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Introduction: 

Both electrolytic lesions and electrical stimulation of the brain are classic methods for 

examining the role of the central nervous system (CNS) in control of cardiovascular function. 

For example, Doba and Reis (13) showed that bilateral electrolytic lesions of the nuclei tracti 

solitarii (NTS) in the rat at the level of the obex result in an immediate and marked elevation in 

arterial blood pressure. Death typically results in a matter of days. Ernsberger, Azar and Azar 

(14) revealed that radiofrequency lesions of the paraventricular and suprachiasmatic nl!clei 

prevented a rise in blood pressure (BP) in salt-sensitive rats fed a high salt (8%) diet for 15 

weeks. Electrical stimulation of the C1 region of the rostral ventrolateral medulla (RVLM) elicits 

a pressor response (46). More recently, newer techniques in the brain sciences, originally 

developed in the study of other neural systems, have been applied to central control of 

cardiovascular function. For example, microinjection of the excitatory amino acid glutamate into 

catecholamine-containing neurons of the RVLM produces an increase in blood pressure (36). A 

couple of points worth developing further are, first, that norepinephrine (NE) appears to be an 

important neurotransmitter in control of cardiovascular function and, second, that many of the 

structures studied receive direct or indirect projections from limbic system structures. Thus, 

there is the possibility that stressors might alter cardiovascular function sufficiently to lead to a 

disease state such as hypertension. However, as we shall see, this is a fairly new area of 

research, and results are far from conclusive. 

Many years ago, Hilton (20) revealed the importance of the hypothalamus in the 

cardiovascular component of the fight-or-flight response. It is noteworthy that many 

hypothalamic nuclei contain NE and interact extensively with brainstem structures that 

eventually form the final common pathway to the intermediolateral cell column of the spinal cord, 

the point of origin of preganglionic sympathetic nervous system neurons. For example, 

Bennaroch et al (4) showed that reduction of NE in the anterior hypothalamus induced an 

increase in arterial BP and heart rate, while clonidine, an NE agonist, administered after NE 

depletion caused hypotension in Wistar-Kyoto (WKY) rats. This suggests that NE has a tonic 



depressor effect in the anterior hypothalamus. However, NE does not always have an inhibitory 

effect as was shown in the study of Bachelard et al (3), where microinjection of NE into the 

paraventricular nuclei of Long-Evans rats produced dose-dependent increases in BP, suggesting 

that NE in this nucleus may contribute to elevated BP. Because of those opposing effects in 

different hypothalamic nuclei, assays of whole brain regions for NE (such as the Glowinski 

technique) may not be appropriate. This suggests a need to focus on specific brain regions. 

Although the above studies utilizing microinjection techniques suggest that NE has a role 

in BP regulation, they do not show how a stressor might affect the CNS-BP relationship. 

Wintemitz and Oparil (56) showed that a high salt diet caused an increase in BP in 

spontaneously hypertenSive rats (SHR) and also suggested that the change in sodium balance 

might influence central noradrengeric activity. Wintemitz et al (57) also found that by feeding 

young SHRs a high sodium diet, they incurred worsening hypertension and increased NE content 

in the anterior and dorsomedial hypothalamic nuclei which suggested that sodium and the CNS, 

mainly the areas controlling the sympathetic nervous system, work together to have an effect on 

the long-term control of blood pressure in the SHR. Pawloski-Dahm and Gordon (43) also found 

that increased dietary NaCI augments the pressor response of the RVLM that may have led to 

the increases in arterial pressure that were seen. Other stressors, including drugs such as 

phenylephrine (5), also showed effects on both BP and CNS neurotransmitter levels. As acute 

hypertension was induced by phenylephrine, WKY and SHR reacted differently with SHRs 

showing increased extracellular 5-hydroxyindoleacetic acid (5-HIAA) while WKY showed 

increased NE and 5-HIAA levels in the NTS. Nakata et al (39) also showed a correlation 

between a behavioral stressor and NE in their study utilizing shaker stress. This stress elicited 

pressor responses that were coupled with increases in dialysate NE from both the paraventricular 

nuclei of the hypothalamus (PVH) and the posterior hypothalamus (PH) in a frequency

dependent manner. These and other experiments suggest a role for central NE levels in BP 

control. 



To study environmental stressors. such as those mentioned above, which have impacts 

on stress-induced BP responses and in causing hypertension, the borderline hypertensive rat 

(BHR) has become an invaluable investigative tool. The BHR is the F1 cross between the SHR 

and WKY, which gives it a genetic predisposition to the development of hypertension. long held 

to be an important factor in causing hypertension in both rats and humans. This model nonnally 

has a resting BP around 140-160 mmHg at 4 months of age that shows no further age-related 

increases in BP (28). Yet, when faced with shock-shock conflict stress (29) or a high salt diet 

(30), BHRs become hypertensive, making them a good model for environmental stress effects 

and genetics (reviewed in 49). 

The studies mentioned above. along with others, show that stress has an effect on BP; 

yet, they do not show how environmental stressors affect NE levels. One such study was done 

by Tanaka et at (51), who used immobilization, electric foot-shock, psychological stress, and a 

conditioned fear paradigm as stressors. and found reductions in NE levels in most regions of the 

brain along with increased NE release in extended brain regions (exact regions were not 

mentioned). In a separate experiment, they also found increases in 3-methoxy-4-

hydroxyphenylethyleneglycol sulfate, the major metabolite of NE, in the hypothalamus. pons and 

medulla oblongata, basal ganglia. and other regions as induced by immobilization stress (52). 

while immobilization produced duration-dependent effects in specific hypothalamic nuclei with 

decreases in NE in some nuclei after 20 minutes of stress and increases in NE levels after 40 

minutes. 

