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Abstract

In this second progress report we expand upon our previous report and preliminary work.

Specifically, we review some work on the numerical solution of single- and multi-species

BGK-type kinetic equations of particle transport. Such equations model the motion of fluid

particles via a density field when the kinetic theory of rarefied gases must be used in place of

the continuum limit Navier-Stokes and Euler equations. The BGK-type equations describe the

fluid in terms of phase space variables, and, in three space dimensions, require 6 independent

phase-space variables (3 for space and 3 for velocity) for each species for accurate simulation.

This requires sophisticated numerical algorithms and efficient code to realize predictions over

desired space and time scales. In particular, stable numerical methods must be designed to

handle potential discontinuities (shocks) and rarefaction waves in the solutions coming from

conservative advection terms and, in addition, numerical stiffness owing to diffusive particle

collision terms. Furthermore, the particle interaction terms are non-local in nature, adding yet

another layer of complexity, and the interaction length scales of the non-local terms may be

orders of magnitude different, when multiple particle species are involved. In this report, we

outline strategies for generating efficient and stable numerical algorithms and code, including

the use of (i) stable high-order finite volume methods, (ii) fully implicit and implicit-explicit

(IMEX) time integration techniques, (iii) adaptive time-phase-space multi-level methods, (iv)

discrete velocity methods, and (v) moment equation methods. The preliminary codes, which

will be demonstrated herein, are built in the commercial software package MATLAB for quick

and easy prototyping, but will later be translated into production software using modern open

languages.
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Chapter 1

Introduction

The Navier-Stokes and Euler equations, with which most computational fluid dynamicists are

familiar, are used to describe the evolution of a fluid under the assumption that the constituent

particles move in, essentially, lock-step motion. In other words, fluid particles with small space

separation are assumed to have nearly identical velocity vectors. To be precise, suppose that

the mean free path (diffusion length scale) of particles is denoted λ, and the characteristic

spatial size of the problem is denoted L. The Knudsen number is defined as Kn = λ/L.

When Kn ≪ 1, the diffusion length scale is too small to resolve accurately, and, in fact, the
individual motions and interactions of constituent particles can be coarse-grained (averaged

out) without significant loss of fidelity [29]. Indeed, the Navier-Stokes equation, which is

applicable in this physical regime, is a highly successful and accurate model.

However, when Kn = O(1), the Navier-Stokes equation is no longer valid, and particle
interactions must be taken into account. Particles with small space separation could move

in entirely contrary directions, and, in this regime, the Boltzmann transport equation is an

important model of particle evolution [29]. It describes the distribution of particles as a

function of time, space (d = 3 dimensions), and velocity (d = 3 dimensions). The three

dimensions of space and three dimensions of velocity comprise what is known as phase space.

The Boltzmann equation is complicated not only by the high dimensionality of phase space

but also the highly nonlinear, highly nonlocal nature of the collision (particle interaction)

operator.

The Vlasov-Boltzmann equation for a single species dilute gas is given as follows:

∂f

∂t
+ v · ∇x f + a · ∇v f = Q[f ](x , v , t), (1.1)

2
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where f is the density of particles at position x with velocity v at time t; and a is a particle

acceleration determined by an external field, for example, an electric or magnetic field. The

Boltzmann transport equation results from setting a ≡ 0. The derivation of the equation is
a straightforward exercise using the chain rule. In particular, the total time derivative of the

distribution f can be realized as

d

dt
f (x , v , t) =

d∑
i=1

∂f

∂xi

dxi
dt
+

d∑
i=1

∂f

∂vi

dvi
dt
+
∂f

∂t

= v · ∇x f + a · ∇v f +
∂f

∂t
.

Thus, the Vlasov-Boltzmann equation may be constructed via the following law: the total

time rate of change of the distribution is equal to the collision (frequency) operator. In other

words,
d

dt
f (x , v , t) = Q[f ](x , v , t).

The Boltzmann collision operator, Q[f ], requires much more physical insight for a clear

derivation [29], involving certain conservation principles, in particular. Therefore, we will

content ourselves by only stating its generic form (for d = 3 dimensions):

Q[f ](x , v , t) =

ˆ
R3×S2
[f (x , v ′, t) f (x , v ′⋆, t)− f (x , v , t) f (x , v ⋆, t)]B(|v − v ⋆|,σ)dσdv ⋆,

where B is the collision kernel describing interactions between particles, and σ is the unit

vector in the scattering direction v−v ⋆. The velocities of the two interacting particles before
collision, v ′ and v ′⋆, can be expressed in terms of the velocities of the particles after collision,

v and v ⋆, via the expressions

v ′ =
v + v ⋆
2
+
|v − v ⋆|
2

σ, v ′⋆ =
v + v ⋆
2
−
|v − v ⋆|
2

σ.

The computation of the Boltzmann collision operator is very expensive. For the 3D case,

the (5 dimensional) integral must be computed at every value of (x , v) in phase space.

Additionally, the integral cannot be evaluated analytically, except for the simplest of cases

(e.g., Maxwell molecules, with carefully prepared initial conditions). Thus, computation of

the collision operator is usually the most expensive part of computing numerical solutions of

the Boltzmann equation. For this reason, Monte Carlo methods are generally preferred for

numerical simulation [24]. Unfortunately, these are slow to converge, as is well known. What

3
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is worse, for the Ns-species case, there are N
2
s collision operators that must be considered.

Thus, a simpler, less costly approximation is typically desired and implemented.

The Vlasov-BGK equation — BGK stands for the names Bhatnagar, Gross, and Krook,

who introduced it 1954 [1] — is a model derived by approximating the Boltzmann collision

operator with a simpler nonlinear, nonlocal relaxation operator of the form

QBGK[f ](x , v , t) = λ(Mf (x , v , t)− f (x , v , t)), (1.2)

where λ = 1
τ
is the collision frequency between particles, τ > 0 is a characteristic time, and

Mf is the Maxwellian, which is defined using the moments

n(x , t) :=

ˆ
Rd
f dv , u(x , t) :=

1

n

ˆ
Rd
f v dv , θ(x , t) :=

1

nd

ˆ
Rd
f |v − u|2 dv , (1.3)

as

Mf (x , v , t) := M[f ](x , v , t) := n

(
1

2πθ

) d
2

exp

(
−
|v − u|2

2θ

)
, (1.4)

Here we have normalized the model so that the mass of the particles is unity. The space-time

fields n, u, and θ, are the macroscopic (coarse grained) number density, bulk velocity, and

temperature, respectively, and the energy density is given by E(x , t) := 1
2

´
Rd f |v |

2 dv . Using

this approximation drastically reduces the computational cost of the simulation of dilute gases,

and recovers both equilibrium and streaming behavior of the Boltzmann equation in collision-

dominated, and collision-free limits. The BGK collision operator also satisfies conservation

and entropy properties of the Boltzmann operator, as we show below. Of course, the basic

design and principle of the BGK approximation is that the density, f , should relax over

time toward the Maxwellian, and, clearly, at this state, the collision operator gives a zero

contribution.

However, the BGK collision operator does not capture some important properties. First,

it fails to capture the correct Prandtl number (essentially the ratio of viscosity to thermal

conductivity), largely because the collision rate is velocity independent. As a result, the

model may not agree with the compressible Navier-Stokes Equations that are derived from

the Boltzmann equation in high collision regimes. A number of generalizations of the BGK

model have been proposed to deal with this shortcoming. These include the ES-BGK [12] and

Shakov [28] models, which incorporate extra degrees of freedom. The model of Mieussens and

Struchtrup [18] incorporates a velocity dependent collision rate, which improves the capture

4
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of the correct Prandtl number. These models give a more physically realistic model, but

cause a substantial increase to computational costs.

To summarize, the single-species Vlasov-BGK equation has the form

∂f

∂t
+ v · ∇x f + a · ∇v f = λ(Mf (x , v , t)− f (x , v , t)), (1.5)

and, in analogy to the previous setting, the single-species BGK equation results from setting

a ≡ 0. When, in equation (1.5), the acceleration is determined by an electric field, according
to the model

a(x , t) = −χ∇xΦ(x , t),

where χ > 0 is a constant, and

−∆Φ(x , t) = n(x , t),

the resulting model is known as the Vlasov-Poisson-BGK equation.

Numerical methods for the BGK family of equations have been proposed and analyzed

extensively. The discretization of phase space is costly, and there are challenges that occur

in high-collision regimes. First, the BGK operator becomes stiff as the collision frequency

becomes large, so an implicit approach is desired for this term, to avoid unacceptably small

time steps. In a seminal paper [5], it was shown that a Backward Euler step could be applied

in an explicit manner, allowing stable time stepping for a wide range of collisional regimes.

Taking advantage of this, the paper [24] introduced an implicit-explicit (IMEX) Runge-Kutta

scheme based on [20], treating the convection term explicitly and the collision term implicitly.

Second, stable and accurate high-order conservation schemes are required for the convection

terms. For example, Pieraccini and Puppo [24] use a high-order weighted essentially non-

oscillatory (WENO) finite volume scheme, though high-order flux-limited schemes perform

well, as we show, and are easily scaled to higher dimensions.

