over the Gobi. The Takla-
makan Desert is mainly configured as barren or sparsely veg-
etated land cover with a sandy soil type, which only shows
a small drop in the threshold friction velocity constant from
0.28 to 0.23 m s−1, indicating that the changes in dust emis-
sion over the Taklamakan may not be substantial. The CMAQ
distributes dust emission to four size bins: 0.1–1.0, 1.0–2.5,
2.5–5.0, and 5.0–10.0 µm, with the mass contribution as 3,
17, 41, and 39 % within each bin, respectively. The first two
bins represent the fine-mode aerosol and the larger two rep-

Atmos. Chem. Phys., 16, 8157–8180, 2016 www.atmos-chem-phys.net/16/8157/2016/
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resent the coarse mode. So the mass contribution is 20 % for
fine-mode and 80 % for coarse-mode aerosol.

2.2 Implementing source-dependent speciation profile

The emission of natural wind-blown dust particles is dis-
tributed to 19 aerosol species in the CMAQ, following the
profile developed based on the EPA’s SPECIATE database
(Simon et al., 2010). As compared with other models that
treat dust as a unique aerosol species, the CMAQ approach
provides a more detailed description of dust mineralogy. This
feature benefits CMAQ by enabling the model to maintain
the consistency between dust and other types of existing
aerosol in the modeling system. However, mass contribu-
tions of different chemical components may differ greatly
among different source areas; thus, using a fixed profile for
all dust sources may introduce uncertainty and lose the ca-
pacity to model the varieties of dust particles. The mass con-
tribution of aluminum (Al) is around 5–8 % for pure min-
erals around the world, and the ratios between other trace
metals and Al may vary substantially for different dust par-
ticles. Thus, the elemental mass ratio between calcium and
aluminum (Ca /Al) is usually used to identify the source of
dust samples (Huang et al., 2010; Sun et al., 2005). For ex-
ample, the Ca /Al ratio for Saharan dust is around 0.9 and
1.0 for fine and coarse dust particles, respectively (Blanco
et al., 2003; Formenti et al., 2003; Kandler et al., 2007;
Reid et al., 2003); for Arabian dust, it is around 0.13 and
0.15 for coastal and inland dust, respectively (Krueger et al.,
2004); for Taklamakan dust, it is about 1.5–1.9 (Huang et
al., 2010); and for dust from the Gobi Desert, it is 0.4–1.1
(Arimoto et al., 2006; Zhang et al., 2003). To characterize
the dust aerosols in the CMAQ better, source-dependent spe-
ciation profiles are developed in this study for the Gobi and
Taklamakan deserts based on local measurement data col-
lected by Huang et al. (2010). These two profiles are com-
pared with the default one in the CMAQ as shown in Table 2.
For the model species which are not measured in Huang et
al. (2010), including primary organic carbons (APOC), non-
carbon aerosols (APNCOM), elementary carbons (EC), sil-
icon (ASI), and water (AH2O), their values for the Takla-
makan and Gobi are kept the same as in the default profile.
And for unspeciated (AOTHR) and non-anion dust (ASOIL),
their values in the two new profiles are calculated based
on the contributions of all other species, to keep the total
mass contributions conservative. It is important to note that
the model species refer to an anion or cation phase for sul-
fate (ASO4, SO2−

4 ), nitrate (ANO3, NO−3 ), chloride (ACL,
Cl−), ammonium (ANH4, NH+4 ), sodium (ANA, Na+), Ca+2
(ACA), magnesium (AMG, Mg+2 ), and potassium (AK,K+)
and an element phase for iron (AFE, Fe), Al(AAL), silicon
(ASI, Si), titanium (ATI, Ti), and manganese (AMN, Mn).
Mass contributions of different aerosols differ significantly
among the profiles as shown in Table 2. For example, Ca+2 ac-
counts for 7.94 % of the total fine-particle mass in the default

profile, which is much higher than the Taklamakan (2.063 %)
and the Gobi (1.788 %). For Mg+2 , the default profile assumes
0 % of mass contribution, yet the values for the Taklamakan
and Gobi are 0.165 and 0.799 %, respectively. The K+ con-
tribution within the default profile is 3.77 %, while for the
Taklamakan it is 0.153 % and for the Gobi it is 0.282 %. Si is
one of the most abundant metals in the crust, yet the default
speciation profile has an inappropriate assumption of zero Si
content in coarse-mode dust particles. As no measurements
are found for Si over the Taklamakan or Gobi, we use the
element ratio of Al /Si as 8 % / 28 % to derive the mass con-
tribution of Si in the coarse model, which is a conventional
approach for trace metal analysis (Huang et al., 2010). Dif-
ferent configurations within the speciation profile will lead
to significant differences in model predictions for these trace
metals, demonstrated in more detail in Sect. 3.

2.3 Implementation of heterogeneous reactions

The default heterogeneous chemistry scheme within the
CMAQ considered the conversions from N2O5 to HNO3 and
from NO2 to HONO and HNO3. These reactions play an im-
portant role in the nighttime production of nitrate aerosols
(Dong et al., 2014; Pathak et al., 2011; Pun and Seigneur,
2001). Heterogeneous reactions are treated as irreversible in
the model (Davis et al., 2008; Sarwar et al., 2008; Vogel et al.,
2003). While dust particles serve as a platform for heteroge-
neous reaction, they also participate in some of the reactions
to take up the gas-phase species. The uptake of gases onto the
surface of dust particles is defined by a pseudo-first-order re-
action rate K (Dentener et al., 1996; Heikes and Thompson,
1983) calculated as

K =

(
rp

Dg
+

4
vgγg

)−1

Ap, (8)

where rp is the radius of the particle,Dg is the diffusion coef-
ficient of gas molecules, vg is the mean molecular velocity of
gas,Ap is the surface area of the particle, and γg is the uptake
coefficient for gas. Many research efforts have been devoted
to quantifying the uptake coefficients. The reported values of
the uptake coefficient may differ by more than 2–3 orders of
magnitude, depending on the source of the dust samples and
analytical methods (Cwiertny et al., 2008; Usher et al., 2003).
While this work focuses on East Asia, the uptake coefficients
are mainly collected from Zhu et al. (2010), which summa-
rized the estimations for dust samples from deserts in China.
The “best guess” regarding uptake coefficients was suggested
based on the analysis of different measurement studies sum-
marized in Zhu and Zhang (2010). But in this study both the
lower and upper limits of uptake coefficients are examined to
evaluate their impacts. Table 3 lists the 13 dust heterogeneous
reactions implemented in the CMAQ in this study, with the
lower and upper boundaries of uptake coefficients.

www.atmos-chem-phys.net/16/8157/2016/ Atmos. Chem. Phys., 16, 8157–8180, 2016
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Table 2. Dust emission speciation profiles from the default CMAQ, and the profiles derived in this study for the Taklamakan and Gobi
deserts.

