Fluid Therapy in Foals

Melissa Hines
mhines@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/v-pac

Part of the Veterinary Medicine Commons

Melissa Hines, "Fluid Therapy in Foals" (July 12, 2014). Veterinary Partners Appreciation Conference (V-PAC).
https://trace.tennessee.edu/v-pac/proceedings2014/largeanimal/13

This Event is brought to you for free and open access by the Conferences at UT at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Veterinary Partners Appreciation Conference (V-PAC) by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
Fluid Therapy in Neonatal Foals

Dr. Melissa Hines, University of Tennessee

“We are not your mother’s fluid space” - Dr. JE Palmer

I. Physiologic differences between neonatal foals and adult horses

- Higher total body water – largely due to higher interstitial fluid volume

<table>
<thead>
<tr>
<th>Fluid compartment</th>
<th>Adults</th>
<th>Foals</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBW</td>
<td>60%</td>
<td>80%</td>
</tr>
<tr>
<td>ECF</td>
<td>20%</td>
<td>40%</td>
</tr>
<tr>
<td>ICF</td>
<td>40%</td>
<td>40%</td>
</tr>
</tbody>
</table>

- Increased capillary filtration and large interstitial fluid volume reserve
 - Fetal lambs
 - Capillary filtration coefficient 5x adult values
 - Permeability for plasma proteins – 15x adults
 - Helps foal adapt to fluid challenges
 - After fluid loss – neonates can restore plasma volume in 1/10 the time of an adult
 - Once distress is detected – can be severe
 - Potential problems
 - Makes it more difficult to treat hypovolemia as fluid readily goes to the interstitium
 - Makes foals more susceptible to fluid overload
 - Rapid fluid redistribution thus little stimulus for vasopressin and renin release
 - Fluid tends to be retained outside the vascular space

- Easily sodium overloaded
 - Compounded by perinatal disease
 - Many commercially available replacement fluids are high in sodium
 - Goal – limit daily sodium intake to < 3 mEq/kg/day
 - This would be 1 liter of Na based crystalloids to a 50 kg neonate
 - However – renal tubular damage can result in Na wasting so foals with renal dysfunction may require additional sodium

- Require energy – exogenous glucose support common

- Often require IgG, colloid support?
II. Normal fluid balance

- Normal maintenance fluid requirement = 100 ml/kg/day (5L for a 50 kg foal)
- Dietary intake
 - Normally 20-25% of body weight or 10-12.5 L/day
 - Therefore once they begin nursing well urine is hypostenuric
- Urine output – can help monitor nutritional intake and hydration status
 - First urination
 - Typically 6-12 hours of age
 - Initial urine s gr often >1.020, decreases to < 1.010 over time
 - Over 24 hrs of age – urine production ~ 150/ml/kg/day
 - 5-10 fold greater than an adult horse

III. Fluid therapy for hypovolemia

- 20 ml/kg over 10-20 minutes
- Re-evaluate patient – successful therapy indicated by:
 - Improve pulse quality
 - Warm extremities
 - Return of borborygmi
 - Urine production
 - Improved mental status
- Repeat bolus if necessary – goal is return of adequate perfusion (often not normal)
- Generally balanced ionic solutions are best
 - Supplemental dextrose may be beneficial
 - Hypertonic saline – concerns for sodium overload
 - Colloids – may be indicated in some cases but “generally not the answer” for hypovolemia in foals
 - Leak into interstitium
 - Increase fluid retention in interstitial space

IV. Fluid therapy for maintenance of hydration

- General maintenance – 100 ml/kg/day – but influenced by many factors
- Do not be locked into a rate based on “tradition”
- Fluid overload is common when 100 ml/kg/day is given – esp. in sick foals
 - Fluid overload is more of a problem than mild fluid restriction
 - Therefore, the fluid rate is often decreased
- Maintenance fluids generally preferred – lower in sodium
 - Plasmalyte-56
 - Normosol-M

V. Fluid therapy for glucose support

- Most compromised foals not eating benefit from exogenous glucose support
- Independent of glucose status i.e. even hyperglycemic foals that are mobilizing glucose faster than it is being used typically do not have adequate glucose stores

- **Start at 4 mg/kg/min**
 - If this is tolerated, increase to 6 mg/kg/min and then 8 mg/kg/min
 - Ex: 50 kg foal
 - 4 mg/kg/min x 50 kg = 200 mg/min
 - 200 mg/min x 60 min = 12,000 mg/hr
 - 10% dextrose = 100 mg/ml
 - Infusion rate = 120 ml/hr of 10% dextrose
 - May require insulin therapy