4-2019

Unwelcomed stowaways and their role in thousand cankers disease spread

Aaron Onufrak
University of Tennessee, Knoxville

Emel Oren
University of Tennessee, Knoxville

Romina Gazis
University of Florida

William Klingeman
University of Tennessee, Knoxville

Massimo Faccoli
University of Padua, Italy

See next page for additional authors

Follow this and additional works at: https://trace.tennessee.edu/masmc

Recommended Citation
Onufrak, Aaron; Oren, Emel; Gazis, Romina; Klingeman, William; Faccoli, Massimo; Chalal, Karandeep; Windham, Mark; Ginzel, Matthew; and Hadziabdic, Denita, "Unwelcomed stowaways and their role in thousand cankers disease spread" (2019). Middle Atlantic States Mycological Conference 2019.
https://trace.tennessee.edu/masmc/7
Authors
Aaron Onufrek, Emel Oren, Romina Gazis, William Klingeman, Massimo Faccoli, Karandeep Chalal, Mark Windham, Matthew Ginzel, and Denita Hadziabdic

This poster is available at Trace: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/masmc/7
Unwelcomed stowaways and their role in thousand cankers disease spread
Aaron Onufak1, Emel Oren1, 2, Romina Gazis3, William Klingeman4, Massimo Faccoli5, Karandeep Chalal1, 6, Mark Windham1, Matthew Ginzel7, Denita Hadziabdic1

1Department of Entomology and Plant Pathology, University of Tennessee, 2University of Tennessee, Department of Entomology and Plant Pathology, Current address: Diyarbakir Plant Protection Research Institute, Diyarbakir, Turkey, 3University of Florida, Department of Plant Pathology/Tropical Research and Education Center, 4Department of Plant Sciences, University of Tennessee, 5Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Italy, 6Department of Entomology and Plant Pathology, University of Tennessee, Current address: Department of Plant, Soil and Microbial Sciences, Michigan State University, 7Departments of Entomology and Forestry & Natural Resources, Purdue University

Geosmithia morbida is a plant pathogenic fungus primarily vectored by the walnut twig beetle, Pityophthorus juglandis (WTB). Together, these species cause thousand cankers disease (TCD) in walnut (Juglans spp.) and wingnut (Pterocarya spp.) trees. TCD was originally described in the western United States and later detected in 2010 in the eastern U.S. within the native distribution of black walnut (J. nigra). In 2013, TCD was discovered in Italy on both black and English walnut (J. regia). Due to regional and global movement of TCD, there is a critical need to understand the basic biology and genetics of both the pathogen and vector(s) of TCD, including genetic diversity and population structure of disease complex members. Using traditional and molecular tools, our group has provided an insight into biology, life cycle, and population genetics of TCD members. Current research supports two overlapping WTB generations per season in the U.S. and Italy and potential alternative disease vectors, which could help sustain localized disease presence once the pathogen is introduced. We have also detected high genetic diversity among G. morbida subpopulations in the U.S. with spatial clustering and evidence of gene flow providing support for multiple anthropogenic introductions of G. morbida from multiple sources. Additionally, we have developed rapid molecular detection methods for both G. morbida and P. juglandis, significantly reducing disease confirmation time. Future TCD research plans are focused on identifying pathogenicity genes, as well as developing a potential biocontrol for TCD, and understanding how these potential biocontrol methods impact the host microbiome.