Since the BHR is a good model for hypertension, it also becomes a good model for 

studying the effects of stressors on NE content in the brain regions concerned with BP 

regulation. An early examination of NE content in discrete brain nuclei, especially those of the 

brainstem and hypothalamus, was done by Mitchell and Lawler (37), in which brain NE levels of 

acutely and chronically stressed BHRs and their age-matched. unstressed controls were 

compared. The varying durations of stress were shown to affect NE levels differently in the 



brainstem and hypothalamus. This result was also obtained in a later study (31) in which 

compound stressors (e.g., salt and stress) were used. 

The above studies. which are the basis for the present study, showed the changing 

effects of acute, chronic. or compound stress on NE levels in the BHR. Lawler et al (26) showed 

the effects of conflict stress on BP and another study (27) showed the effects of a high salt diet 

on BP; however, none has examined the effects of a high salt diet alone on NE levels in discrete 

brain nuclei. These experiments suggest that there may be a role for NE in hypertension. and 

the experiment of Lawler et al (28) especially implies again that salt has a role in causing 

hypertension and altering NE levels in discrete nuclei of the hypothalamus and brainstem. 

However, the duration of this experiment (two months and six months) was too long to see the 

effects of the stress as hypertension developed; rather, at the point where punches were taken. 

hypertension had already developed fully. For this reason, the schedule of diet that was used in 

our laboratory previously (27) which showed the increases in BP as hypertension developed as 

well as when it had become asymptotic (by the fourth week of the diet) was utilized in this 

experiment. Of particular interest in the present study, however, was to determine whether 

alterations in eNS levels of NE occur before hypertenSion develops, and whether these 

alterations are different in strains that have previously been shown by us and others to remain 

normotensive (WKY) or become hypertenSive (BHR) when fed a high salt diet. Since previous 

studies have shown that this hypertension reaches asymptote after 4 weeks of high salt in the 

BHR. and since we were interested in the eNS changes occurring before hypertenSion onset, the 

current study examined NE levels in discrete brainstem and hypothalamic nuclei after 0, .5, 1, 2, 

4, or 8 weeks of high salt diets in WKY and BHR. The long-range hypotheSiS guiding this 

research is that there are neural-renal interactions in the development of hypertension in the 

BHR. The neural component was expected, and has been confirmed by us and others, for 

stress, but was not anticipated for a high salt diet. However, several studies have suggested a 

role for the eNS in the case of high salt intake, leading us to investigate eNS changes as salt

induced hypertenSion develops. The nuclei chosen for investigation are those previously 



studied. All have a direct (via sympathetic nervous system activation) or indirect (via hormonal 

influences on the blood vessels and/or alterations in renal function) role in altering blood 

pressure. The current presentation deals with the CNS aspects of this study. This is the part for 

which I had direct responsibility. 

Methods and Materials 

Wistar-Kyoto (WKY) rats (n=40) and borderline hypertensive rats (BHR) (n=2S) were obtained 

from Taconic Farms, Germantown, NY. They were housed two to three per cage in a twelve 

hour light-dark cycle. Rats of both strains were separated into one of six categories based on 

duration and type of diet. Control animals were maintained on normal (1%) salt diets throughout 

the experiment. The experimental animals were placed on a high salt diet (S%) for either .5, 1, 

2, 4, or S weeks. These diets were started such that all the durations ended when the animals 

were twelve to thirteen weeks of age. Water and rat chow were provided ad libitum. 

After the cessation of the diet, all animals underwent the same surgical protocols for 

monitoring of blood pressure and renal function (data presented elsewhere). Once these data 

were obtained, approximately one week after the completion of the experimental diets, the 

animals were killed by decapitation, and their brains were removed and quickly frozen on dry ice. 

They were then stored at -80C until later tissue samples were obtained. 

Eight hours before slicing, the brains were removed from the freezer and placed in a 

-10C cryostat to allow for some thawing. Then the brains were mounted and sliced. Utilizing the 

stereotaxic atlas of Paxinos and Watson (42) and a dissecting microscope, selected 300 um 

sections were placed on cold glass slides. 

After all the slices had been obtained, brain punches of the relevant nuclei were taken 

using a .5 mm diameter, blunt dissecting needle according to the technique of Palkovits (36). 

The punches, A2, A 1, C1, LC, Post, Arc, DMH, LH, VMH, PVH, Ant, SO, all bilateral except for 

the medial A2 punch, were then placed in microvials containing 100 ul of 3,4-



dihydroxybenzylamine hydrobromide (DHBA) and 1.0 N perchloric acid (PCA) and stored at -80C 

until sonication. 

Samples were sonicated in a cold water bath for 3 minutes at a setting of 5 (Branson 

Instruments). Vials were then centrifuged at 8000 rpm for 10-15 minutes to pack the protein. 

The supernatant was then removed with a sterile micropipette, transferred to autoinjector vials, 

loaded into a Waters WISP 710B autoinjector, and injected into a high performance liquid 

chromatograph with an electrochemical detector to obtain the amount of NE present in the 

sample. Supernatant was autoinjected into the HPLC at a volume of 75 uJ. A propanol-based 

mobile phase was carried through the system at 1 ml/min by a Waters 510 pump. 

Catecholamine separations were made using a reverse-phase column by Phenomenex. NE was 

detected by a dual series cell and BAS LC-4B amperometric detector. Data were integrated by a 

Hewlett-Packard 3390A Integrator. The pellets were allowed to open-air dry for approximately 

24 hours and then underwent protein assay using the Bio-Rad technique. 