Most of the numerical schemes for the BGK equation, including the one that we focus on

here from [24], lose the exact conservation of mass, momentum and energy at the discrete

level, and, additionally, the entropy dissipation at the discrete level. This shortcoming is

overcome in the work by Mieussens [16, 17]. Exact conservation is obtained by computing a

discrete equilibrium function, which requires the solution of a nonlinear system of 5 equations

for the BGK model and a nonlinear system of 10 equations for the ES-BGK model at each

grid point in space. Another challenge is to recover consistent numerical solutions of the

5
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Euler and Navier-Stokes Equations for compressible flows, which can be derived from the

BGK model using a Chapman-Enskog expansion [29].

In some situations, an explicit treatment of the advection terms in the BGK equation —

even while giving the collision operator an implicit treatment — can lead to a method that

requires excessively small time steps for stability and accuracy [7]. This can happen when

there are long time scales that lead to incompressible equations in the high collision limit,

or in problems for which the maximum velocity in the computational domain is significantly

larger than the fluid speed of sound. A fully implicit approach can be taken to address these

issues. This is common for time dependent kinetic equations in radiation transport contexts,

and has been considered for electron transport problems [7]. Fully implicit methods for dilute

gases and collisionless plasmas have been proposed in [7]. These approaches use sophisticated

iterative methods to manage the cost and memory requirements of the implicit update.

In this progress report, some background for BGK-type models is presented. We do

not conduct an extensive review but give the reader (especially those unfamiliar with kinetic

equations) a gentle, albeit brief, introduction. In Section 2.1 we introduce the single species

BGK Equation. We describe some basic theory (Sections 2.1.1 – 2.1.3), deriving conservation

and (mathematical) entropy dissipation properties. Finite volume implicit-explicit (IMEX)

Runge-Kutta (RK) numerical methods are presented in Section 3. We give some preliminary

simulation results in Section 3, for problems including the Sod shock tube benchmark and two-

stream instability. In Section 5, we give a brief introduction to multispecies BGK models in

order to explain some numerical challenges for such equations. Section 6 describes asymptotic

dynamics of the space homogeneous multispecies problem. We conclude the report with a

brief summary of preliminary work and near future work in Section 7. A prototype 1x1v

MATLAB code for the Sod shock tube problem is contained in Appendix E.

6



Chapter 2

Single Species BGK Kinetic Models

2.1 Basic Properties of Solutions

In this section, we describe some basic theory for the single species BGK equation [1, 29],

namely,
∂f

∂t
+ v · ∇x f = λ (Mf − f ) . (2.1)

The existence of nonnegative solutions to the (single species) BGK equation was proved for

x ∈ Rd by Perthame (1989) [22], and on bounded domains by Ringeissen (1991) [26]. Unique-
ness of mild solutions for the (single species) periodic (in x) case was shown by Perthame

and Pulvirenti (1993) [21], and extended to the full space, x ∈ Rd , by Mischler (1996) [19].
Beyond questions about existence and uniqueness of solutions, it is important to have

a firm grasp of the properties of solutions to BGK-type equations, since it is vital to build

numerical approximation schemes that respect analogous features at the fully discrete level.

Herein, we review conservation and entropy dissipation solution properties, and, later, we

discuss how these are used in the design of numerical schemes.

2.1.1 Collision Invariants

Let us begin with an important property for the well-definedness of the model. In particular,

the temperature is non-negative, since f is nonnegative. To see this, consider

Proposition 2.1.1. If f : Ω × Rd × [0,∞) → R is non-negative, then n is nonnegative.

7
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Consequently, since

d

2
n(x , t)θ(x , t) =

1

2

ˆ
Rd
|v − u(x , t)|2f (x , v , t) dv ≥ 0,

the temperature is also nonnegative. Furthermore, the temperature is related to the other

moments via the relation

E(x , t)−
1

2
n(x , t)|u(x , t)|2 =

d

2
n(x , t)θ(x , t).

Proof. The first assertion is clear from the definition of n. The second assertion is clear

from the fact that n and f are nonnegative, and by the definition of the temperature. Next,

expanding the right-hand side in the definition of the temperature, we have

d

2
n(x , t)θ(x , t) =

1

2

ˆ
Rd
|v − u(x , t)|2f (x , v , t) dv

=
1

2

ˆ
Rd
|v |2f (x , v , t) dv − u(x , t) ·

ˆ
Rd
v f (x , v , t) dv

+
|u(x , t)|2

2

ˆ
Rd
f (x , v , t) dv

= E(x , t)− u(x , t) · u(x , t)n(x , t) +
1

2
n(x , t)|u(x , t)|2

= E(x , t)−
1

2
n(x , t)|u(x , t)|2.

The proof is complete. ■

For convenience, we define ⟨ · ⟩ : L1(Rd ;Rp)→ Rp by

⟨g⟩ =
ˆ
Rd
g(v) dv .

Therefore, 
n(x , t)

n(x , t)u(x , t)

E(x , t)

 =
〈
f (x , v , t)


1

v
1
2
|v |2


〉
.

Thus, the macroscopic density, n, momentum, p := nu, and energy density, E, may be viewed

as the first three moments of the particle distribution function f . The first three moments

of the collision operator are equal to zero. This gives us some conservation properties, as we

show below.

8
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For convenience, let us define

ρ(x , t) := [n, nu, E]⊤ : Rd × R+ → Rd+2; (2.2)

m(v) :=

[
1, v ,

1

2
|v |2
]⊤
: Rd → Rd+2; (2.3)

and

α(x , t) :=

[
ln

(
n

(2πθ)d/2

)
−
|u|2

2θ
,
u

θ
,−
1

θ

]⊤
: Rd × R+ → Rd+2. (2.4)

Then, succinctly,

ρ = ⟨fm⟩, and Mf = exp (α ·m(v)) . (2.5)

Indeed,

exp (α ·m) = exp
(
ln

(
n

(2πθ)d/2

)
−
|u|2

2θ

)
exp

(u · v
θ

)
exp

(
−
1

2θ
|v |2
)

= n

(
1

2πθ

)d/2
exp

(
−
|u|2

2θ

)
exp

(u · v
θ

)
exp

(
−
1

2θ
|v |2
)

= n

(
1

2πθ

)d/2
exp

(
−
1

2θ
|u − v |2

)
= Mf .

Lemma 2.1.2. The following equality holds:

⟨(Mf − f )m⟩ =

〈
1

v
|v |2
2

 (Mf − f )
〉
= 0. (2.6)

Proof. 1. First we show that ˆ
Rd
Mf dv =

ˆ
Rd
f dv . (2.7)

By definition,

ˆ
Rd
Mf dv =

ˆ
Rd

n

(2πθ)
d
2

exp

(
−
|v − u|2

2θ

)
dv

=
n

(2πθ)
d
2

ˆ
Rd
exp

− ∣∣∣∣∣v − u(2θ)
1
2

∣∣∣∣∣
2
 dv . (2.8)

9
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Consider the substitution

s =
v − u
(2θ)

1
2

=⇒ ds =

(
1

(2θ)
1
2

)d
dv =⇒ dv = (2θ)

d
2 ds. (2.9)

The integral becomes

ˆ
Rd
Mf dv =

n

(2πθ)
d
2

ˆ
Rd
exp(−|s|2)(2θ)

d
2 ds

=
n(2θ)

d
2

π
d
2 (2θ)

d
2

ˆ
Rd
e−|s|

2

ds

=
n

π
d
2

· π
d
2

=

ˆ
Rd
f dv , (2.10)

as desired. Note that we have used the definition n =
´
Rd f dv , and the fact that in d

dimensions, the integral
´
Rd e

−|x |2 dx = π
d
2 . We will use this frequently.

2. Next we show that ˆ
Rd
vMf dv =

ˆ
Rd
v f dv . (2.11)

Following a similar line of work, we have

ˆ
Rd
vMf dv =

ˆ
Rd

n

(2πθ)
d
2

v exp

(
−
|v − u|2

2θ

)
dv

=
n

(2πθ)
d
2

ˆ
Rd
v exp

− ∣∣∣∣∣v − u(2θ)
1
2

∣∣∣∣∣
2
 dv . (2.12)

Using the substitution in (2.9), the integral becomes

ˆ
Rd
vMf dv =

n

(2πθ)
d
2

ˆ
Rd

(
(2θ)

1
2 s + u

)
exp(−|s|2) · (2θ)

d
2 ds

=
n(2θ)

d
2

π
d
2 (2θ)

d
2

[
(2θ)

1
2

ˆ
Rd
se−|s|

2

ds + u

ˆ
Rd
e−|s|

2

ds

]
=
n

π
d
2

[
(2θ)

1
2

ˆ
Rd
se−|s|

2

ds + u

ˆ
Rd
e−|s|

2

ds

]
. (2.13)

10
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Let us deal with the first term in (2.13). One can easily show that

ˆ ∞
−∞
xe−x

2

dx = 0 =⇒
ˆ
Rd
se−|s|

2

ds = 0.

Therefore, we have

ˆ
Rd
vMf dv =

n

π
d
2

· u
ˆ
Rd
e−|s|

2

ds =
nu

π
d
2

· π
d
2 = nu =

ˆ
Rd
v f dv .