Model species Description Mass contributions (%)

Fine mode (I, J mode in CMAQ≤ 2.5 µm) Coarse mode (K mode in CMAQ≤ 10 µm)

Default Taklamakan Gobi Default Taklamakan Gobi

ASO4 Sulfate (SO2−
4 ) 2.5 3.554 0.953 2.655 2.825 0.471

ANO3 Nitrate (NO−3 ) 0.02 0.181 0.204 0.16 0.125 0.084
ACL Chloride (Cl−) 0.945 2.419 0.544 1.19 2.357 0.094
ANH4 Ammonium (NH+4 ) 0.005 0.098 0.346 0 0.066 0.185
ANA Sodium (Na+) 3.935 2.234 1.016 0 2.056 0.301
ACA Calcium (Ca+2 ) 7.94 2.063 1.788 0 1.423 1.082
AMG Magnesium (Mg+2 ) 0 0.165 0.799 0 0.121 0.819
AK Potassium (K+) 3.77 0.153 0.282 0 0.108 0.121
APOC Primary organic carbon 1.075 1.075 1.075 0 0 0
APNCOM Non-carbon organic matter 0.43 0.43 0.43 0 0 0
AEC Elementary carbon 0 0 0 0 0 0
AFE Iron (Fe) 3.355 4.689 2.425 0 3.75 3.055
AAL Aluminum (Al) 5.695 5.926 4.265 0 4.987 4.641
ASI Silicon (Si) 19.425 20.739 14.929 0 17.454 16.245
ATI Titanium (Ti) 0.28 0.312 0.337 0 0.285 0.365
AMN Manganese (Mn) 0.115 0.0758 0.063 0 0.062 0.072
AH2O Water (H2O) 0.541 0.541 0.541 0 0 0
AOTHR Unspeciated 50.219 55.345 70.002 0 0 0
ASOIL Non-anion dust 0 0 0 95.995 64.382 72.464

2.4 Model inputs, configuration, and simulation
scenarios

The CMAQ model simulation uses version 5.0.1. In this
study, the CMAQ is configured with the updated 2005 carbon
bond gas-phase mechanism (CB05), aerosol module AE6, in-
line photolysis calculation and NO emission from lightning,
and the Euler backward iterative (EBI) solver. The modeling
domain covers East Asia and peninsular Southeast Asia as
shown in Fig. 2. The CMAQ simulation is performed with a
36 km horizontal grid spacing and 34 vertical layers with a
model top at 50 hPa and finer resolution at the near-surface
layers to represent the planetary boundary layer clearly. The
simulation period covers March and April from 2006 to 2010
to represent the spring dust episode of East Asia.

The meteorology field is simulated with the Weather Re-
search and Forecasting model (WRFv3.4, Skamarock et al.,
2008). Initial and boundary conditions are downscaled from
the GEOS-Chem global model simulation for 2006–2010
by following the routines described in Lam and Fu (2009).
Biogenic emission is from MEGAN2.1 (Guenther et al.,
2006; Müller et al., 2008), biomass burning emission is from
FLAMBE (Reid et al., 2009), and anthropogenic emission is
from Zhao et al. (2013) over China and INTEX-B over other
countries within the domain. More details about meteorology
and emission datasets are given in Dong and Fu (2015a, b).

To examine the performance of the CMAQ model develop-
ment with revised parameterization and dust heterogeneous
reactions, a total of six scenarios is conducted as listed in

Figure 2. Modeling domain and locations of observation stations
from Fudan observation network (orange rectangles), API (red
circles), AERONET (AErosol RObotic NETwork; blue triangles),
EANET (green diamonds), and TAQMN (purple diamonds) over
East Asia.

Table 4. The simulations Dust_Off and Dust_Default are de-
signed to investigate the performance of the CMAQ without
dust emission and with the default dust plume rise scheme;
Dust_Revised is designed to investigate the performance of
applying the new parameterization of initial friction veloc-
ity threshold constants; Dust_Profile is designed to examine
the improvement by applying source-dependent dust com-
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Table 3. Heterogeneous reactions and uptake coefficients.

No. Reaction Uptake coefficient References

Default heterogeneous reactions in CMAQv5.0.1

C1 N2O5+H2O→ 2HNO3 γ =


(x1+ x2)× γ

∗
d + x3×min

(
γ ∗d ,γ3

)
, RH< CRH

3∑
i=1

xi × γ
∗
i
,RH> IRH,

0.02, otherwise
where x1,x2, and x3 and γ1,γ2, and γ3 are the normalized molar con-
centrations and N2O5 uptake coefficients on NH4HSO4, (NH4)2SO4,
and NH4NO3 respectively, γ ∗d =min(γd,0.0124), where γd is the up-
take coefficient on dry particles determined by relative humidity and
temperature, RH is relative humidity, CRH is crystallization relative
humidity, IRH is ice formation relative humidity determined by tem-
perature

Davis et al. (2008)

C2 2NO2+H2O→ HONO+HNO3 K = 5.0× 10−6
×Ap Vogel et al. (2003)

Implemented dust heterogeneous reactions in this work

R1 O3+ dust→ products 5.0× 10−5
∼ 1.0× 10−4 Zhu et al. (2010)

R2 OH+ dust→ products 0.1∼ 1.0 Zhu and Zhang (2010)
R3 H2O2+ dust→ products 1.0× 10−4

∼ 2.0× 10−3 Zhu and Zhang (2010)
R4 CH3COOH+ dust→ products 1.0× 10−3 Zhu and Zhang (2010)
R5 CH3OH+ dust→ products 1.0× 10−5 Zhu and Zhang (2010)
R6 CH2O+ dust→ products 1.0× 10−5 Zhu and Zhang (2010)
R7 HNO3+ dust→ 0.5NO−3 + 0.5NOx 1.1× 10−3

∼ 0.2 Dentener et al. (1996)
R8 N2O5+ dust→ 2NO−3 1.0× 10−3

∼ 0.1 Zhu and Zhang (2010)
R9 NO2+ dust→ NO−3 4.4× 10−5

∼ 2.0× 10−4 Underwood et al. (2001)
R10 NO3+ dust→ NO−3 0.1–0.23 Underwood et al. (2001)
R11 NO3+ dust→ HNO3 1.0× 10−3 Martin et al. (2003)
R12 HO2+ dust→ 0.5H2O2 0.2 Zhu and Zhang (2010)
R13 SO2+ dust→ SO2−

4 1.0× 10−4
∼ 2.6× 10−4 Phadnis and Carmichael (2000)

Table 4. Simulation design.