USing the CRUNCH statistical software, data were analyzed by two-way analysis of 

variance (ANOVA) and independent t-tests. All values are given as mean +/- SEM. A p<.05 

was considered statistically significant. An effect was considered statistically marginal if 

.05<p<.10. Graphs were made using SigmaPlot. 

Results 

The analysis of variance revealed a main effect of strain for seven nuclei (Fig. 1), a 

main effect of duration for eleven nuclei (Figs 2-13) and an interaction of strain and duration in 

four nuclei (A2, A1, PH, SO; see Figs. 14-25). Figure 1 depicts the strain effect on NE content in 

the twelve nuclei selected. Significant strain differences were seen in the A2 (19 +/- 2 in the 

WKY, 26 +/- 4 in BHR), Arc (38 +/- 4 CVVK.Y), 26 +/- 4 (BHR», DMH (68 +/- 5 CVVK.Y), 54 +/- 4 

(BHR», LH (32 +/- 2 CVVK.Y), 26 +/- 2 (BHR», the VMH (65 +/- 5 CVVK.Y), 44 +/- 4 (BHR», and 

PVH nuclei (70 +/ .. 5 CVVK.Y), 58 +/- 5 (BHR»; marginal differences were seen in the C1 nucleus 



(12 +/- 6 (WKY), 10 +/- .6 (BHR». Seven of these eight nuclei showed higher NE content in 

WKY than BHR. 

Strain-diet interactions were found using ANOVA and are shown in Figures 14 through 

25. The remainder of this discussion will focus on these figures. 

Using independent t-tests (see Figures 14-25), comparisons were made between WKY 

and BHR means in any given salt diet duration for each of the nuclei. For the A2 nucleus (Fig. 

14), BHR had significantly lower NE content after 1 week of high salt, marginally higher content 

after 2 weeks, and significantly higher NE after 4 weeks compared with WKY. In the A 1 nucleus 

(Fig. 15), BHR had significantly lower NE content at .5 and 8 weeks while showing marginally 

more NE at 2 and 4 weeks. There was no NE content valiation between the strains in the C1 

nucleus. and BHRs had only marginally higher NE content over WKY at 1 week in the LC 

nucleus (Fig. 16). In the PH nucleus (Fig. 17), WKY had significantly higher NE content than 

BHR in both the control and 8 week high salt diet and significantly lower content after 2 weeks. 

In the Arc and PVH nuclei (Figs.19 and 23), BHR had significantly lower NE content after 8 

weeks. DMH and LH nuclei (Figs. 20 and 21) had marginally more NE in WKY than BHR after.5 

weeks, and the VMH nucleus (Fig. 22) contained slightly more NE in WKY than BHR at 4 and 8 

weeks. In the Ant nucleus (Fig. 24), BHR had marginally less NE content after .5 weeks and 

significantly more NE content after 4 weeks than WKY. In the SO nucleus (Fig. 25), BHR had 

significantly higher NE content after 2 weeks of high salt and significantly lower NE after 8 weeks 

than in WKY. 

Independent t-tests were also done comparing diet durations within strain. These data 

are shown in the appendix as means +/- SEM. 

Discussion 

The main purpose of this study was to investigate the effects of high salt diets of varying 

duration on NE levels in discrete brain nuclei which have been shown to playa role in the 

regulation of blood pressure. In this respect, as the diet duration increased from .5 weeks to 8 



weeks, BHR generally showed increased brainstem and hypothalamic NE levels. Though the 

increased brainstem NE levels were consistent with results obtained in stressor studies studying 

the same nuclei (37), the hypothalamic results contradicted the results previously obtained. This 

may suggest that salt affects the brain blood pressure centers differently than other stressors 

when inducing hypertension. After 1 week of high salt, NE in all brain nuclei generally decreased 

over the values seen at .5 weeks which may suggest that these nuclei may be secreting more 

NE than they are storing. This trend seemed to be attenuated at 2 weeks when NE levels 

increased over previous study groups. In an experiment by Wintemitz et al (57), after two weeks 

of high sodium diet, SHRs had higher NE content in the Ant and DMH that SHRs on a normal 

sodium diet. This result was also true for BHRs in the control and two week experimental 

groups. The increase in NE levels in hypothalamic nuclei persisted into the 4 week group; 

however, as compared to the 2 week NE levels, the brainstem nuclei showed a decrease in NE 

content. After 8 weeks on the high salt diet, all nuclei in the brainstem and hypothalamus had 

decreased NE levels as compared with 4 week values. 

In comparison to control animals, BHR on 8 week high salt diets did not have higher 

hypothalamic NE content. This, too, is different from the results found with compound stressors 

(31) where after 2 months on salt and stress, the VMH nuclei had a significantly decreased NE 

content, while in the present study, the VMH had a marginally higher level of NE. All high salt 

diet durations showed higher NE content than controls in most of the hypothalamic as well as 

most of the brainstem nuclei with the exception of the LC nuclei. 

In the normotensive WKY, most hypothalamic nuclei in the varying diet durations 

showed significant increases over the controls. Interestingly, during the period (weeks 2-4) 

during which hypertension was developing (30), an area of the brain associated with 

vasodepression (as reviewed by 1), the A2 region of the NTS, had higher NE content as 

compared to control animals for WKYs. In the BHR, however, during the same time periods 

(.5,1, and 2 weeks), the A2 did not have more NE than controls; instead, the C1 nucleus, a 

vasoconstrictor area, showed higher NE content than control BHRs. These differences in NE 



content in brainstem nuclei may suggest one way in which genetically normotensive WKY and 

genetically hypertensive BHR vary when trying to deal with a stressor that can induce 

hypertension. That may suggest that the mechanism of BP control may not be functioning 

properly in the BHR. The lower NE levels in the A2 suggest that this nucleus may be firing more 

to try to alleviate the increase in blood pressure; however, this response may not be sufficient, 

since BP still rises, and hypertension is maintained by 4 weeks on a high salt diet (30). This may 

also suggest that in an animal that is predisposed to hypertension, such as the BHR, there is a 

deficit or error in the way that messages from the brain are processed throughout the body which 

leads to hypertension when induced by an environmental stress. 