3. Finally, we show that ˆ
|v |2

2
Mf dv =

ˆ
|v |2

2
f dv . (2.14)

First, observe that ˆ
Rd
|s|2e−|s|2 ds =

d

2
π
d
2 . (2.15)

(To see how to prove such results, see Appendix A). Now, using the substitution in

(2.9), and the same integration techniques on the LHS of (2.14),

ˆ
|v |2

2
Mf dv =

1

2

n

(2πθ)
d
2

ˆ
|v |2e−

|v−u|2
2θ dv

=
1

2

n

(2πθ)
d
2

ˆ
|u + (v − u)|2e−

|v−u|2
2θ dv

=
n

2(2πθ)
d
2

ˆ (
−|u|2 + 2u⊤v + |v − u|2

)
e−

|v−u|2
2θ dv

=
−n|u|2

2(2πθ)
d
2

(2θ)
d
2

ˆ
Rd
e−|s|

2

ds +
2n(2θ)

d
2

2(2πθ)
d
2

u⊤
ˆ
Rd

[
u + (2θ)

1
2 s
]
e−|s|

2

ds

+
n(2θ)

d
2
+1

2(2πθ)
d
2

ˆ
Rd
|s|2e−|s|2 ds

=
−n|u|2

2π
d
2

π
d
2 +
n|u|2

π
d
2

π
d
2 + 0 +

2nθ

2π
d
2

d

2
π
d
2

=
1

2
n|u|2 +

d

2
nθ

=

ˆ
Rd

|v |2

2
f dv , (2.16)

where the final line follows from Proposition 2.1.1 and the definition of the energy

density, E.

The proof is complete. ■

11



January 29, 2024 E. Habbershaw and S.M. Wise

Definition 2.1.3. We say that a function g(v) is collision invariant iff

⟨g(v) (Mf − f )⟩ =
ˆ
Rd
g(v) (Mf − f ) dv = 0.

From the last Lemma, we observe that 1, v and |v |2 are collision invariant. Of course,
any linear combination of these functions will also be collision invariant. We will use this fact

later.

Let us introduce some further notation.

Definition 2.1.4. Suppose that p ∈ Rs and q ∈ Rt . Then the vector outer product p ⊗ q is
a matrix in Rs×t whose components are precisely

[p ⊗ q]i ,j = piqj .

Multiplying the BGK Equation by the vector m = [1, v , 1
2
|v |2]⊤ and integrating, we get

expressions for the conservation of mass, momentum, and energy, respectively.

Lemma 2.1.5. Suppose that f is a non-negative solution to the BGK equation, that is, the

Vlasov-BGK equation with a ≡ 0. The following conservation equations hold:

∂

∂t
n +∇x · (nu) = 0, (2.17)

∂

∂t
(nu) +∇x · (nu ⊗ u + P) = 0, (2.18)

∂

∂t
E +∇x · (Eu + Pu + q) = 0, (2.19)

where

P :=

ˆ
Rd
(v − u)⊗ (v − u)f dv

is the pressure tensor and

q :=
1

2

ˆ
Rd
|v − u|2(v − u)f dv

is the heat flux.

Proof. 1. Multiplying the BGK equation by 1 and integrating, we have

ˆ
Rd

[
∂f

∂t
+∇x · (v f )

]
dv =

ˆ
Rd
λ(Mf − f ) dv (2.20)

⇐⇒
∂

∂t

(ˆ
Rd
f dv

)
+∇x ·

(ˆ
Rd
v f dv

)
= 0 (2.21)

12
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⇐⇒
∂

∂t
n +∇x · (nu) = 0. (2.22)

This verifies the first equation, which is an expression for the conservation of mass.

2. Next, multiplying by v and integrating, we have

ˆ
Rd

[
v
∂f

∂t
+∇x · (v ⊗ v f )

]
dv =

ˆ
Rd
vλ(Mf − f ) dv (2.23)

⇐⇒
∂

∂t

(ˆ
Rd
v f dv

)
+∇x ·

(ˆ
Rd
v ⊗ v f dv

)
= 0. (2.24)

The first term is equal to ∂t(nu), as desired. It remains to show that

ˆ
Rd
v ⊗ v f dv = nu ⊗ u + P.

Writing v = u + (v − u), gives
ˆ
Rd
v ⊗ v f dv =

ˆ
Rd
[u + (v − u)]⊗ [u + (v − u)] f dv

=

ˆ
Rd
[u ⊗ u + u ⊗ (v − u) + (v − u)⊗ u + (v − u)⊗ (v − u)] f dv

= nu ⊗ u + P+

ˆ
Rd
u ⊗ (v − u)f dv +

ˆ
Rd
(v − u)⊗ uf dv . (2.25)

The last two terms in the above expression are equal to zero:

u ⊗
ˆ
Rd
(v − u)f dv = u ⊗

[ˆ
Rd
v f dv − u

ˆ
Rd
f dv

]
= u ⊗ [nu − un] = 0.

Putting it all together, we obtain the second equation, an expression for the conservation

of momentum.

3. Finally, multiplying by 1
2
|v |2 and integrating, gives

ˆ
Rd

1

2
|v |2

(
∂f

∂t
+∇x · (v f )

)
dv =

ˆ
Rd

1

2
|v |2λ(Mf − f ) dv (2.26)

⇐⇒
∂

∂t

(ˆ
Rd

1

2
|v |2f dv

)
+∇x ·

(ˆ
Rd

1

2
|v |2v f dv

)
= 0. (2.27)

13
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The first term is equal to ∂tE, as desired. It remains to show that

ˆ
Rd

1

2
|v|2v f dv = Eu + Pu + q.

Writing v = u + (v − u), gives
ˆ
Rd

1

2
|v |2v f dv =

1

2

ˆ
Rd
|v |2 [u + (v − u)] f dv

= u

ˆ
Rd

1

2
|v |2f dv +

1

2

ˆ
Rd
|v |2(v − u)f dv

= Eu +
1

2

ˆ
Rd
[u + (v − u)]⊤ [u + (v − u)] (v − u)f dv

= Eu +
1

2

ˆ
Rd

[
|u|2 + 2u⊤(v − u) + |v − u|2

]
(v − u)f dv

= Eu +
|u|2

2

ˆ
Rd
(v − u)f dv +

ˆ
Rd
u⊤(v − u)(v − u)f dv +

1

2

ˆ
Rd
|v − u|2(v − u)f dv

= Eu + q +
1

2
|u|2

(ˆ
Rd
v f dv − u

ˆ
Rd
f dv

)
+

ˆ
Rd
u⊤(v − u)(v − u)f dv

= Eu + q +
1

2
|u|2 (nu − un) +

ˆ
Rd
u⊤(v − u)(v − u)f dv

= Eu + q +

ˆ
Rd
u⊤(v − u)(v − u)f dv . (2.28)

It should be easy to see that

u⊤(v − u)(v − u) = [(v − u)⊗ (v − u)] u.

Thus, the final term in the above Equation is

ˆ
Rd
u⊤(v − u)(v − u)f dv =

ˆ
Rd
[(v − u)⊗ (v − u)] uf dv

=

(ˆ
Rd
(v − u)⊗ (v − u)f dv

)
u

= Pu. (2.29)

Putting it all together gives the third equation, which is an expression for the conser-

vation of energy.

The proof is complete. ■

The conservation laws/properties above are reminiscent of those involved with the deriva-
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tions of the Navier-Stokes and Euler equations. In fact, using the Chapman-Enskog expansion

method one can show that in the limit as λ→∞, or τ → 0, one recovers macroscopic Navier-
Stokes and/or Euler equations as formal limits, under certain assumptions [27, 32, 31, 29].

These limits can even guide in the design of stable numerical methods for the macroscopic

models [32].

The following is an even simpler consequence of the collision invariance of m stated in

Lemma 2.1.2. Its proof is omitted.

Proposition 2.1.6. Suppose that f is a non-negative solution to the BGK equation. Then,

∂t⟨fm⟩+∇x⟨v ⊗mf ⟩ = 0.

2.1.2 Space-Homogeneous Problem

Suppose that the density function is spatially homogeneous and/or particle advection may

be neglected in the system. In this case, the distribution function f satisfies the space-

homogeneous problem
∂f

∂t
= λ(Mf − f ). (2.30)

This is a first order integro-differential equation (IDE), which can be solved using the inte-

grating factor method.

Lemma 2.1.7. Suppose that f is a solution to the space homogeneous problem (2.30). Then

f (x , v , t) = e−λtf (x , v , 0) +
(
1− e−λt

)
Mf (x , v , 0). (2.31)

Proof. We begin by proving that ∂n
∂t
= 0 = ∂θ

∂t
, ∂u
∂t
= 0, and ∂Mf

∂t
= 0. We will make frequent

use of Lemma 2.1.2.