Scenario Configuration of CMAQv5.0.1
Dust_Off Without in-line calculation of dust
Dust_Default With default dust plume rise scheme
Dust_Revised Revised initial friction velocity threshold constant in dust plume rise scheme
Dust_Profile Same as Dust_Revised but with implemented source-dependent speciation profile
Dust_Chem Same as Dust_Profile but with implemented dust chemistry with lower limit of uptake coefficient
Dust_ChemHigh Same as Dust_Chem but with upper limit of uptake coefficients

position profiles; and Dust_Chem and Dust_ChemHigh are
designed to examine the impacts of implementing hetero-
geneous chemistry with the lower and upper estimations of
uptake coefficients, respectively. The scenario Dust_Profile,
Dust_Chem, and Dust_ChemHigh are all performed based
on Dust_Revised.

2.5 Observations

Both ground-based measurements and satellite observations
are used in this study to help examine the uncertainty and
evaluate the performance of the model. The Air Pollution In-
dex (API, http://datacenter.mep.gov.cn) reported by the Chi-
nese Ministry of Environmental Protection (MEP) is used
to evaluate the PM10 predictions from the CMAQ. The API
is reported on a daily basis with a national coverage of 86

middle size or larger cities in China and has been applied
in many modeling studies for evaluation purposes (Zhao et
al., 2013). To investigate the transport of dust particles over
downwind areas simulated by the model, we also used sur-
face observations from the Acid Deposition Monitoring Net-
work in East Asia (EANET; EANET, 2007) over Japan,
and observations from the Taiwan Air Quality Monitoring
Network (TAQMN; http://taqm.epa.gov.tw/taqm/en/default.
aspx). EANET provides hourly or daily records of PM10, O3,
NOx , and SO2 and also biweekly (or longer-interval) records
of HNO3, SO2−

4 , and NO−3 . Data from EANET is also em-
ployed in this study for examining model performance with
dust heterogeneous chemistry. The TAQMN provides obser-
vations of most criteria air pollutants, yet only PM10 obser-
vations at the Xinzhuang site are used in this study to fo-
cus on dust storm impact. These variables are used to exam-
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ine the simulation responses by implementing dust heteroge-
neous chemistry. Ground-based measurements of K+, Mg+2 ,
Ca+2 , and PM2.5 at Duolun and Yunlin from Fudan Univer-
sity’s observation network (Huang et al., 2010) are used to
investigate the model’s capability to simulate tracer metals
by applying the source-dependent speciation profile for sus-
pended dust particles. AOD from the AErosol RObotic NET-
work (AERONET; http://aeronet.gsfc.nasa.gov/) operated by
NASA is also collected to evaluate the CMAQ predictions.
To examine the spatial distribution and column density of
model-simulated dust particles, we also used AOD products
from the Moderate Resolution Imaging Spectroradiometer
(MODIS; http://modis.gsfc.nasa.gov/). All observations are
collected for the period of March and April from 2006 to
2010, except for the Fudan University data, which only cover
March and April in 2007. The locations of API, EANET,
TAQMN, and AERONET observational stations are indi-
cated in Fig. 2, along with the locations of Duolun and Yun-
lin. Table 5 summarizes detailed information on each obser-
vation network.

3 Results

3.1 Improved model performance with revised friction
velocity thresholds

To examine model improvement by implementing new ini-
tial threshold friction velocity constants, simulation results
from Dust_Default and Dust_Revised are compared for the
spatial distribution of PM10 and evaluation bias against API.
Dust_Default – Dust_Off and Dust_Revised – Dust_Off rep-
resent the PM10 from the default dust scheme and the re-
vised dust scheme, respectively, as shown in Fig. 3a and b.
PM10 concentrations generated from dust are averaged for
March and April from 2006 to 2010. Figure 3a indicates that
the default dust scheme produces a very limited amount of
PM10 only over the Gobi Desert (less than 70 µg m−3), which
can hardly represent the East Asian dust storms. The revised
scheme produces higher PM10 concentrations of more than
400 µg m−3 in the Gobi source region, as shown in Fig. 3b.
Dust plumes are generated by the revised model over the
Gobi and Taklamakan deserts and also in sparse grassland
over the northwest region of the Tibetan Plateau. Particles
from dust plumes are transported southeastward and con-
tribute 50–100 µg m−3 of PM10 over northern and eastern
China and less than 50 µg m−3 over southern China, South
Korea, and Japan. Huang et al. (2010) demonstrated that
there are two transport pathways for Asian dust: plumes from
the Gobi and Taklamakan are either pushed by prevailing
winds eastward towards South Korea and Japan or south-
eastward down towards southern China and Taiwan. With
the revised dust scheme, the CMAQ generally reproduces the
spatial distribution of Asian dust as shown in Fig. 3b, which
indicates the most significant impact over northern and east-
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Figure 3. Five-year averages of PM10 concentration difference from (a) Dust_Default – Dust_Off and (b) Dust_Revised – Dust_Off. PM10
simulation bias against observation at API stations for (c) Dust_Default and (d) Dust_Revised scenarios.

ern China and relatively weak impacts over downwind areas
along the transport pathway towards the southeast. Figure 3c
and d demonstrate the evaluation bias at the API cities over
China for the Dust_Default and Dust_Revised scenarios, re-
spectively. With the default dust scheme, the CMAQ shows
a large negative bias for the entire domain. The most serious
underestimation is found over northern and western China,
with a negative bias of more than−80 µg m−3. Figure 3c also
suggests that cities closer to the Taklamakan and Gobi deserts
have a larger negative bias, indicating that the default scheme
cannot generate sufficient dust emission to reproduce the ob-
served PM10. With the revised scheme as shown in Fig. 3d,
simulation biases for most of the cities are reduced down to
±20 µg m−3. The largest overestimation is found at Hohhot
(39 µg m−3), and the largest underestimation is found at Xin-
ing and Lanzhou (−60 µg m−3). Figure 3d also indicates that
the model tends to have a larger simulation discrepancy in
cities close to the desert.

Figure 4a to c summarize the evaluation statistics for sim-
ulated PM10 against observations from the API. Daily data

pairs from observation and simulation are used here to cal-
culate the statistics. The Dust_Off scenario underestimates
PM10 concentration by −56.74 %. Since dust storms from
the Taklamakan and Gobi substantially contribute to sus-
pended particle concentrations over East Asia during spring,
a simulation with no dust emission should be responsible
for the large underestimation. With the default dust emission
module, model performance for the scenario Dust_Default is
only slightly improved and PM10 is still underestimated by
−55.42 %, as shown by Fig. 4b. The comparison between
Dust_Off and Dust_Default suggests that the default dust
module is not able to generate sufficient elevated particles
to match the observed PM10 levels from the API. On the
other hand, the Dust_Revised scenario shows a much better
performance with an normalized mean bias (NMB) value of
−16.06 %, as shown in Fig. 4c. Simulation results are also
evaluated against AOD observations from the AERONET,
with the statistics shown in Fig. 4d to f. Statistics for AOD
evaluation against the AERONET suggest similar model per-
formances as for PM10. The CMAQ simulation without dust
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Figure 4. CMAQ evaluation against PM10 from API (upper row) and AOD (bottom row) from AERONET for Dust_Off (left column),
Dust_Default (middle column), and Dust_Revised (right column) scenarios. The formula for calculating evaluation statistics, including mean
bias (MB), normalized mean bias (NMB), normalized mean error (NME), mean fractional bias (MFB), mean fractional error (MFE), and
correlation coefficient (R), can be found in Dong et al. (2013).

rise underestimates AOD by −31.34 % at AERONET sta-
tions, and the default dust module offers almost no improve-
ment for AOD prediction. The Dust_Revised scenario un-
derestimates AOD by −22.1 %, indicating that the revised
scheme is also able to improve the model performance for
simulating fine-mode dust.