Overall, in the brainstem, BHRs showed lower NE levels than WKY at .5 weeks, 1 week, 

and 8 weeks while it was higher at 2 and 4 weeks. The 2 week data in this experiment is similar 

to that found by Iwai et al (22) with Dahl salt sensitive (Dahl-S) and salt-resistant (DaHI-R). In 

that experiment, Dahl-S were shown to have higher NE than Dahl-R on the same diet. The 2 

week results for hypothalamic nuclei in BHR versus WKY showed generally the same thing as 

those seen in the hypothalamus of Dahl rats in (22). In both cases, sensitive rats, BHR or Dahl

S, showed increased NE over their resistant counterparts, WKY and Dahl-R, respectively, when 

induced by high salt diets. However, since the Iwai et al experiment tested the whole 

hypothalamus and brainstem rather than specific nuclei as in the present experiment, differences 

in experimental method must be taken into account when comparing the results. 

This experiment showed that NE levels in discrete brain nuclei change as hypertension 

progresses when induced by high salt, and that there are differences between strains sensitive 

and insensitive to salt. The increase in NE content in the vasopressive C1 area, which is the 

final common pathway to the intermediolateral cell column, during the onset of hypertension may 

mean that NE levels are critically important in the brainstem during this time: however, after 

hypertension has been established at 4 weeks, NE content in the hypothalamus increases over 

the controls, suggesting a shift in function from the brainstem to the hypothalamus. 



The alterations of NE levels by high salt diets could be attributed to several 

mechanisms. A decrease in NE levels may be due to increased secretion of NE from stores, 

leading to its depletion in brain nuclei which could be tested by in vivo microdialysis (48). NE 

reduction may also be produced by decreased synthesis, which could be estimated by measuring 

the enzyme phenylethanolamine N·methyltransferase (48). Because the current study yields a 

quantitative value about neurotransmitter content in nuclei associated with BP control without 

giving any results about mechanism, the probable cause for the differences in NE content 

observed can not be determined. 

The nuclei examined in this study (A2, A 1, C1, LC, PH, Arc, DMH, LH, VMH, Ant, and 

SO) were shown to be sensitive to high salt. However, the design of this experiment gives little 

information about the functional activity and changes of the central NE system that may also be 

occurring. The changes seen in brain nuclei may, in fact, be indicative of other related changes 

which cause the animals to respond, in some way, to the stressor. For example, the observed 

NE level alterations may be associated with changes in the sensitivity of noradrenergic 

receptors, as seen in Chen et al (8), which could mean that increases or decreases in NE content 

do not reflect the excitation or inhibition of noradrenenrgic function. This is an important aspect 

to gleening the role of central NE in hypertension. Accordingly, Klangkalya et al (24) and DiBona 

and Jones (12) have reported that reduction in NE release induces an increase in alpha-2-

adrenoreceptor number in the Ant of SHRs and that a high salt diet of 6 weeks duration 

increases the responsiveness of the brain alpha-receptors of the BHR. Kraft et al (25) have 

also reported that opioid delta receptors are also important in BP regulation and that their 

antagonism causes decreased systemic blood pressure in experimental SHRs. They also 

reported that chronic antagonism of these delta receptors caused NE levels in the hypothalamus 

and midbrain of animals in the experimental group to be lower than that found in the controls. 

Studies on the connection between NE content and the responsiveness of noradrenergic 

receptors and opioid receptors, if there is one, would give more det,ailed information, as would 

studies concerning NE content and secretion. To this end, studying the NE levels during the 



onset of hypertension between 2 and 4 weeks may be of particular interest in discerning NE 

action on BP. In vivo microdialysis studies in selective nuclei could be useful in providing more 

definitive results about the secretion and action of NE as BP is increasing. 

The present results showed changes in NE levels throughout the brainstem and 

hypothalamus as hypertension developed. These data represent a first step toward 

understanding the central link between high salt diet and hypertension in the BHR. Further 

studies, focussing on NE release in selected areas, are necessary to establish a cause and effect 

relationship. 
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Appendix 

Table 1. Comparisons of means for BHR discrete nuclei during the varying durations of salt diet. 