1. First, we show that ∂n
∂t
= 0. Utilizing the IDE,

∂

∂t
n =

∂

∂t

ˆ
Rd
f dv =

ˆ
Rd

∂f

∂t
dv =

ˆ
Rd
λ(Mf − f ) dv

2.1.2
= 0. (2.32)

2. Next, we show that ∂u
∂t
= 0. Using the quotient rule on the definition of u = 1

n

´
Rd f dv ,

and the fact that ∂n
∂t
= 0 gives

∂u

∂t
=
∂

∂t

1

n

ˆ
Rd
f v dv =

(n)
´
Rd
∂f
∂t
v dv − 0
n2

=
1

n

ˆ
Rd
λ(Mf − f )v dv

2.1.2
= 0. (2.33)
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3. Next, we show that ∂θ
∂t
= 0. Recall that d

2
nθ = E − 1

2
n|u|2 ⇐⇒ θ = 2E

nd
− 1
d
|u|2. Using

the quotient rule, and the fact that ∂n
∂t
= 0 and ∂u

∂t
= 0, gives

∂θ

∂t
=
2

d

(
∂E
∂t

)
(n)− 0
n2

−
2

d
u⊤
∂u

∂t
=
2

nd

ˆ
Rd

|v |2

2
λ(Mf − f ) dv

2.1.2
= 0. (2.34)

4. Next, to show ∂Mf
∂t
= 0, we use the temporal invariance of n, u, and θ, as shown above,

∂

∂t
Mf (x , v , t) = (2π)

− d
2
∂

∂t

[
n(x , t)θ(x , t)−

d
2 exp

(
−
1

2
|v − u(x, t)|2θ(x , t)−1

)]
= (2π)−

d
2

[
∂n

∂t
θ−

d
2 exp

(
−
1

2
|v − u|2θ−1

)
+ n(x , t)

(
−
d

2

)
θ−

d+2
2
∂θ

∂t
exp

(
−
1

2
|v − u|2θ−1

)
+ nθ−

d
2 exp

(
−
1

2
|v − u|2θ−1

)
∂

∂t

[
−
1

2
|v − u|2θ−1

] ]
= 0. (2.35)

5. So far, we have ∂n
∂t
= 0 = ∂θ

∂t
, ∂u
∂t
= 0, and ∂Mf

∂t
= 0. To finish, we use these properties

to solve the IDE. Rearranging (2.30), gives

df

dt
+ λf = λM.

Multiplying by the integrating factor, eλt , and applying the product rule in reverse, gives

d

dt

(
eλtf

)
= λMf e

λt .

Integrating with respect to t, we have

eλtf = C + λ

ˆ
eλtMf (x , v , t) dt,

SinceMf = Mf (x , v , t) is constant with respect to t,Mf (x , v , t) = Mf (x , v , 0). Hence,

it can be pulled through the integral sign:

eλtf = C + λMf (x , v , 0)

ˆ
eλt dt

= C +Mf (x , v , 0)e
λt . (2.36)
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Plugging in t = 0, and rearranging gives an expression for the constant term:

e0f (x , v , 0) = C + e0M(x , v , 0) (2.37)

⇐⇒ C = f (x , v , 0)−M(x , v , 0). (2.38)

Putting everything together, and multiplying by e−λt , we have the following solution to

the space homogeneous problem:

f (x , v , t) = e−λt (f (x, v , 0)−Mf (x , v , 0)) +Mf (x , v , 0)

= e−λtf (x , v , 0) +
(
1− e−λt

)
Mf (x , v , 0). (2.39)

■

Since we have the true solution to this space homogeneous problem, this allows us to test

the accuracy of the code on the right hand side source term. Initial tests are performed in

Section 3.5.

2.1.3 The H-Theorem

In this section, we discuss a very important solution property for the BGK equation, namely

the entropy dissipation property. This is a key stability concept that should, in some way, be

preserved in numerical approximations. We start off this section with a definition.

Definition 2.1.8. Suppose that f : Ω× Rd × [0,∞)→ [0,∞) is a particle density function.
The object

H[f ](x , t) :=

ˆ
Rd
f (x , v , t) ln(f (x , v , t)) dv

is called the H functional or kinetic entropy. We say that a flow is entropy-dissipative or

entropy-stable iff, for every 0 ≤ t1 ≤ t2 <∞,
ˆ
Ω

H[f ](x , t2) dx ≤
ˆ
Ω

H[f ](x , t1) dx .

We will need the following technical lemma.

Lemma 2.1.9. For any x, y ∈ (0,∞)

(ln(x)− ln(y)) (x − y) ≥ 0.

17
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Proof. Observe that the function q(x) = x ln(x) is strictly convex on [0,∞). In fact, for any
x ∈ (0, 1),

q′′(x) =
1

x
> 0.

By Taylor’s theorem, for any x, y ∈ (0,∞),

x ln(x) = y ln(y) + (ln(y) + 1)(x − y) +
1

2

1

ξ
(x − y)2 ≥ y ln(y) + (ln(y) + 1)(x − y),

for some ξ between x and y . The inequality above can be rewritten as

x ln(x)− x ln(y) ≥ x − y .

Reversing the roles of x and y , we have

y ln(y)− y ln(x) ≥ y − x.

Adding the inequalities, we have

(x − y)(ln(x)− ln(y)) ≥ 0,

which is the desired result. ■

Lemma 2.1.10. The function ln(Mf ) is a collision invariant, that is

ˆ
Rd
ln(Mf ) (Mf − f ) dv = 0.

Proof. We already know that 1, v , and |v |2 are collision invariants, as are any linear combi-
nations of these functions. Using (2.3), (2.4), and (2.5), we have

ln(Mf ) = ln (exp(α ·m)) = α ·m = ln
(

n

(2πθ)d/2

)
−
|v − u|2

2θ
,

and it follows that ln(Mf ) is also a collision invariant. ■

Theorem 2.1.11. Suppose that f : Ω × Rd × [0,∞) → [0,∞) is a solution to the spatially
homogeneous BGK problem, that is,

∂f

∂t
=
1

τ
(Mf − f ) ,

18
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where τ > 0 is a constant. In particular, let us assume that f has no variation with respect

to x , i.e., ∇x f = 0. Then
d

dt
H[f ] ≤ 0.

Proof. Observe that

d

dt
H[f ](t) =

ˆ
Rd

∂f

∂t
(ln(f ) + 1) dv

=
1

τ

ˆ
Rd
(Mf − f ) (ln(f ) + 1) dv

=
1

τ

ˆ
Rd
ln(f ) (Mf − f ) dv

To finish the proof, we use that fact that ln(Mf ) is a collision invariant, that is

ˆ
Rd
ln(Mf ) (Mf − f ) dv = 0.

Thus

d

dt
H[f ](t) =

1

τ

ˆ
Rd
(ln(f )− ln(Mf )) (Mf − f ) dv

= −
1

τ

ˆ
Rd
(ln(Mf )− ln(f )) (Mf − f ) dv ≤ 0,

where in the last step we used the fact that

(ln(x)− ln(y)) (x − y) ≥ 0, ∀ x, y ∈ (0,∞).

■

More generally, we have

Theorem 2.1.12. Suppose that f : Ω × Rd × [0,∞) → [0,∞) is an Ω-periodic (spatially
periodic) solution to the BGK equation, that is,

∂tf + v · ∇x f =
1

τ
(Mf − f ) ,

where τ > 0 is constant. Then

∂t⟨f ln(f )⟩+∇x · ⟨v f ln(f )⟩ ≤ 0.
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and
d

dt

ˆ
Ω

H[f ] dx ≤ 0.

In other words, solutions of the BGK equation are entropy dissipative.

Proof. Similar to the last proof, but using Lemma 2.1.5, we have

∂

∂t
H[f ](t) =

ˆ
Rd

∂f

∂t
(ln(f ) + 1) dv

=

ˆ
Rd

∂f

∂t
ln(f ) dv +

∂n

∂t

=
1

τ

ˆ
Rd
(Mf − f ) ln(f ) dv −

ˆ
Rd
v · ∇x f ln(f ) dv +

∂n

∂t

=
1

τ

ˆ
Rd
(Mf − f ) ln(f )dv −∇x ·

ˆ
Rd
v f ln(f ) dv +

ˆ
Rd
v f · ∇x(ln(f )) dv +

∂n

∂t

=
1

τ

ˆ
Rd
ln(f ) (Mf − f ) dv −∇x ·

ˆ
Rd
v f ln(f ) dv +

∂n

∂t
+∇x · (nu)

=
1

τ

ˆ
Rd
ln(f ) (Mf − f ) dv −∇x ·

ˆ
Rd
v f ln(f ) dv .

Therefore,

∂t

ˆ
Rd
f ln(f ) dv +∇x ·

ˆ
Rd
v f ln(f ) dv = −

1

τ

ˆ
Rd
(f −Mf )(ln(f )− ln(Mf ))dv ≤ 0.

In other words,

∂t⟨f ln(f )⟩+∇x · ⟨v f ln(f )⟩ ≤ 0.

Using the Ω-periodicity of f and integrating over Ω, we have

dt

ˆ
Ω

ˆ
Rd
f ln(f ) dvdx = −

1

τ

ˆ
Ω

ˆ
Rd
(f −Mf )(ln(f )− ln(Mf )) dvdx ≤ 0,

and the proof is complete. ■

Finally, we have

Theorem 2.1.13. Suppose that

f⋆ : Ω× Rd → [0,∞)
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is a given Ω–periodic distribution. Let

ρ⋆ = [n⋆, n⋆u⋆, E⋆]
⊤
,

be the vector comprised of the first three moments of f⋆, that is,

ρ⋆(x) =


n⋆(x)

n⋆(x)u⋆(x)

E⋆(x)

 =
〈
f⋆(x , v)


1

v
1
2
|v |2


〉
, ∀ x ∈ Ω.