3.2 Impacts of applying source-dependent profile

The speciation of dust particles determines the contributions
of crust species and trace metal concentrations predicted by
the model. As described in Sect. 2.2, we modified the fixed
speciation profile within the CMAQ to be source-dependent
for the Gobi and Taklamakan, and in this section ground-
based observations collected at Duolun and Yulin are used
to investigate the impacts by applying different speciation
profiles. The model simulations from the Dust_Revised and
Dust_Profile scenarios are compared with observations for
K+, Mg+2 , and Ca+2 with data pairs, as shown in Fig. 5 (sim-

ulations and observations for K+ and Mg+2 are upscaled by
5 and 10 time, respectively, to make them comparable with
Ca+2 in the same figure), and evaluation statistics are summa-
rized in Table 6. The two cities are close to the Gobi Desert,
as shown by Fig. 2. Huang et al. (2010) used back trajectory
and Ca /Al ratio analysis to demonstrate that the Gobi Desert
is the main contributor of dust particles at Duolun and Yulin.
Figure 5a indicates that with the default speciation profile,
the CMAQ overestimatesK+and Ca+2 by 208.9 and 36.69 %,
respectively. Predicted Mg+2 concentration is almost zero be-
cause there is no emission of Mg+2 in the anthropogenic
emission inventories, and the default profile indicated a 0 %
mass contribution of Mg+2 from dust emission. With the
source-dependent speciation profile, the CMAQ simulation
of Mg+2 is increased significantly as shown in Fig. 5b. The
revised CMAQ underestimates K+ and Ca+2 by −47.83 and
−53.12 %, respectively. A consistent negative bias for trace
metals should be due to the underestimation of total fine-
mode aerosol within dust. Figure 5c shows the compari-
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Figure 5. Model evaluations of CMAQ-simulated metal tracers against observations from Fudan University (shown in Table 5) at Duolun and
Yulin for (a) Dust_Revised and (b) Dust_Profile scenarios. Evaluation statistics are shown in Table 6. Note that simulations and observations
of K+ and Mg+2 are upscaled by 5 and 10 times, respectively, to make them comparable with Ca+2 in the same plot. (c) The evaluation of
CMAQ-simulated PM2.5 at Duolun and Yulin.

Table 6. Evaluation statistics for tracer metals and PM2.5.

PM2.5 K+ Mg+2 Ca+2
Dust_Revised Dust_Profile Dust_Revised Dust_Profile Dust_Revised Dust_Profile

Mean obs (µg m−3) 81.52 0.23 0.19 2.24
Mean sim (µg m−3) 44.36 0.69 0.12 0.02 0.12 3.06 1.05
MB (µg m−3) −37.17 0.46 −0.11 −0.17 −0.07 0.82 −1.19
NMB (%) −45.59 208.9 −47.83 −99.8 −36.84 36.69 −53.12
R 0.67 0.42 0.44 0.22 0.51 0.22 0.44

son between observed and simulated PM2.5 concentrations
at Duolun and Yulin. The Dust_Revised and Dust_Profile
scenarios only differ in terms of their speciation profile for
particles. The predicted PM2.5 from the two scenarios are
almost identical, so only Dust_Profile is shown in Fig. 5c.
The concentration of PM2.5 is underestimated by −45.59 %,
which is consistent with the underestimations of Mg+2 , K+,
and Ca+2 . The evaluation statistics suggest that total PM2.5 is
underestimated at Duolun and Yunlin, but Ca+2 is overesti-
mated under the default profile. So although the NMB value
changes from 36.69 % by the default profile to −53.12 % for
Ca+2 by the revised profile, it is highly possible that the re-
vised profile provides a better estimation of the calcium mass
contribution since the evaluation statistics for trace metals
should be consistent with that for total PM2.5. The overall
underestimation of PM2.5 and trace metals is probably due to
the underestimation of fine-mode aerosol mass contribution
(20 %) to total dust emission. On the other hand, the simu-
lation bias shown in Fig. 3d suggests a slight overestimation
of PM10 at cities close to the Gobi Desert. So it is highly
possible that the fine-particle mass contribution configured
within CMAQ may be underestimated. Unfortunately, mea-
surements made by Huang et al. (2010) only collected data
for total suspended particles (TSPs) and no PM10 observa-

tion is found for Duolun or Yulin. So no reliable conclusion
is drawn at this point because the PM10 data are not available
at Duolun or Yulin, although the TSPs are measured and in-
dicate that the fine-mode aerosol should have a larger mass
contribution (about 40 % in TSP).

3.3 Impacts of heterogeneous chemistry

Dust heterogeneous chemistry involves the uptake of gas-
phase species and the production of secondary inorganic
aerosols. In this section we investigate the impacts of imple-
menting dust chemistry in the CMAQ by examining the sim-
ulation difference between Dust_Chem and Dust_Profile and
the difference between Dust_ChemHigh and Dust_Profile.
Figure 6 shows the concentration changes (color contours
represent the absolute concentration changes, and dashed
lines represent the percentage changes) under heterogeneous
chemistry with lower (left column) and upper (right column)
limits of uptake coefficients for O3 (first row), SO2 (second
row), SO2−

4 (third row), HNO3 (fourth row), NOx (fifth row),
and NO−3 (sixth row). All variables are averaged for March
and April from 2006 to 2010. The spatial distributions shown
in Fig. 6 suggest that impacts of dust chemistry are more pro-
nounced in eastern China over the downwind areas than in
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Figure 6.
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Figure 6. Five-year averages for March and April from 2006 to 2010 of dust heterogeneous chemistry impacts with lower (left column)
and upper (right column) uptake coefficients for species O3, SO2, SO2−

4 , HNO3, NOx , and NO−3 . Color contours represent the absolute
concentration changes and dashed contour lines with numbers indicate the percentage changes.

