Soil microbiomes from contrasting levels of management intensity differ in their capacity to protect black walnut from an above-ground pathogen

Geoff Williams
Purdue University

Matthew Ginzel
Purdue University

Follow this and additional works at: https://trace.tennessee.edu/masmc

Recommended Citation
Williams, Geoff and Ginzel, Matthew, "Soil microbiomes from contrasting levels of management intensity differ in their capacity to protect black walnut from an above-ground pathogen" (2019). *Middle Atlantic States Mycological Conference 2019*.
https://trace.tennessee.edu/masmc/1

This Poster is brought to you for free and open access by the Conferences at UT at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Middle Atlantic States Mycological Conference 2019 by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
Soil microbiomes from contrasting levels of management intensity differ in their capacity to protect black walnut from an above-ground pathogen
Geoff Williams1 and Matthew D. Ginzel1,2
1Department of Forestry and Natural Resources, Purdue University, 2Department of Entomology, Purdue University

The capacity of the microbiome to protect agricultural crops from disease depends on management practices, but whether this applies to forest trees is unknown. We investigated the extent to which microbiomes from forest and plantation soil modify the susceptibility of Eastern black walnut (\textit{Juglans nigra}) to \textit{Geosmithia morbida}, the phytopathogen responsible for Thousand Cankers Disease. This fungal pathogen causes necrotic lesions in the phloem of \textit{J. nigra} when introduced by colonizing walnut twig beetles. Seedlings were grown in potting mix amended with bulk soil from a forest, walnut plantation, or sterilized soil. Stems were inoculated with \textit{G. morbida}, and necrotic area and callus formation were measured and compared among treatments. Additionally, fungal endophytes were isolated from roots and community composition was compared among treatments. There was a 15\% reduction in necrotic area and significant increase in callus formation in seedlings that received the forest soil amendment compared to the control group. Plantation soil had an intermediate effect on necrosis. \textit{Fusarium} spp. were isolated more frequently from roots of seedlings that received control soil, suggesting plantation and forest microbiomes suppress secondary pathogens. Our results support the hypothesis that the microbiome of forest soil has a greater capacity to enhance defense against \textit{G. morbida} compared to plantation soil.