The Ω–periodic temperature, θ⋆, is defined via

E⋆(x) =
1

2
n⋆(x)|u⋆(x)|2 +

d

2
n⋆(x)θ⋆(x).

The Maxwellian, as usual, is defined using the macroscopic densities as

M⋆(x , v) := n⋆

(
1

2πθ⋆

) d
2

exp

(
−
|v − u⋆|2

2θ⋆

)
.

Consider the admissible class of distribution functions defined as

A⋆ :=
{
g : Ω× Rd → R

∣∣ g is Ω–periodic, g ≥ 0, and ⟨mg⟩ = ρ⋆
}
,

where, recall,

m(v) :=

[
1, v ,

1

2
|v |2
]⊤
: Rd → Rd+2.

Then, M⋆, f⋆ ∈ A⋆. In other words, A⋆ is non-empty. For every g ∈ A⋆,

H[M⋆](x) ≤ H[g](x), ∀ x ∈ Ω.

In other words, the Maxwellian is the minimum entropy distribution out of the set of admissible

distributions that gives rise to the macroscopic density ρ⋆.

Proof. Let us first show that M⋆ ∈ A⋆. Clearly M⋆ is nonnegative and Ω-periodic. The fact
that ⟨mM⋆⟩ = ρ⋆ follows from Lemma 2.1.2. Thus M⋆ ∈ A⋆. Next, we prove the inequality.
Let g ∈ A⋆ be arbitrary. We may write M⋆ = Mg, since g gives rise to the same macroscopic
fields as f⋆. Define h(s) := s ln(s). This function h is convex on (0,∞), as is easy to show.
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Its first two derivatives are

h′(s) = ln(s) + 1, h′′(s) =
1

s
> 0, ∀ s > 0.

Thus,

h(s) ≥ h(t) + h′(t)(s − t), ∀ s, t ∈ (0,∞).

It follows that

h(g) ≥ h(Mg) + h′(Mg)(g −Mg)

= h(Mg) + ln(Mg)(g −Mg) + g −Mg.

By Lemma 2.1.10,

ˆ
Rd
h(g) dv ≥

ˆ
Rd
h(Mg) dv +

ˆ
Rd
ln(Mg)(g −Mg) dv +

ˆ
Rd
(g −Mg) dv =

ˆ
Rd
h(Mg) dv .

This shows that, point-wise in Ω,

H[g] ≥ H[Mg] = H[M⋆],

and the result is proven. ■

We should point out that workers in equilibrium thermodynamics and non-equilibrium

thermodynamics generally prefer a definition of entropy that sees the entropy increasing as

a function of time. But, for historical reasons, in the mathematical and numerical theory

of the Boltzmann and the BGK equations, the prevailing definition of entropy is such that

it is decreasing in time. In any case, this is simply a matter of a sign difference, and the

mathematical dissipation property is an important marker for the design of numerical methods.

In particular, a numerical approximation scheme should satisfy, if possible, some discrete

form of entropy dissipation. However, designing fully discrete approximation schemes that

theoretically satisfy discrete dissipation (as determined by a rigorous proof) is a challenging

task. The papers [16, 17] address this issue for the single species BGK equation, but, this

dissipation property comes at a rather high computational cost. Thus, it is not clear from

the outset that it is practical to pursue this property from the theoretical point of view. On

the other hand, checking the dissipation property numerically for benchmark simulations is

certainly a worthwhile endeavor.
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2.2 Discrete-Velocity BGK Models

Discrete velocity BGK models are constructed under the assumption that the velocity space

is partitioned into discrete, allowable states. This discretized velocity space could be finite or

countably infinite, in principle. But, typically the velocity space is constructed so that it is

finite and approximates well the density of particles, f , for a given physical case, meaning that

the velocity points might clustered around particular velocity values. To make the discussion

simple, we will restrict our attention to the d = 1 case. The general case is constructed

similarly.

2.2.1 Discrete-Velocity BGK Model in One Space Dimension

Let us make an analog model in one space dimension (d = 1) with discrete, rather than

continuous, velocities, along the lines of the papers [16, 17]. Suppose that hv ∈ (0, 1) and
j ∈ N. Set

VJ :=
{
vj = hv ·

(
j−
1

2

) ∣∣∣∣ j ∈ J} ,
where

J := {−J + 1, · · · J} .

Note that the simple structure of VJ , with uniformly spaced points arranged symmetrically
about 0, is used only for simplicity, and we may choose it in a more general fashion. In any

case, set

mJ (j) :=

[
1, vj,

1

2
|vj|2

]⊤
, ∀ j ∈ J .

Define, for g : J → Rd

⟨g⟩J :=
∑
j∈J

g jhv .

Let us define the admissible class of solutions.

Definition 2.2.1. Suppose that Ω = [a, b] ⊂ R and

fJ ,⋆ : Ω× J → [0,∞)

is a given Ω–periodic discrete-velocity distribution. Let

ρJ ,⋆ = [nJ ,⋆, nJ ,⋆uJ ,⋆, EJ ,⋆]
⊤
,
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be the vector comprised of the first three discrete-velocity moments of fJ ,⋆, that is,

ρJ ,⋆(x) =


nJ ,⋆(x)

nJ ,⋆(x)uJ ,⋆(x)

EJ ,⋆(x)

 = ⟨fJ ,⋆(x, · )mJ ⟩J , ∀ x ∈ Ω. (2.40)

The admissible class of discrete-velocity distribution functions, subordinate to ρJ ,⋆ or

fJ ,⋆ is defined as the set

AJ ,⋆ :=
{
gJ : Ω× J → R

∣∣ gJ is Ω–periodic, gJ ≥ 0, and ⟨mJ gJ ⟩J = ρJ ,⋆
}
.

We need the following technical lemma.

Lemma 2.2.2. Suppose that the moment vector ρJ ,⋆ is realized from an Ω-periodic discrete-

velocity density as above. Fix x ∈ Ω = [a, b], and define the function K : R3 → R via

K(β) = Kx(β) := ⟨exp(β ·mJ )⟩J − β · ρJ ,⋆(x), ∀β ∈ R3.

K( · ) is smooth, convex, and coercive and, therefore, has a unique minimizer, β⋆ ∈ R3, which
satisfies the nonlinear equation

⟨exp(β⋆ ·mJ )mJ ⟩J = ρJ ,⋆(x).

Proof. Clearly, K is smooth. To see that it is convex, consider the first two functional

derivatives. The first derivative is computed via

d

ds
K(β + sη) =

d

ds
⟨exp(β ·mJ ) exp(sη ·mJ )⟩J −

d

ds
(β + sη) · ρJ ,⋆(x)

= ⟨exp(β ·mJ )η ·mJ exp(sη ·mJ )⟩J − η · ρJ ,⋆(x).

Thus,

d

ds
K(β + sη)

∣∣∣∣
s=0

= ⟨exp(β ·mJ )η ·mJ )⟩J − η · ρJ ,⋆(x)

= η ·
{
⟨exp(β ·mJ )mJ ⟩J − ρJ ,⋆(x)

}
,

and we can write

∇K(β) = ⟨exp(β ·mJ )mJ ⟩J − ρJ ,⋆(x).
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Further,

d2

ds2
K(β + sη) =

d

ds
⟨exp(β ·mJ )η ·mJ exp(sη ·mJ )⟩J

= ⟨exp(β ·mJ ) (η ·mJ )2 exp(sη ·mJ )⟩J
= η⊤

[
⟨mJm⊤J exp(β ·mJ ) exp(sη ·mJ )⟩J

]
η.

Thus,
d2

ds2
K(β + sη)

∣∣∣∣
s=0

= η⊤
[
⟨mJm⊤J exp(β ·mJ )⟩J

]
η,

and we write

HK(β) = ⟨mJm⊤J exp(β ·mJ )⟩J ,

which is the 3× 3 Hessian matrix, of course. This matrix is positive definite, since

η⊤HK(β)η = ⟨(η ·mJ )2 exp(β ·mJ )⟩J > 0,

for every β ∈ R3, for every η ∈ R3⋆ := R3 \ {0}. It follows that K is convex.
Now, let us prove that K is coercive. Assume that β ∈ S2 := {x ∈ R3 | ∥x∥2 = 1}. To be

precise, we will show the following: for every M > 0, there exists a number R = R(M) > 0,

independent of β, such that if s is any number satisfying s > R, then it follows that

K(s β) > M,

where, of course,

K(s β) := ⟨exp(s β ·mJ )⟩J − s β · ρJ ,⋆(x).

Fix a vector β ∈ S2, and suppose that for this vector, for some j0 ∈ J ,

β ·mJ (j0) > 0.

Then,

K(s β) ≥ hv exp(s β ·mJ (j0))− s β · ρJ ,⋆(x)
s→+∞−→ +∞.

In fact, by continuity, there is an εβ > 0 and a constant C1 > 0, such that, if α ∈ B(β, εβ)
then,

α ·mJ (j0) ≥ C1 > 0,
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so that

K(s α) ≥ hv exp(sC1))− s α · ρJ ,⋆(x)
s→+∞−→ +∞.