www.atmos-chem-phys.net/16/8157/2016/ Atmos. Chem. Phys., 16, 8157–8180, 2016



8170 J. S. Fu et al.: Model development of dust emission and heterogeneous chemistry

the dust source area near the deserts. This is because eastern
China has intense anthropogenic emissions that help to ac-
celerate the dust chemistry, while the desert areas in northern
and western China have much lower concentrations of the re-
active gases. Dong and Fu (2015a) reported that in spring, O3
concentration is around 30 ppbv and less than 5 ppbv for NO2
and SO2 over the Gobi, while the concentrations over east-
ern China are 50–60 ppbv for O3 and 10–40 ppbv for NO2
and SO2. A greater proportion of these reactive gases partic-
ipates in the heterogeneous reactions on the surface of dust
particles transported from deserts and thus lead to a more
significant impact of dust chemistry over the downwind area
instead of over the deserts. Li et al. (2012) also reported that
the impact of dust chemistry for O3, SO2, and NO2 is less
than 5 % over the Gobi but up to 30–40 % in eastern China
and even higher over the western Pacific. O3 concentration
is reduced by 3–6 ppbv (2–10 %) and 5–11 ppbv (4–20 %)
with the lower and upper limits of uptake coefficients, re-
spectively, due to irreversible Reaction (R1) as listed in Ta-
ble 3, which agrees well with the values reported by Tang
et al. (2004; 20 % and Li et al. (2012; 5–20 %. Wang et
al. (2012) reported lower O3 reduction due to dust chemistry
by 3.8 and 7.3 ppbv with lower and upper uptake coefficients,
respectively, which could be because of using a different sim-
ulation year (2001) with a lower baseline O3 over East Asia.
The concentration of SO2 is reduced by∼ 2 ppbv (10 %) and
∼ 6 ppbv (30 %) with lower and upper limits of uptake co-
efficients, respectively, due to the consumption in reaction
R13, which also leads to the increase in SO2−

4 concentration
by ∼ 3 µg m−3 (8 %) and more than 5 µg m−3 (15 %) under
Dust_Chem and Dust_ChemHigh, respectively. Impacts on
SO2 reported by other studies differ moderately by a factor
of 2 or more, varying from 55 % by Tang et al. (2004) as the
highest, 10–20 % as the medium (Li et al., 2012), and 5–8 %
as the lowest (Wang et al., 2012) impact. Different impacts
caused by heterogeneous chemistry reported by different
studies should mainly be attributed to the different simulation
episodes. Tang et al. (2004) focused on dust episodes only
in 2001 with lower baseline pollutants from anthropogenic
emission; Li et al. (2012) also simulated dust episodes but
in 2010; and Wang et al. (2012) simulated the year 2001 but
focused on the entirety of April, when the monthly averages
of particles are apparently smaller than the values from dust
episodes only. Reaction (R7) indicates the consumption and
Reaction (R11) indicates the production of HNO3, while the
net effect of dust chemistry is found to decrease HNO3 con-
centration by 0.2–0.8 ppbv (8–30 %) as shown in Fig. 6e and
f. Our result is comparable with the values reported by Li et
al. (2012) as 5–40 % but smaller than that reported by Tang et
al. (2004) as 30–70 %. Although the reaction R9 indicates the
uptake of NOx by dust particles, simulation results suggest
that NOx concentration is increased by 0.2–1 ppbv over east-
ern China and the west Pacific. The elevation of NOx con-
centration should be attributed to the depletion of O3 and the

conversion of gas-phase HNO3 back to NOx (Yarwood et al.,
2005). As a result of excessive SO2−

4 production from dust
chemistry, the concentration of NO−3 is decreased under the
Dust_Chem scenario due to the thermal–dynamic equilib-
rium between SO2−

4 -NH+4 -NO−3 . The equilibrium drives the
inorganic aerosols to convert from NH4NO3 to (NH4)2SO4
over eastern China, with intensive anthropogenic SO2 and
NOx emissions from industry and power sector but insuf-
ficient NH3 to neutralize all the acid anions. On the other
hand, over the western Pacific and Japan, where SO2 and
NOx emissions are less intensive, the concentration of NO−3
is increased slightly due to the production indicated by Reac-
tions (R8) and (R10). Consequently, over eastern and central
China, removed NO−3 evaporates back to HNO3, which again
pushes the gas-phase equilibrium towards the production of
NOx and thus leads to the increase in NOx but a decrease in
HNO3 and NO−3 . Meanwhile, with the upper limit of uptake
coefficients, the production rate of HNO3 catches up with the
removal rate of NO−3 , which helps to slow down the decrease
in NO−3 over China and accelerate the increase in NO−3 over
the western Pacific and Japan. Our result is consistent with
the findings from other studies. Wang et al. (2012) also re-
ported the increase in NOx and decrease in HNO3 and NO−3
concentrations due to dust chemistry over East Asia. Li et
al. (2012) reported that NO−3 concentration with a lower up-
take coefficient is about 5 µg m−3 (30 %) lower than the base
case simulation (with a “best guess” uptake coefficient sug-
gested in Zhu et al., 2010) and NO−3 predicted by high uptake
coefficient is about 12 µg m−3 (100 %) higher than the base
case at Shanghai and Xiamen.

The impact of dust chemistry shown in Fig. 6 suggests
comparable results to other modeling assessments, but very
few previous studies incorporated observation data to vali-
date further the impact indicated by the model. To evalu-
ate the model’s capability to represent dust chemistry and
also determine the best-fit uptake coefficients, observations
from EANET are used to compared with simulations from
Dust_Profile, Dust_Chem, and Dust_ChemHigh. Evaluation
statistics are summarized in Table 7. Simulation results from
different scenarios for O3 all agree well with observations,
as indicated by the statistics. O3 is overpredicted by 1.26 %
without dust chemistry in the CMAQ and underpredicted
by −1.97 and −4.43 % with lower and upper uptake coeffi-
cients, respectively. SO2 is overpredicted in all scenarios, but
the NMB value is reduced from 90.7 % without dust chem-
istry to 69.8 and 63.7 % with lower and upper uptake coeffi-
cients, respectively. Evaluation statistics for HNO3 and NOx
show a similar response to SO2, where heterogeneous chem-
istry helps to reduce the large overestimations from 109.03 %
without dust chemistry to 85.17 and 81.24 % with lower and
upper limits of uptake coefficients, respectively. The positive
bias for SO2 and HNO3 should be attributed to the overesti-
mated anthropogenic emissions (Dong and Fu, 2015a; Wang
et al., 2011). For NOx evaluation, however, model overes-
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Table 7. CMAQ evaluation against EANET observations for Dust_ Profile, Dust_Chem, and Dust_ChemHigh scenarios for species O3, SO2,
SO2−

4 , NOx , HNO3, and NO−3 .