Control vs .5 wks 

Control vs 1 wk 

Control vs 2 wk 

Control vs 4 wk 

Control vs 8 wk 

.5 wk vs 1 wk 

.5wk vs 2 wk 

.5wk vs4wk 

.5 wk vs 8 wk 

1 wk vs 2 wk 

1 wk vs 4 wk 

1 wk vs 8 wk 

2 wk vs4wk 

2wk vs 8wk 

4 wk vs 8 wk 

Control vs .5 wk 

A2 A1 C1 LC 

18+/-8 / 13+/-3 9+/-2 / 14+/-1 + 5+/-.6 / 13+/-1- 4+/-1 / 5+/-1 

18+/-8/10+/-2 9+/-2/9+/-.9 5+/-.6/11+/-1- 4+/-1/3+/-.7 

18+/-8/50+/-13+ 9+/-2/24+/-7* 5+/-.6/10+/-1- 4+/-1/5+/-1 

18+/-8/45+/-9+ 9+/-2/19+/-2- 5+/-.6/12+/-1- 4+/-1/5+/-.6 

18+/-8/13+/-7 9+/-2/9+/-2 5+/-.6/10+/-2* 4+/-1 /3+/-1 

13+/-3/10+/-2 14+/-1/9+/-.9 13+/-1/11+/-1 5+/-1/3+/-.7+ 

13+/-3/50+/-13* 14+/-1/24+/-7 13+/-1/10+/-1+ 5+/-1/5+/-1 

13+/-3/45+/-9* 14+/-1 /19+/-2* 13+/-1 /12+/-1 5+/-1 /5+/-.6 

13+/-3 /13+/-7 14+/-1 / 9+/-2* 13+/-1 /10+/-2 5+/-1 / 3+/-1 

10+/-2/50+/-13- 9+/-.9/24+/-7* 11+/-1/10+/-1 3+/-.7 /5+/-1 

10+/-2 / 45+/-9- 9+/-.9/19+/-2- 11 +/-1 /12+/-1 3+/-.7/5+/-.6* 

10+/-2/13+/-7 9+/-.9/9+/-2 11+/-1 /10+/-2 3+/-.7 /3+/-1 

50+/-13/45+/-9 24+/-7 /19 +/-2 10+/-1/12+/-1 5+/-1 /5+/-.6 

50+/-13/13+/-7+ 24+/-7 /9+/-2* 10+/-1/10+/-2 5+/-1 /3+/-1 

45+/-9/13+/-7+ 19+/-2/9+/-2- 12+/-1/10+/-2 5+/-.6/3+/-1+ 

PH Arc DMH LH 

8+/-1 /48+/-6- 10+/-2/48+/-10- 28+/-5/71+/-10- 16+/-4/31+/-3-



Control vs 1 wk 

Control vs 2 wk 

Control vs 4 wk 

Control vs 8 wk 

.5 wk vs 1 wk 

.Swk vs 2 wk 

.Swk vs4 wk 

.5 wk vs 8 wk 

1 wk vs2wk 

1 wk vs4wk 

1 wk vs 8 wk 

2 wk vs4wk 

2 wk vs 8 wk 

4wk vs 8wk 

Control vs .5 wk 

Control vs 1 wk 

Control vs 2 wk 

Control vs 4 wk 

Control vs 8 wk 

.Swk vs 1 wk 

.5 wk vs 2 wk 

.5 wk vs4 wk 

.5 wk vs 8 wk 

1 wk vs 2 wk 

1 wk vs4wk 

1 wk vs 8wk 

8+/-1/36+/-8 - 10+/-2/27+/-7* 28+/-5/65+/-11* 16+/-4/25+/-4 

8+/ .. 1 /92+/-28* 10+/-2/37+/-13- 28+/-5/ 50+/-2- 16+/-4/27+/-8* 

8+/-1 /61+/-11- 10+/-2/42+/-11- 28+/-5/66+/-8- 16+/-4/30+/-4* 

8+/-1/14+/-3+ 10+/-2/10+/-1 28+/-5/37+/-9 16+/-4/22+/-3 

48+/-6/36+/-8 48+/-10/27+/-7 71+/-10/65+/-11 31+/-3/25+/ .. 4 

48+/-6/92+/-28* 48+/-10/37+/-13 71 +/-1 0/ 50+/-2 31 +/-3/27+/-8 

48+/-6/61+/-11 48+/-10/42+/-11 71+/-10/66+/-8 31+/-3/30+/-4 

48+/-6/14+/-3- 48+/-10/10+/-1* 71+/-10/37+/-9- 31+/-3/22+/-3+ 

36+/-8/92+/-28* 27+/-7 /37+/-13 65+/-11/50+/-2 25+/-4/27+/-8 

36+/-8/61 +/-11 + 27+/-7 /42+/-11 65+/-11 /66+/-8 25+/-4/30+/-4 

36+/-8/14+/-3* 27+/-7 /10+/-1* 65+/-11/37+/-9+ 25+/-4/22+/-3 

92+/-28/61 +/-11 37+/-13/42+/-11 50+/-2/66+/-8 27+/-8/30+/-4 

92+/-28/14+/-3- 37+/-13/10+/-1- 50+/-2/37+/-9 27+/-8/22+/-3+ 

61+/-11/14+/-3- 42+/-11/10+/-1- 66+/-8/37+/-9* 30+/-4/22+/-3+ 

VMH PVH Ant so 

13+/ .. 3/59+/-12- 20+/-4/78+/-12-18+/-4/44+/-4- 9+/-2/36+/-5-

13+/-3/64+/-7- 20+/-4/70+/-6- 18+/-4/39+/-4- 9+/-2/30+/-5-

13+/-3/42+/-4* 20+/-4/52+/-10- 18+/-4/35+/-4* 9+/-2/54+/-15-

13+/-3/58+/-8- 20+/-4/89+/-11- 18+/-4/36+/-3- 9+/-2/46+/-6-

13+/-3/27+/-7 20+/-4 / 24+/-5 18+/-4 / 30+/-6 9+/-2 /15+/-3+ 

59+/-12/64+/-7 78+/-12/70+/-6 44+/ .. 4 / 39+/ .. 4 36+/-5/30+/-5 

59+/-121 42+/-4 78+/-12 / 52+/-10 44+/-1 / 35+/-4 36+/-5/54+/-15 

59+/-12158+/-8 78+/-12/89+/-11 44+/ .. 1 / 36+/-3 36+/-5 / 46+/-6 

59+/ .. 12/27+/-7* 78+/-12/24+/-5- 44+/-1 / 30+/-6* 36+/ .. 5 /15+/-3-

64+/-7 / 42+/-4* 70+/-6/52+/-10 39+/-4 / 35+/-4 30+/-5 / 54+/ .. 15+ 

64+/-7 /58+/-8 70+/-6 / 89+/-11 39+/-4 / 36+/-3 30+/-5 / 46+/-6+ 

64+/ .. 7 / 27+/-7- 70+/-6 / 24+/-5- 39+/-4 / 30+/-6+ 30+/-5 /15+/ .. 3* 



2wkvs4wk 

2 wk vs 8 wk 

4wk vs 8 wk 

42+/-4/58+/-8 52+/-10/89+/-11* 35+/-4/36+/-3 54+/-15/46+/-6 

42+/-4/27+/-7+ 25+/-10/24+/-5* 35+/-4/30+/-6 54+/-15/15+/-3** 

58+/-8/27+/-7** 89+/-11 /24+/-5** 36+/-3/30+/-6 46+/-4/15+/-3** 

+ signifies p<.1, * signifies p<.05, ** signifies p<.01 

Table 2. Comparisons of means for WKY discrete nuclei during the varying durations of salt diet. 