To sum up, given any M > 0, there is an Rβ = Rβ(M), such that, if s > Rβ, then

K(s α) > M,

for all α ∈ B(β, εβ).
Again, fix a vector β ∈ S2, and suppose that for this vector, for all j ∈ J ,

β ·mJ (j) ≤ 0.

Now, we know that

β ·mJ (j) = 0, ∀ j ∈ J ⇐⇒ β = 0,

but β ̸= 0, since ∥β∥2 = 1. Therefore, for some j1 ∈ J ,

β ·mJ (j1) < 0.

It follows from (2.40) that

β · ρJ ,⋆(x) < 0.

Consequently,

K(s β) ≥ hv exp(s β ·m(j1))− s β · ρJ ,⋆(x)
s→+∞−→ +∞.

In fact, there is an εβ > 0, such that, if α ∈ B(β, εβ), then

α ·mJ (j1) ≤ C2 < 0,

and

α · ρJ ,⋆(x) ≤ C3 < 0.

Hence,

K(s α) ≥ −sC3
s→+∞−→ +∞.

To sum up this second case, given any M > 0, there is an Rβ = Rβ(M), such that, if s > Rβ,

then

K(s α) > M,
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for all α ∈ B(β, εβ).
Observe that

S2 ⊂
⋃
β∈S2
B(β, εβ),

the object on the right being an open cover. Since S2 is compact, there is a finite sub-cover.

In other words, there are finite points β1, · · · ,βN ∈ S2 such that

S2 ⊂
N⋃
i=1

B(βi , εβi ).

Let M > 0 be given. Set

R(M) =
N
max
i=1
Rβi (M).

If s > R(M), it follows that

K(s β) > M,

for all β ∈ S2. Since R(M) is independent of β, K is coercive.
Since K is smooth, strictly convex, and coercive, it has a unique minimizer, β⋆ ∈ R3 that

satisfies

∇K(β⋆) = ⟨exp(β⋆ ·mJ )mJ ⟩J − ρJ ,⋆(x) = 0.

The proof is complete. ■

Remark 2.2.3. The compacness argument is required above because, without it, it is not

clear that

R(M) = sup
β∈S2
Rβ

is finite, which is needed for our definition of coercivity.

Lemma 2.2.4. Suppose that Ω = [a, b] ⊂ R and

fJ : Ω× J → [0,∞)

is a given Ω–periodic discrete-velocity distribution. Let

ρJ = [nJ , nJ uJ , EJ ]
⊤
,
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be the vector comprised of the first three discrete-velocity moments of fJ , that is,

ρJ (x) =


nJ (x)

nJ (x)uJ (x)

EJ (x)

 = ⟨fJ (x, · )mJ ⟩J , ∀ x ∈ Ω. (2.41)

Fix x ∈ [a, b], and define

MJ ,f (x, j) = exp(αJ ,f (x) ·mJ (j)), ∀ j ∈ J ,

where αJ ,f (x) ∈ R3 is the solution to

⟨exp(αJ ,f (x) ·mJ )mJ ⟩J = ρJ (x),

which is guaranteed to exist, uniquely, by Lemma 2.2.2. Then

0 =
∑
j∈J

hv
(
MJ ,f (x, j)− fJ (x, j)

)
, (2.42)

0 =
∑
j∈J

hvvj
(
MJ ,f (x, j)− fJ (x, j)

)
, (2.43)

0 =
∑
j∈J

hv
1

2
|vj|2

(
MJ ,f (x, j)− fJ (x, j)

)
. (2.44)

This may be expressed succinctly as

〈
mJ
(
MJ ,f (x, · )− fJ (x, · )

)〉
J = 0. (2.45)

Furthermore, the function ln(MJ ,f ) is a discrete-velocity collision invariant, that is

⟨ln (MJ ,f ) (MJ ,f − fJ )⟩J = 0. (2.46)

Proof. Identities (2.42) – (2.44) follow immediately from the definition. Since

ln
(
MJ ,f (x, j)

)
= ln

(
exp(αJ ,f (x) ·mJ (j))

)
= αJ ,f (x) ·mJ (j),

identity (2.46) also follows. ■
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Theorem 2.2.5. Define, for all f : Ω× J → [0,∞), the discrete-velocity entropy functional

HJ [f ]( · ) := ⟨f ln(f )⟩J : Ω→ [0,∞).

Let AJ ,⋆ be the admissible class of discrete-velocity distribution functions, subordinate to a
given discrete-velocity distribution fJ ,⋆ : Ω× J → [0,∞), so that AJ ,⋆ is non-empty. Then,
there is a unique functionMJ ,⋆ ∈ AJ ,⋆ such that

HJ [MJ ,⋆] (x) ≤ HJ [g](x), (2.47)

for all g ∈ AJ ,⋆, for all x ∈ Ω. Furthermore, at every point x ∈ Ω, there is a unique vector
αJ ,⋆(x) ∈ R3 such that

MJ ,⋆(x, j) = exp(αJ ,⋆(x) ·mJ (j)), ∀ j ∈ J .

Proof. Fix x ∈ [a, b]. Define

MJ ,⋆(x, j) = exp(αJ ,⋆(x) ·mJ (j)), ∀ j ∈ J ,

where αJ ,⋆(x) ∈ R3 is the solution to

⟨exp(αJ ,⋆(x) ·mJ )mJ ⟩J = ρJ ,⋆(x),

which is guaranteed to exist, uniquely, by Lemma 2.2.2. This definition shows that the

functionMJ ,⋆ ∈ AJ ,⋆. Thus, to conclude, we need only show that

HJ [MJ ,⋆] (x) ≤ HJ [g](x),

for all g ∈ AJ ,⋆. The proof follows that of the continuous-velocity case.
Let g ∈ AJ ,⋆ be arbitrary. We may write MJ ,⋆ =MJ ,g, since g gives rise to the same

macroscopic, discrete-velocity fields as fJ ,⋆. Define h(s) := s ln(s). This function h is convex

on (0,∞), and it follows that

h(g) ≥ h(MJ ,g) + h
′(MJ ,g)(g −MJ ,g)

= h(MJ ,g) + ln(MJ ,g)(g −MJ ,g) + g −MJ ,g.
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By Lemma 2.2.4,

⟨h(g)⟩J ≥ ⟨h(MJ ,g)⟩J + ⟨ln(MJ ,g)(g −MJ ,g)⟩J + ⟨g −MJ ,g⟩J = ⟨h(MJ ,g)⟩J .

This shows that, point-wise in Ω,

HJ [g] ≥ HJ [MJ ,g] = HJ [MJ ,⋆],

and the result is proven. ■

Definition 2.2.6. The 1+1-dimensional discrete-velocity BGK model is defined as follows:

given an [a, b]-periodic function f0 : [a, b]×J → (0,∞), find f : [a, b]×J × [0, T ]→ (0,∞)
such that f ( · , · , 0) = f0 and

∂tf (x, j, t) + vj∂x f (x, j, t) = λ (MJ ,f (x, j, t)− f (x, j, t)) , ∀ j ∈ J , ∀x ∈ [a, b], (2.48)

where

MJ ,f (x, j, t) = exp(αJ ,f (x, t) ·mJ (j)), ∀ j ∈ J ,

and αJ ,f (x, t) ∈ R3 is the solution to

⟨exp(αJ ,f (x, t) ·mJ )mJ ⟩J = ⟨f (x, · , t)mJ ⟩J .

We have the following result concerning the solutions of the discrete-velocity model.

Theorem 2.2.7. Suppose that Ω = [a, b] ⊂ R and

f : Ω× J × [0,∞)→ [0,∞)

is a given Ω–periodic solution to the discrete-velocity BGK model. Define, for all x ∈ [a, b]
and t ≥ 0, the discrete-velocity entropy density via

HJ [f ](x, t) := ⟨f (x, · , t) ln(f (x, · , t)⟩J .

Then, for all x ∈ [a, b] and t ≥ 0,

∂

∂t
⟨mJ f (x, · , t)⟩J +

∂

∂x
⟨v( · )mJ f (x, · , t)⟩J = 0; (2.49)
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and

∂

∂t
⟨f (x, · , t) ln (f (x, · , t))⟩J +

∂

∂x
⟨v( · )f (x, · , t) ln (f (x, · , t))⟩J ≤ 0. (2.50)

Consequently,
d

dt

ˆ
Ω

HJ [f ](x, t) dx ≤ 0. (2.51)

Proof. The proofs are analogous to the continuous-velocity cases. Equation (2.49) follows

directly from (2.45). To prove inequality (2.50), observe that

∂

∂t
HJ [f ] =

〈
∂f

∂t
(ln(f ) + 1)

〉
J

=

〈
∂f

∂t
ln(f )

〉
J
+
∂

∂t
⟨f ⟩J

=
1

τ
⟨(MJ ,f − f ) ln(f )⟩J − ⟨v∂x f ln(f )⟩J − ∂x ⟨vf ⟩J

=
1

τ
⟨ln(f ) (MJ ,f − f )⟩J − ∂x ⟨vf ln(f )⟩J

=
1

τ
⟨(ln(f )− ln(MJ ,f )) (MJ ,f − f )⟩J − ∂x ⟨vf ln(f )⟩J

= −
1

τ
⟨(ln(MJ ,f )− ln(f )) (MJ ,f − f )⟩J − ∂x ⟨vf ln(f )⟩J

≤ −∂x ⟨vf ln(f )⟩J ,

where we used the fact that

(ln(x)− ln(y)) (x − y) ≥ 0, ∀ x, y ∈ (0,∞).