O3 SO2 SO2−
4 NOx HNO3 NO−3

(ppbv) (ppbv) (µg m−3) (ppbv) (ppbv) (µg m−3)

Mean obs 45.81 0.59 4.38 1.75 0.43 1.52

MB Dust_Profile 0.59 0.54 −0.71 0.63 0.46 −0.20
Dust_Chem −0.92 0.42 0.60 0.67 0.36 −0.03
Dust_ChemHigh −2.07 0.38 1.29 0.68 0.35 0.37

NMB (%) Dust_Profile 1.26 90.70 −16.28 35.61 109.03 −13.07
Dust_Chem −1.97 69.83 13.74 37.79 85.17 −1.97
Dust_ChemHigh −4.43 63.70 29.43 38.21 81.24 24.09

R Dust_Profile 0.63 0.68 0.79 0.69 0.65 0.71
Dust_Chem 0.62 0.65 0.75 0.69 0.59 0.72
Dust_ChemHigh 0.59 0.64 0.72 0.69 0.60 0.73

timation is increased from 35.61 % under the Dust_Profile
scenario to 37.79 and 38.21 % under the Dust_Chem and
Dust_ChemHigh scenarios, respectively. The overestimation
of NOx emission should be responsible for the positive bias
from the CMAQ as indicated by previous studies (Dong and
Fu, 2015a), but implementing dust chemistry in the model
leads to a larger overprediction of NOx . The concentration
of SO2−

4 is underpredicted by 16.28 % without dust chem-
istry, yet the simulation overpredicts SO2−

4 by 13.74 and
29.43 % under the Dust_Chem and Dust_ChemHigh sce-
narios, respectively. For NO−3 predictions, dust chemistry
helps to reduce the underprediction from 13.07 % under the
Dust_Profile scenario to −1.97 % under Dust_Chem sce-
nario. But the simulation is boosted too much with the up-
per limit of coefficients and it overpredicts NO−3 concentra-
tion by 24.09 % under the Dust_ChemHigh scenario. Note
that EANET data are collected from Japanese sites so that
Dust_Chem and Dust_ChemHigh show consistent increases
in NO−3 , as shown in Fig. 6. Statistics shown in Table 7 sug-
gest that implementing heterogeneous chemistry seems able
to improve the CMAQ performance for most of the species
except O3 and NOx , but the lower limit of uptake coefficients
favors the prediction of SO2−

4 and NO−3 , and the upper limit
of uptake coefficients has a better prediction for SO2−

4 and
HNO3. Although these statistics show competitive perfor-
mance between Dust_Chem and Dust_ChemHigh, the lower
limit of the uptake coefficient may be more appropriate if we
consider the uncertainty within the baseline anthropogenic
emissions. With both surface observations and satellite re-
trievals, Dong and Fu (2015a) demonstrated that the CMAQ
overpredicted NOx and SO2 over East Asia between 2006
and 2010 by around 30 and 20 %, respectively, due to over-
estimation in anthropogenic emissions. Wang et al. (2011)
also report the overestimation of SO2 by 14 % over China.
Implementing dust chemistry helps to reduce simulated con-
centrations of SO2, NOx , and HNO3, so it can balance part of

the positive bias caused by anthropogenic emissions, but the
statistics for SO2−

4 and NO−3 indicate that the counter effect
caused by using the upper limit of uptake coefficients may be
too excessive and push the balance towards an overestimation
of aerosols as a side effect. Consequently, without explicitly
excluding the bias within anthropogenic emissions, no reli-
able conclusion could be achieved regarding the preference
of uptake coefficients.

4 Discussion

4.1 Simulating a severe dust storm event

In this section we probe the capability of the CMAQ to re-
produce a severe dust event. Many studies have reported
that spring 2010 had the most severe dust storms in recent
decades (Bian et al., 2011; Li et al., 2012) due to a nation-
wide drought in China. PM10 observations were more than
1000 µg m−3 at Beijing (Han et al., 2012), 1600 µg m−3 at
Seoul (Tatarov et al., 2012), and 1200 µg m−3 at Taiwan (Tsai
et al., 2013). These studies mainly focused on the impact
of dust storms on a local scale and the understanding of the
emission and transport of the dust event on a regional scale
is not well-developed. Here we examined this severe dust
event with model simulations, satellite observations, and also
surface measurements from multiple networks. Figure 7 dis-
plays the MODIS AOD and simulated AOD from the CMAQ
Dust_Chem scenario during the severe dust storm episode
from 19 to 21 March 2010. Simulated AOD is derived by
following the approach described in Huang et al. (2013) for
11:00 LT only to make it consistent with the nadir view time
by the MODIS. Spatial distributions of the satellite data agree
well with the simulation on a daily scale, indicating that
the model can generally reproduce the column density and
long-range transport of dust particles. As shown in Fig. 7b,
the CMAQ simulation suggests that a large amount of dust
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Figure 7. Daily MODIS observed (left column) and CMAQ-simulated AOD (right column) for 19 March (top row), 20 March (middle row),
and 21 March (bottom row).

emissions were uplifted on 19 March from the Gobi and in-
creased AOD values over the desert and northern China. The
heavy dust emission on 19 March has been identified with
an ozone monitoring instrument (OMI) by Li et al. (2011);
Fig. 8a also indicates consistently high AOD values around
northern China. As the dust plume moved eastwards, both

the MODIS and the CMAQ suggest that AOD in the eastern
coastal area of China increased from about 0.8 on 19 March
to more than 2.0 on 20 March. On 21 March, the majority of
the dust plume was pushed eastward and started to build up
AOD over the west Pacific and Japan.
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Figure 8. Forward trajectories from (f) HYSPLIT and temporal variations of PM10 and AOD on a daily scale. Comparison between simu-
lated (black lines for Dust_Chem scenario and blue lines for Dust_Off scenario) and observed PM10 from API (red circles) at (a) Beijing,
(b) Lanzhou, (c) Nanjing, (d) Xiamen, (e) Lianyungang, and (k) Shanghai. Comparison between simulations and observed PM10 from
TAQMN (purple circles) at (g) Xinzhuang. Comparison between simulations and observed AOD from EANET (green diamonds) at (l) Bei-
jing, (m) Semi-Arid Climate Observatory Laboratory (SACOL), (n) Osaka, and (o) National Central University (NCU). Locations of cities
or stations are indicated by the starting point of the arrows (for PM10) or orange stars (for AOD)

To further examine the dust event, a forward trajectory
is analyzed to characterize the transport pathway of dust
plumes with the Hybrid Single-Particle Lagrangian Inte-
grated Trajectory (HYSPLIT) model from the NOAA/Air
Resources Laboratory (Draxler and Rolph, 2015; Rolph,
2015). The movement of air mass was analyzed for 72 h,
starting from 00:00 UTC (08:00 LT) on 19 March 2010 in
the Gobi, with the forward trajectories shown in Fig. 8f.
Air masses at 500 (red line), 1000 (blue line), and 2000 m
(green line) moved southeastward until 20 March, when the
higher plume turned east and moved across Japan and the
west Pacific, while the lower plumes continued towards the
eastern coastal area of China and finally reached Taiwan on
21 March. The HYSPLIT trajectory showed the same consis-
tent transport of dust plumes as the MODIS and the CMAQ
AOD analysis.