Control vs .5 wk 

Control vs 1 wk 

Control vs 2 wk 

Control vs 4 wk 

Control vs 8 wk 

.5wkvs 1 wk 

.5 wk vs 2 wk 

.5wkvs4wk 

.5wk vs 8 wk 

1 wk vs 2 wk 

1 wk vs4wk 

1 wk vs 8 wk 

2wk vs4wk 

2 wk vs 8 wk 

4 wk vs 8 wk 

Control vs .5 wk 

Control vs 1 wk 

Control vs 2 wk 

Control vs 4 wk 

Control vs 8 wk 

A2 A1 C1 LC 

10+/-2 /18+/-2* 8+/-2 /19+/-2** 8+/-2/13+/-.9* 4+/-.7/5+/-2 

10+/-2 /18+/-3+ 8+/-2 /12+/-2 8+/-2/12+/-2 4+/-.7 / 0+/-0* 

10+/-2 / 24+/-6 8+/-2 /12+/-2 8+/-2/10+/-.7 4+/-.7 / 5+/-.7 

10+/-2/22+/-5 8+/-2/15+/-1 ** 8+/-2/14+/-1 * 4+/-.7/5+/-1 

1 0+/-2 /14+/-5 8+/-2 /13+/-2+ 8+/-2/9+/-.8 4+/-.7 /6+/-1 

18+/-2/18+/-3 19+/-2/12+/-2** 13+/-.9/12+/-2 5+/-2 / 0+/-0 

18+/-2/24+/-6 19+/-2 /12+/-2* 13+/-.9/10+/-.7** 5+/-2/5+/-.7 

18+/-2/ 22+/-5 19+/-2/15+/-1 + 13+/-.9/14+/-1 5+/-2/ 5+/-1 

18+/-2/14+/-5 19+/-2 /13+/-2* 13+/-.9/9+/-.8** 5+/-2 / 6+/-1 

18+/-3 / 24+/-6 12+/-2 /12+/-2 12+/-2/10+/-.7 0+/-0/5+/-.7** 

18+/-3 / 22+/-5 12+/-2/15+/-1 12+/-2/14+/-1 0+/-0/5+/-1 + 

18+/-3/14+/-5 12+/-2/13+/-2 12+/-2/9+/-.8 0+/-0 / 6+/-1 + 

24+/-6 / 22+/-5 12+/-2 / 15+/-1 10+/-.7/14+/-1** 5+/-.7 /5+/-1 

24+/-6/14+/-5 12+/-2 / 13+/-2 10+/-.7 /9+/-.8 5+/-.7 /6+/-1 

22+/-5 /14+/-5 15+/-1 /13+/-2 14+/-1 /9+/-.8** 5+/-1 /6+/-1 

PH Arc DMH LH 

30+/-7/66+/-11* 19+/-11/44+/-12 38+/-10 /104+/-14**19+/-4/44+/-6** 

30+/-7 /47+/-7 19+/-11/47+/-14 38+/-10/64+/-8* 19+/-4/36+/-6* 

30+/-7/44+/-7 19+/-11/31+/-7 38+/-10/56+/-10 19+/-4/24+/-4 

30+/-7/53+/-10 19+/-11/55+/-8* 38+/-10/70+/-9* 19+/-4/34+/-3* 

30+/-7/44+/-10 19+/-11/36+/-7 38+/-10/60+/-11 19+/-4/31+/-4+ 



.5 wk vs 1 wk 

.5 wk vs 2 wk 

.5 wk vs4wk 

.5 wk vs 8'wk 

1 wk vs 2 wk 

1 wk vs4 wk 

1 wk vs 8 wk 

2 wk vs4wk 

2 wk vs 8 wk 

4 wk vs 8 wk 

Control vs .5 wk 

Control vs 1 wk 

Control vs 2 wk 

Control vs 4 wk 

Control vs 8 wk 

.5 wk vs 1 wk 

.5wk vs2 wk 

.5 wk vs4 wk 

.5 wk vs 8 wk 

1 wk vs 2 wk 

1 wk vs 4 wk 

1 wk vs 8 wk 

2wkvs4wk 

2 wk vs 8 wk 

4 wk vs 8 wk 

66+/-11/47+/-7 44+/-12/47+/-14 104+/-14/64+/-8* 44+/-6/36+/-6 

66+/-11/44+/-7* 44+/-12/31+/-7 104+/-14/56+/-10* 44+/-6/24+/-4-

66+/-11/53+/-10 44+/-12/55+/-8 104+/-10/70+/-9* 44+/-6/34+/-3+ 

66+/-11/44+/-10 44+/-12/36+/-7 104+/-40/60+/-11* 44+/-6/31+/-4+ 

47+/-7/44+/-7 47+/-14/31+/-7 64+/-8/56+/-10 36+/-6/24+/-4+ 

47+/-7 /53+/-10 47+/-14/55+/-8 64+/-8/70+/-9 

47+/-7 /44+/-10 47+/-14/36+/-7 64+/-8/60+/-11 

36+/-6 / 34+/-3 

36+/-6 / 31 +/-4 

44+/-7 /53+/-10 31+/-7/55+/-8* 56+/-10/70+/-9 24+/-4/34+/-3+ 

44+/-7 /44+/-10 31+/-7 /36+/-7 56+/-10/60+/-11 24+/-4/31+/-3 

53+/-10/44+/-10+ 55+/-8/36+/-7 70+/-9/60+/-11 34+/-3/31+/-3 

VMH PVH Ant SO 

27+/-9/73+/-11- 24+/-8/99+/-11- 28+/-10/62+/-7* 13+/-10/43+/-6* 

27+/-9/58+/-8* 24+/-8/81+/-12- 28+/-10/55+/-8* 13+/-10/41+/-8* 

27+/-9/70+/-12* 24+/-8/54+/-7* 28+/-10/48+/-9 13+/-10/25+/-4 