Finally, using the Ω-periodicity of f and integrating over Ω, gives (2.51). ■

2.2.2 Space-Homogeneous Discrete-Velocity Model

Similar to the continuous velocity case, we can make the following definition:

Definition 2.2.8. The space-homogeneous, 1-dimensional discrete-velocity BGK model

is defined as follows: given the function f0 : J → (0,∞), find f : J × [0, T ]→ (0,∞) such
that f ( · , 0) = f0 and

∂tf (j, t) = λ (MJ ,f (j, t)− f (j, t)) , ∀ j ∈ J , (2.52)
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where

MJ ,f (j, t) = exp(αJ ,f (t) ·mJ (j)), ∀ j ∈ J , (2.53)

and αJ ,f (t) ∈ R3 is the solution to

⟨exp(αJ ,f (t) ·mJ )mJ ⟩J = ⟨f ( · , t)mJ ⟩J . (2.54)

Theorem 2.2.9. Suppose that

f : J × [0,∞)→ (0,∞)

is a given solution to the space-homogeneous discrete-velocity BGK model. Define, for all

t ≥ 0, the discrete-velocity entropy via

HJ [f ](t) := ⟨f ( · , t) ln(f ( · , t)⟩J .

Then, for all t ≥ 0,
∂

∂t
⟨mJ f ( · , t)⟩J = 0; (2.55)

and
∂

∂t
⟨f ( · , t) ln (f ( · , t))⟩J ≤ 0. (2.56)

Consequently,
∂

∂t
MJ ,f (j, t) = 0, ∀ j ∈ J . (2.57)

Proof. The proofs are again analogous to the continuous-velocity cases. Equation (2.55)

follows directly from (2.45). To prove inequality (2.56), observe that

∂

∂t
HJ [f ] =

〈
∂f

∂t
(ln(f ) + 1)

〉
J

=

〈
∂f

∂t
ln(f )

〉
J
+
∂

∂t
⟨f ⟩J

=
1

τ
⟨(MJ ,f − f ) ln(f )⟩J

=
1

τ
⟨ln(f ) (MJ ,f − f )⟩J

=
1

τ
⟨(ln(f )− ln(MJ ,f )) (MJ ,f − f )⟩J

= −
1

τ
⟨(ln(MJ ,f )− ln(f )) (MJ ,f − f )⟩J
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≤ 0,

where we used the fact that

(ln(x)− ln(y)) (x − y) ≥ 0, ∀ x, y ∈ (0,∞).

Finally, (2.57) follows from (2.53) and (2.54), using (2.55). ■
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Chapter 3

Numerical Approximations for the Single

Species Case

In this chapter, we consider the numerical approximation of the BGK model for the d = 1 case.

Therefore, phase space is two-dimensional, with one dimension for physical space and one for

velocity space. It is not necessary to equate the dimensions of velocity and physical space,

but this is a common practice, and, for the purpose of describing the numerical methods, one

does not lose much generality using such simplifying assumptions. We call the present case

the 1x1v case. The methods that we describe in this section are scalable, meaning that, as

more phase-space dimensions are added, the methods themselves change only slightly. The

biggest obstacle for high-dimensional numerical simulation is the added number of degrees

of freedom that accompany an increase in phase-space dimensions. Of course, this increase

can be significant, since real-world phase space has 6 dimensions in the model.

3.1 Finite Volume Space and Velocity Discretization

Since the Vlasov-BGK equation is a nonlinear conservation-like law, shocks (discontinuities)

and rarefaction waves can form and propagate in the solution. Thus, the integro-differential

equation does not necessarily hold in the classical (strong) sense. In this case, finite volume

methods, which are based on the integral form of the differential equation, are typically more

appropriate and simpler to use.

First, we truncate the velocity space so that it is finite in size: V = [−vmax, vmax], where
vmax > 0. This limits the range of velocities that may be approximated, but, as we will see,

does not generally affect the accuracy of approximation as long as vmax is chosen sufficiently
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large. We note that it is not necessary to make a symmetric truncation about zero velocity,

and sometimes it is not advantageous to do so. This is only done for simplicity of presentation.

In similar fashion, let us assume that Ω = [−L, L], with L > 0.
Let us define

hx :=
2L

Nx
and hv :=

2vmax
Nv
,

and then set

xℓ := −L+ (ℓ− 1/2)hx and vℓ := −vmax + (ℓ− 1/2)hv ,

where ℓ can take integer and half-integer values. To discretize phase space, we break the

rectangular 1x1v domain, Ω× V , into a two dimensional grid of cells with finite volume, and
approximate the cell average of the function. Ω× V ⊂ R2 can be written as the union of the
cells:

Ω× V =
Nx ,Nv⋃
i,j=1

Ci,j =

Nx ,Nv⋃
i,j=1

Cxi × Cvj =
Nx ,Nv⋃
i,j=1

[
xi− 1

2
, xi+ 1

2

]
×
[
vj− 1

2
, vj+ 1

2

]
, (3.1)

with the point (xi, vj) at the center of cell Ci,j = C
x
i × Cvj . Next, we define

f i,j(t) := f (xi, vj, t) :=
1

|Cxi × Cvj |

ˆ
Cxi ×C

v
j

f (x, v , t) dxdv . (3.2)

The integral form of the Vlasov-BGK equation is

∂tf i,j(t) +
1

|Ci,j|

ˆ
Ci,j

(∂x(vf ) + ∂v(a(x, t)f )) dxdv =
λ

|Ci,j|

ˆ
Ci,j

Mf (x, v , t) dxdv − λf i,j(t),

(3.3)

where we have assumed that the acceleration of particles due to the external field, a, is

independent of velocity. Let us define the flux function, F , via

F (x, v , t) := [vf (x, v , t), a(x, t)f (x, v , t)]⊤ := [F (x, v , t), G(x, v , t)]⊤ ,

where

F (x, v , t) := vf (x, v , t), G(x, v , t) := a(x, t)f (x, v , t).

Define

M i,j(t) :=
1

|Ci,j|

ˆ
Ci,j

Mf (x, v , t) dxdv .
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Applying the Divergence Theorem,

∂tf i,j(t) + λf i,j(t)− λM i,j(t) = −
1

hxhv

ˆ
Cvj

(
F (xi+1/2, v , t)− F (xi−1/2, v , t

)
dv

−
1

hxhv

ˆ
Cxi

(
G(x, vj+1/2, t)− G(x, vj−1/2, t

)
dx. (3.4)

Now, (3.4) is exact. To gain a practical numerical method, we must make some approxi-

mations. Let us first approximate the flux integrals:

1

hxhv

ˆ
Cvj

(
F (xi+1/2, v , t)− F (xi−1/2, v , t

)
dv ≈

F (xi+1/2, vj, t)− F (xi−1/2, vj, t)
hx

, (3.5)

1

hxhv

ˆ
Cxi

(
G(x, vj+1/2, t)− G(x, vj−1/2, t

)
dx ≈

G(xi, vj+1/2, t)− G(xi, vj−1/2, t)
hv

. (3.6)

To approximate the density function on the cell Ci,j, we use piecewise linear reconstructions:

pi,j(x, v , t) = f i,j(t) + σ
x
i,j(x − xi) + σvi,j(v − vj),

with the θ-minmod slope limiter,

σxi,j = minmod

((
f i+1,j − f i−1,j
2hx

)
, θx
(
f i,j − f i−1,j
hx

)
, θx
(
f i+1,j − f i,j
hx

))
, (3.7)

σvi,j = minmod

((
f i,j+1 − f i,j−1
2hv

)
, θv
(
f i,j − f i,j−1
hv

)
, θv
(
f i,j+1 − f i,j
hv

))
, (3.8)

where θx , θv ∈ [1, 2]. Note that for three real arguments, the minmod function is defined by

minmod(x, y , z) :=


min{x, y , z} if x, y , z ≥ 0

max{x, y , z} if x, y , z ≤ 0

0 otherwise

.

The reconstructions make the density approximation multi-valued at the cell edges, a fact

that we use to our advantage in the numerical approximation. Using the reconstructions, we

define the density at the midpoints of each cell edge as follows:

f −i+1/2,j(t) := pi,j(xi+1/2, vj, t), f +i+1/2,j(t) := pi+1,j(xi+1/2, vj, t),
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and, likewise,

f −i,j+1/2(t) := pi,j(xi, vj+1/2, t), f +i,j+1/2(t) := pi,j+1(xi, vj+1/2, t).

Next, the exact fluxes are replaced by numerical fluxes of the form

F (xi+1/2, vj, t) ≈ F̃ (f +i+1/2,j(t), f
−
i+1/2,j(t)) =: F̂i+1/2,j(t)

and

G(xi, vj+1/2, t) ≈ G̃(f +i,j+1/2(t), f
−
i,j+1/2(t)) =: Ĝi,j+1/2(t).