To understand the impact of dust storms along the trans-
port pathway, we compare the simulated and observed sur-
face level PM10 on a daily scale for all of March 2010 at
selected stations along the transport pathway, as indicated

Figure 9. CMAQ predictions of dust emission rate (solid orange
rectangles) and simulation bias of PM10 against observations from
API (red circles) and EANET (green diamonds). Dashed lines indi-
cate the trends of the variables.
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by Fig. 8f. Simulations from the Dust_Chem (black lines
in Fig. 8a–e and g–o) and the Dust_Off scenarios (blue
lines in Fig. 8a–e and g–o) are analyzed to examine the
model performance. Temporal variations of PM10 with ob-
servations from the API (red circles) are examined at Bei-
jing, Lanzhou, Nanjing, Fuzhou, Lianyungang, and Shang-
hai as shown in Fig. 8a, b, c, d, e, and k, respectively. Ob-
served PM10 concentrations increased rapidly from less than
300 µg m−3 on 18 March to more than 600 µg m−3 at Bei-
jing and 480 µg m−3 at Lianyungang on 19 March. In cen-
tral and eastern China, concentrations of PM10 peaked on
21 March at Nanjing and Shanghai, and the API reached
the measurement ceiling value of 600 µg m−3. In southern
China, PM10 was also elevated to 600 µg m−3 at Xiamen on
22 March. Temporal variation in these cities suggested that
PM10 concentrations were elevated with the onset of the dust
storm, which moved from the Gobi to southeastern China
from 19 to 21 March. PM10 concentrations fell back under
300 µg m−3 after the event. Lanzhou reached a peak of PM10
concentration with 500 µg m−3 on 14 March, which should
be attributed to the impact of the dust storm that originated
from the Taklamakan. Ling et al. (2011) also reported an ob-
served 507 µg m−3 PM10 on 14 March at Lanzhou. Obser-
vations from EANET and the TAQMN are also employed
to examine the long-range transport of dust over the west
Pacific and Taiwan. Temporal variations of PM10 at three
EANET sites (green diamonds) including Oki, Ogasawara,
and Hedo are shown in Fig. 8h, i, and j, respectively. PM10
concentrations at these sites all showed a consistent increase
with the onset of dust on 21 or 22 March. At Xinzhuang, as
shown in Fig. 8g, observations from the TAQMN (purple cir-
cles) demonstrated that local PM10 was increased from less
than 100 µg m−3 on 20 March to more than 700 µg m−3 on
21 March due to the impact of the dust storm. Simulated
PM10 from the Dust_Chem scenario agreed well with ob-
servations from different networks all over the domain. Pre-
dictions from the Dust_Chem and Dust_Off scenarios were
almost the same at all stations during the non-dust period
from 1 to 10 March, yet the Dust_Chem scenario was able to
reproduce the rapid elevation of PM10 during the dust event.
However, a noticeable discrepancy was also found between
the Dust_Chem prediction and observations. In general, the
CMAQ overpredicted PM10 slightly during the dust event at
most of the API sites in China but failed to reproduce the
high concentrations at Lanzhou before 15 March and after
20 March. To help understand the model performance in pre-
dicting fine particles from dust, daily variations of AOD from
the AERONET observations and the CMAQ simulations are
also examined at four stations, including Beijing, the Semi-
Arid Climate Observatory Laboratory (SACOL) station at
Lanzhou (Ling et al., 2011), Osaka, and EPA-NCU (Taiwan
Environment Protection Agency station at National Central
University), as shown in Fig. 9l, m, n, and o, respectively.
Temporal variations of AOD were consistent with the daily
changes in PM10 at these cities along the dust plume move-

ment trajectory. The highest AOD was found on 14 March at
the SACOL station, which was consistent with the rapid in-
crease in PM10 concentrations at Lanzhou. Moderate under-
estimations of AOD were also found at Lanzhou and EPA-
NCU stations during the dust events, indicating that fine-
mode aerosols were also underestimated over this region.
In general, comparisons between the CMAQ and observa-
tions from MODIS and surface networks suggest that the
model is capable of reproducing the severe dust storm event
in terms of the spatial distribution, transport, and concentra-
tion of dust particles, with a possible underestimation of dust
emission from the Taklamakan.

4.2 Remaining uncertainties within the modeling
system

Despite the improvements of model performance demon-
strated in the previous sections, it is necessary to note that
there are some important remaining uncertainties within the
modeling system. The first type of uncertainty is related to
the anthropogenic emissions. The assessment of the dust
prediction capability of the model was primarily performed
by comparing the simulation with observations, yet the bias
caused by anthropogenic emissions would affect the bias
from the dust prediction. So it is difficult to distinguish the
uncertainties that arise from dust treatment in the model.
Figure 9 displays the dust emission rate (Tg day−1) from
the Dust_Chem scenario (blue rectangles, with blue dashed
line indicating the trend), the simulation bias of PM10 at
the API stations (red circles, with red dashed line indicat-
ing the trend), and the simulation bias of PM10 at EANET
stations (green diamonds, with green dashed line indicating
the trend), with all variables averaged on a monthly scale.
The prediction from the CMAQ suggests a slightly increas-
ing trend of dust emission from 2006 to 2010, which is con-
sistent with the decadal increase in dust reported by Kurosaki
et al. (2011) due to changes in soil erodibility over Mongo-
lia and northeastern China. The recent decadal trend of dust
emission over East Asia remains an open-ended question
that will rely on investigations with longer-term simulations.
Simulation biases of PM10 agree fairly well with the dust
emission at both the API and EANET stations, indicating
that the overall underprediction of PM10 over East Asia has a
smaller discrepancy for years with stronger dust events. As-
suming there is a persistent underestimation of primary PM
emissions in the anthropogenic inventory, more dust emis-
sions will apparently help to reduce the modeling bias for to-
tal PM10. This is also consistent with previous studies (Wang
et al., 2011; Dong and Fu, 2015a) which reported a system-
atic underestimation of anthropogenic emission of primary
particles over China.