27+/-9/86+/-11- 24+/-8/78+/-10- 28+/-10 /54+/-7* 13+/-10/39+/-4* 

27+/-9/42+/-4 24+/-8/61+/-11* 28+/-10/36+/-7 13+/-10/43+/-7* 

73+/-11 / 58+/-8 99+/-11 / 81 +/-12 62+/-7 / 55+/-8 43+/-6 / 41 +/-8 

73+/-11/70+/-12 99+/-11/54+/-7- 62+/-7 /48+/-9 43+/-6/25+/-4-

73+/-11/86+/-11 99+/-11/78+/-10 62+/-7/54+/-7 43+/-6/39+/-4 

73+/-11/42+/-4* 99+/-11/61+/-11* 62+/-7/36+/-7* 43+/-6/43+/-7 

58+/-8/70+/-12 81+/-12/54+/-7+ 55+/-8/48+/-9 41+/-8/25+/-4+ 

58+/-8/86+/-11+ 81+/-12/78+/-10 55+/-8/54+/-7 41+/-8/39+/-4 

58+/-8/42+/-4+ 81+/-12/61+/-11 55+/-8/36+/-7+ 41+/-7/43+/-7 

70+/-12/86+/-11 54+/-7 /78+/-10+ 48+/-9/54+/-7 25+/-4/39+/-4* 

70+/-2/42+/-4+ 54+/-7/61+/-11 48+/-9/36+/-7 25+/-4/43+/-7* 

86+/-11/42+/-4- 78+/-10/61+/-11 54+/-7 /36+/-7+ 39+/-4/43+/-7 

+ signifies p<. 1, * signifies p<. 05, - signifies p<. 01 
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Figure 1. Mean (+/- SEM) NE concentrations for WKY and BHR across the 
high salt diet durations. (**p<.O 1, *p<.05, and +p<.lO for comparison between strains) 



~ 

c .-
Q) 

-+---J 

0 
L 

CL 

en 
=:J 

en 
0.. 

'-.-/ 

-+---J 
c 
Q) 

-+---J 

C 
0 
u 
w 

A2 N clei ** 

100 

90 --

80 --

70 --

60 -I-

50 -I-

40 -l-
I T 

30 -r 

20 

1 0 

0 

-r 

T I T 
L 

ill -r 

I 
I I I I I 
I I I I I 

Control 0.5 wk wk 2 wk 4 wk 8 wk 

iet uroti n 

Figure 2. Mean (+/- SEM) NE concentrations in the A2 nuclei for the control diet, .5, 1, 2, 4, and 
8 week high salt diet collapsed over both WKY and BHR. (**p<.O 1 for comparison between 
durations) 
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Figure 3. Mean (+/- SEM) NE concentrations in the A 1 nuclei for the control diet, .5, 1, 2, 4, and 
8 week high salt diet collapsed over both WKY and BHR. (**p<.O 1 for comparison between 
durations) 
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Figure 4. Mean (+/- SEM) NE concentrations in the C 1 nuclei for the control diet, .5, 1, 2, 4, and 
8 week high salt diet collapsed over both WKY and BHR. (**p<.Ol for comparison between 
durations) 
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Figure S. Mean (+/- SEM) NE concentrations in the LC nuclei for the control diet, .5, 1, 2, 4, and 
8 week high salt diet collapsed over both WKY and BHR. 
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Figure 6. Mean (+/- SEM) NE concentrations in the PH nuclei for the control diet, .5. 1, 2, 4, and 
8 week high salt diet collapsed over both WKY and BHR. (**p<.O 1 for comparison between 

durations) 
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Figure 7. Mean (+/- SEM) NE concentrations in the Arc nuclei for the control diet, .5, 1, 2, 4, 
and 8 week high salt diet collapsed over both WKY and BHR. (**p<.O 1 for comparison between 
durations) 



~ 

c .-
(J) 

+--' 
0 
L 

U 

(}l 

:J 

~ 
(}l 

u 
'---"" 

+--' 
c 
(J) 