The second type of uncertainty lies within the friction ve-
locity threshold u∗t, which is affected by the soil moisture
fraction, which may be overestimated by the WRF. Although
in this study the simulation performance is improved with
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Figure 10. Five-year averages (for March and April) of soil moisture fraction in top 10 cm soil depth from (a) FNL and (b) GLDAS.

the initial threshold friction velocity constants u∗c adjusted
by avoiding the double counting of the soil moisture ef-
fect, there are still non-negligible biases as shown in Sect. 3.
Both the 5-year average modeling bias shown in Fig. 3d
and temporal variations shown in Fig. 8 suggest possible
overestimated dust emission from the Gobi and underesti-
mated dust from the Taklamakan. The averaged u∗t calcu-
lated by the CMAQ is 0.19 and 0.14 m s−1 over the Takla-
makan and Gobi, respectively, with the soil moisture factor
fsoilm being 1.21 and 1.13, respectively, indicating that the
Taklamakan needs higher friction velocity in order to gen-
erate dust because of a more significant soil moisture im-
pact. However, some recent field measurement studies sug-
gest that the u∗t in the Taklamakan is lower than that over
the Gobi. He et al. (2011) conducted measurements at three
sites inside the Taklamakan and reported the value of u∗t as
0.25, 0.27, and 0.21 m s−1 at three different sites, and Yang
et al. (2011) also reported the value of u∗t as 0.24 m s−1 at
Tazhong (∼ 39.03◦ N, 83.65◦ E). For the Gobi, Li and Zhang
(2011) reported the value of u∗t as 0.34–0.42 m s−1 based
on measurements made in April 2006 and 2008. Field mea-
surements defined u∗t as equal to the value of friction ve-
locity u∗ when dust concentration is increased by 20 % for
at least half an hour (Li and Zhang, 2011); thus, the re-
ported values of u∗t from the measurement studies are higher
than the calculations from the model. But the comparison
between the Taklamakan and Gobi measurements suggests
that the model may either underestimate u∗t in the Gobi or
overestimate it in the Taklamakan. Since fsoilm is determined
by the soil moisture fraction, we compare the soil mois-
ture from FNL (NCEP final analysis data), which is used
to drive WRF in this study, with another reanalysis dataset
GLDAS (Global Land Data Assimilation System; Rodell et
al., 2004). Figure 10 demonstrates the 5-year averages (for
March and April) of the soil moisture fraction in the top
10 cm from (a) FNL and (b) GLDAS. Soil moisture is es-
timated to be 10–15 % by FNL in both deserts, while the

values from GLDAS are less than 5 % in the Taklamakan
and 5–10 % in the Gobi. Zender et al. (2003) reported that
soil moisture from NCEP is too high over active dust emis-
sion areas and leads to a negative AOD bias of the model
on a global scale. With the WRF-NMMB/BSC-Dust model,
Haustein et al. (2012) conducted simulations with meteorol-
ogy driven by FNL and GLDAS over north Africa and re-
ported that the predictions with GLDAS had better agree-
ment with the AERONET’s AOD observations due to smaller
friction velocity and slightly faster surface wind speed due to
lower values of soil moisture. But no such sensitivity studies
have been made over East Asia, and unfortunately there are
no publicly available observation data for the period of 2006–
2010 to examine the potential overestimation of soil moisture
by FNL in our modeling domain. Although we previously
reported a consistent negative bias of surface temperature at
2 m height for 2006–2010, which may be due to excessive
soil moisture (Dong and Fu, 2015b), more research efforts
are required to verify the uncertainties caused by using FNL
soil data.

The last type of uncertainty lies within the mass contri-
bution of fine aerosols within dust emission. Elevated dust
particles are distributed into fine- and coarse-mode aerosols
with mass ratios of 0.2 and 0.8, respectively, in the CMAQ
dust scheme. In this study, however, the ratio of PM2.5/TSP
derived from observations at Duolun and Yulin is 0.42 and
0.39, respectively, indicating that fine particles should have
a higher mass contribution within East Asian dust. The
data from Huang et al. (2010) indicated that the ratio of
PM2.5/TSP at Tazhong was 0.45 in spring 2007, which sug-
gested an even higher fine-particle mass contribution in the
Taklamakan. Model evaluation results shown in Fig. 5 also
demonstrate the systematic underestimations of both trace
metals and total PM2.5 concentrations in both dust source re-
gions and downwind areas, while the concentrations of PM10
are slightly overestimated near the source region as demon-
strated in Fig. 3. Consequently, it is highly possible that the
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ratio of fine particles within dust emission should be higher.
But since TSP also includes all large particles> 10 µm, ob-
servations of both PM2.5 and PM10 in active dust regions are
urgently needed to help clearly characterize the ratio in the
model.

5 Summary

The dust module in CMAQ has been further developed in
this study. The initial threshold friction velocity constants
are revised by removing the double counting of soil mois-
ture in the default parameters; two source-dependent specia-
tion profiles are derived based on local observations of dust
emission from the Taklamakan and Gobi deserts; and dust
heterogeneous chemistry is implemented. The CMAQ with
its revised dust scheme is applied over East Asia for March
and April from 2006 to 2010. Based on model evaluations
with observation data from both ground-surface networks
and satellite retrievals, the revised dust scheme is demon-
strated to improve the model performance. Evaluation statis-
tics suggest that NMB for PM10 simulation is reduced from
−55 % by the default model to −16 % by the revised model,
and NMB for AOD is reduced from −31 to −22 %. Apply-
ing source-dependent speciation profiles improves the simu-
lation of trace metals. Heterogeneous chemistry with lower
and upper limits of uptake coefficients is also investigated.
Although simulations with dust chemistry are demonstrated
to agree better with observations than those without chem-
istry for most of the pollutants, no solid conclusion could be
made regarding the preference of uptake coefficients without
explicitly excluding the uncertainty caused by anthropogenic
emission. This is because simulation with lower coefficients
has better agreement with observations for O3, SO2−

4 , and
NO−3 , while simulation with upper coefficients has better per-
formance for SO2 and NO2.

A severe dust storm episode from 19 to 21 March 2010
is investigated to examine the model performance during ex-
treme dust event. The revised CMAQ modeling system suc-
cessfully reproduces most of the PM10 and AOD observa-
tions in both near-source (China) and downwind areas (Japan
and Taiwan). But some notable discrepancies are also found,
indicating the slight overestimation of dust from the Gobi and
underestimation of dust from the Taklamakan. The compari-
son of the FNL and GLDAS soil moisture fractions indicates
that the excessive soil moisture within FNL may be respon-
sible for the higher friction velocity threshold and lower dust
emissions calculated by the CMAQ over the Taklamakan.
But more sensitive studies with different reanalysis data in-
puts for WRF and the local soil moisture measurements in
the deserts are needed to reach a solid conclusion. In addi-
tion, potential uncertainty is also identified within the mass
contributions of fine- and coarse-mode particles from dust
emission. Evaluation results indicate a consistent underesti-
mation of trace metals and PM2.5 by 30–50 % at Duolun and

Yulin close to the Gobi desert, yet PM10 is generally overes-
timated slightly in neighboring cities. While measurements
from Huang et al. (2010) suggested mass contribution to be
∼ 40 % of fine particles in TSP, the value of 20 % used in the
current CMAQ may be too low for dust emissions from the
Gobi and Taklamakan. In summary, the model development
employed in this study has been demonstrated to enhance the
capability of the CMAQ to simulate dust over East Asia re-
garding the chemical and physical processes involved, which
can serve as a useful tool for further investigating the impacts
of dust on regional climate over East Asia and elsewhere.
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