+--' 
C 
0 
u 
w 

D M H N u c lei ** 

100 

90 -i- 1 
80 -i-

70 -i-

T 
I 

60 

50 

--

I I -i-

40 -f-
T 

30 --

20 -i-

10 -f-

0 I I ~ I I I 
I I I I I 

ntrol 0.5 wk wk 2 wk 4 wk 8 wk 

Diet Duration 

Figure 8. Mean (+/- SEM) NE concentrations in the DMH nuclei for the control diet, .5, 1, 2, 4, 
and 8 week high salt diet collapsed over both WKY and BHR. (**p<.O 1 for comparison between 
durations) 
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Figure 9. Mean (+/- SEM) NE concentrations in the LH nuclei for the control diet, .5, 1, 2,4, and 
8 week high salt diet collapsed over both WKY and BHR. (**p<.Ol for comparison between 
durations) 
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. Figure 10. Mean (+/- SEM) NE concentrations in the VMH nuclei for the control diet, .5, 1,2,4, 
and 8 week high salt diet collapsed over both WKY and BHR. (**p<.O 1 for comparison between 
durations) 
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Figure 11. Mean (+/- SEM) NE concentrations in the PVH nuclei for the control diet, .5, 1, 2, 4, 
and 8 week high salt diet collapsed over both WKY and BHR. (**p<.OI for comparison between 
durations) 
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Figure 12. Mean (+/- SEM) NE concentrations in the Ant nuclei for the control diet, .5, 1, 2, 4, 
and 8 week high salt diet collapsed over both WKY and BHR. (**p<.Ol for comparison between 
durations) 



".--....... 

c 
>-

Q) 
-+-' 
0 
L 

0.. 

CJ! 
=> 
~ 

CJ! 
0.. 

'-.....-/ 

-+-' 
c 
([) 

-+-' 
C 
0 
u 
w 
z 

SO Nuclei ** 

100 

90 --

80 --

70 --

60 -!-

50 -!-

40 

30 

T T 
-!-

T 
T T 

--

20 --

10 

a 

T --

I I I I I I I I 
I , , I 

Control 0.5 wk wk 2 wk 4 wk 8 wk 

Diet Du roti n 

Figure 13. Mean (+/- SEM) NE concentrations in the SO nuclei for the control diet, .5, 1, 2, 4, 
and 8 week high salt diet collapsed over both WKY and BHR. (**p<.Ol for comparison between 
durations) 
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Figure 14. Mean (+/- SEM) NE concentrations of A2 nuclei for WKY and BHR consuming the 
control diet and .S week, 1 week, 2 week, 4 week, and 8 week high salt diets. (*p<.OS and +p<.l 0 
for comparisons between strains and *p<.OS for strain-diet interaction) 
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Figure 15. Mean (+/- SEM) NE concentrations of A 1 nuclei for WKY and BHR consuming the 
control diet and .5 week, 1 week, 2 week, 4 week, and 8 week high salt diets. (**p<.OI, *p<.05 
and +p<.IO for comparisons between strains and **p<.OI for strain-diet interaction) 
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Figure 16. Mean (+/- SEM) NE concentrations of C 1 nuclei for WKY and BHR consuming the 
control diet and .5 week, 1 week, 2 week, 4 week, and 8 week high salt diets. 
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Figure 17. Mean (+1- SEM) NE concentrations of LC nuclei for WKY and BRR consuming the 
control diet and .5 week, 1 week, 2 week, 4 week, and 8 week high salt diets. (+p<.1 0 for 
comparisons between strains) 
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Figure 18. Mean (+/- SEM) NE concentrations of PH nuclei for WKY and BHR consuming the 
control diet and .S week, 1 week, 2 week, 4 week, and 8 week high salt diets. (*p<.OS for 
comparisons between strains and **p<.Ol for strain-diet interaction) 
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Figure 19. Mean (+/- SEM) NE concentrations of Arc nuclei for WKY and BHR consuming the 
control diet and .5 week, 1 week, 2 week, 4 week, and 8 week high salt diets. (**p<.Ol for 
comparisons between strains) 
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Figure 20. Mean (+/- SEM) NE concentrations of DMH nuclei for WKY and BHR consuming 
the control diet and .5 week, 1 week, 2 week, 4 week, and 8 week high salt diets. (+p<.l 0 for 
comparisons between strains) 
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Figure 21. Mean (+/- SEM) NE concentrations of LH nuclei for WKY and BHR consuming the 
control diet and .5 week, 1 week, 2 week, 4 week, and 8 week high salt diets. (+p<.l 0 for 
comparisons between strains) 
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Figure 22. Mean (+/- SEM) NE concentrations of VMH nuclei for WKY and BHR consuming 
the control diet and .5 week, 1 week, 2 week, 4 week, and 8 week high salt diets. (+p<.l 0 for 
comparisons between strains) 
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Figure 23. Mean (+/- SEM) NE concentrations of PVH nuclei for WKY and BHR consuming 
the control diet and .5 week, 1 week, 2 week, 4 week, and 8 week high salt diets. (**p<.Ol and 
for comparisons between strains) 
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Figure 24. Mean (+/- SEM) NE concentrations of Ant nuclei for WKY and BHR consuming the 
control diet and .S week, 1 week, 2 week, 4 week, and 8 week high salt diets. (*p<.OS and +p<.l 0 
for comparisons between strains) 
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Figure 25. Mean (+/- SEM) NE concentrations of SO nuclei for WKY and BHR consuming the 
control diet and .S week, 1 week, 2 week, 4 week, and 8 week high salt diets. (**p<.Ol and 
*p<.OS for comparisons between strains and **p<.Ol for strain-diet interaction) 
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