We use a simple upwind strategy to construct the numerical fluxes:

F̂i+1/2,j(t) = F̃ (f
+
i+1/2,j(t), f

−
i+1/2,j(t)) =

vjf −i+1/2,j(t) if vj ≥ 0vjf
+
i+1/2,j(t) if vj < 0

, (3.9)

Ĝi,j+1/2(t) = G̃(f
+
i,j+1/2(t), f

−
i,j+1/2(t)) =

a(xi, t)f −i,j+1/2(t) if a(xi, t) ≥ 0a(xi, t)f
+
i,j+1/2(t) if a(xi, t) < 0

. (3.10)

We can write the approximation scheme to this point as follows:

∂tf i,j(t) + λf i,j(t)− λM i,j(t) = −
F̂i+1/2,j(t)− F̂i−1/2,j(t)

hx

−
Ĝi,j+1/2(t)− Ĝi,j−1/2(t)

hv
+ Ẽi,j(t), (3.11)

where Ẽi ,j(t) is a local truncation (approximation) error.

Finally, to complete the spatial discretization of the Vlasov-BGK equation, we need to

approximate the Maxwellian. For this we use the following:

ni(t) = hv

Nv∑
j=1

f i,j(t), (3.12)

ui(t) =
hv
ni(t)

Nv∑
j=1

vjf i,j(t), (3.13)

θi(t) =
hv
ni(t)

Nv∑
j=1

|vj|2f i,j(t)− |ui(t)|2, (3.14)
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M i,j(t) ≈ M̂i,j(t) =
ni(t)

(2πθi(t))1/2
exp

(
−
(vj − ui(t))2

2θi(t)

)
. (3.15)

Since we are replacing integrations by midpoint quadratures, we lose the collision invariances

that we enjoyed at the continuum level. But, for the purpose of approximation, we will

continue to assume that these invariances still exist at the discrete level.

We conclude this section by stating the spatially discrete approximation to the Vlasov-

BGK equation:

dtf i,j(t) + λf i,j(t)− λM̂i,j(t) = −
F̂i+1/2,j(t)− F̂i−1/2,j(t)

hx

−
Ĝi,j+1/2(t)− Ĝi,j−1/2(t)

hv
+ Êi,j(t), (3.16)

where Êi,j(t) is a local truncation (approximation) error.

3.2 Implicit-Explicit Runge Kutta Time Stepping

In this section we introduce an implicit-explicit (IMEX) Runge Kutta (RK) method for inte-

gration in time that was proposed in [24]. The convection part is treated using an explicit

method, while the collision part is solved using a diagonally implicit method. We will work

with the phase-space continuous problem first, in order to take advantage of the collision

invariants, before moving to the phase-space discrete problem. Let us rewrite the original

Vlasov-BGK equation as

∂

∂t
f (x, v , t) = T [f ](x, v , t) +Q[f ](x, v , t)

where T represents the transport term, and Q represents the collision term:

T [f ](x, v , t) := −v∂x f (x, v , t)− a(x, t)∂v f (x, v , t), (3.17)

Q[f ](x, v , t) := λ(Mf (x, v , t)− f (x, v , t)). (3.18)

The general ν-stage IMEX Runge Kutta scheme (diagonally implicit) is one of the form

y (s) = y n + ∆t

s−1∑
r=1

ãs,rT [y
(r)] + ∆t

s∑
r=1

as,rQ[y
(r)], s ∈ {1, · · · , ν}, (3.19)
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y n+1 = y n + ∆t

ν∑
s=1

b̃sT [y
(s)] + ∆t

ν∑
s=1

bsQ[y
(s)], (3.20)

where ãs,r , b̃s , as,r , bs are taken from the following Butcher tables, respectively:

c̃ Ã

b̃
⊤

c A

b⊤
. (3.21)

The matrix Ã, for the explicit part, is strictly lower triangular, and A is lower triangular.

To run the algorithm, for each stage, we first calculate

ŷ (s−1) := y n + ∆t

s−1∑
r=1

ãs,rT [y
(r)] + ∆t

s−1∑
r=1

as,rQ[y
(r)]. (3.22)

We then rearrange the terms in the final sum to find an expression for y (s) :

y (r) = ŷ (s−1) + ∆tas,sQ[y
(s)]

= ŷ (s−1) + ∆tas,sλ(My (s) − y (s)) (3.23)

⇐⇒ (1 + ∆tas,sλ)y
(s) = ŷ (s−1) + ∆tas,sλMy (s) (3.24)

⇐⇒ y (s) =
1

1 + ∆tas,sλ
ŷ (s−1) +

∆tas,sλ

1 + ∆tas,sλ
My (s). (3.25)

Note that we need to compute the Maxwellian My (s), which involves the current stage. This

seems to present an issue. However, using the collision invariances properties in (2.1.2), we

can circumvent this. In particular,

ˆ
Rd


1

v

|v |2

 y (s)dv = ˆ
Rd


1

v

|v |2

 ŷ (s−1)dv + ∆tas,sλˆ
Rd


1

v

|v |2

 (My (s) − y (s))dv

=

ˆ
Rd


1

v

|v |2

 ŷ (s−1)dv . (3.26)

Since the first, second, and third moments of ŷ (s−1) are equal to those of y (s), the two
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Maxwellians at these stages are equal:

My (s) = Mŷ (s−1).

Therefore, we have the explicit update formula

y (s) =
1

1 + ∆tas,sλ
ŷ (s−1) +

∆tas,sλ

1 + ∆tas,sλ
Mŷ (s−1). (3.27)

With the above expression for y (s), a convex combination of ŷ (s−1) and Mŷ (s−1), the IMEX-RK

scheme can be completed without any complicated inversions.

3.3 Fully Discrete Scheme

When we discretize velocity space, we lose the collision invariances at the discrete level; this

is because velocity integrals are replaced with midpoint rule quadrature, in addition to the

fact that the velocity space is truncated. It follows that (3.27) breaks down. Nevertheless,

we will assume that the phase-space discrete analog to (3.27) holds so that stages may be

updated in an explicit fashion.

Suppose that f ni,j is an approximation of the cell average of the density field over cell Ci,j

at time tn := tn−1 + ∆t. Similarly, we denote by f
(ℓ)
i,j the ℓ

th stage of the IMEX-RK scheme

with respect to f ni,j. Define

T2
i,j := −

F̂2
i+1/2,j − F̂2

i−1/2,j

hx
−
Ĝ2

i,j+1/2 − Ĝ2
i,j−1/2

hv
, (3.28)

Q2
i,j := λ(M

2
i,j − f 2i,j ), (3.29)

where the fluxes F̂2
i+1/2,j and Ĝ

2
i,j+1/2 are computed with respect to the cell-centered approx-

imation f 2i,j and 2 is a stage iteration or a time step index. The fully discrete Maxwellian is

computed via

n2i = hv

Nv∑
j=1

f 2i,j , (3.30)

u2i =
hv
n2i

Nv∑
j=1

vjf
2
i,j , (3.31)
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θ2i =
hv
n2i

Nv∑
j=1

|vj|2f 2i,j − |u2i |2, (3.32)

M2
i,j =

n2i
(2πθ2i )

1/2
exp

(
−
(vj − u2i )

2

2θ2i

)
. (3.33)

Then we compute

f̂
(s−1)
i,j := f ni,j + ∆t

s−1∑
r=1

ãs,rT
(r)
i,j + ∆t

s−1∑
r=1

as,rQ
(r)
i,j , (3.34)

f
(s)
i,j =

1

1 + ∆tas,sλ
f̂
(s−1)
i,j +

∆tas,sλ

1 + ∆tas,sλ
M̂
(s−1)
i,j , (3.35)

fi,j = f
n
i,j + ∆t

ν∑
s=1

b̃sT
(s)
i,j + ∆t

ν∑
s=1

bsQ
(s)
i,j , (3.36)

where M̂
(s−1)
i,j is the discrete Maxwellian computed with respect to the fully discrete approxi-

mation f̂
(s−1)
i,j . This completes the description of the fully discrete scheme.

3.4 Poisson Solver for Vlasov-Poisson-BGK Equation

For the Vlasov-Poisson-BGK equation the acceleration a is determined by an electric field as

follows:

a(x, t) = −χ∂xΦ,

where χ > 0 is a physical constant and Φ is the electric potential determined via

−∂xxΦ(x, t) = n(x, t),

subject to appropriate boundary conditions.

First let us consider Dirichlet boundary conditions:

Φ(x1/2 = −L) = α, Φ(xNx+1/2 = L) = β. (3.37)

Using the standard three-point stencil approximation, we have, for i = 2, · · · , Nx − 1,

−
1

h2x
[Φi+1 − 2Φi +Φi−1] = ni. (3.38)
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The boundary conditions are specified at the peripheral edges of the domain, −L = x1/2 and
L = xNx+1/2. As is standard, we use the average of the ghost cell and neighboring interior

cell. That is, we use the approximations

Φ0 +Φ1
2

= α, =⇒ Φ0 = 2α−Φ1, (3.39)

and we cancel the term Φ0 in the stencil approximation. The first equation in the approxi-

mation thus becomes

−Φ2 + 3Φ1 = h2xn1 + 2α. (3.40)

Using a similar procedure for right boundary condition, we have

ΦNx+1 = 2β −ΦNx , =⇒ −ΦNx−1 + 3ΦNx = h2xnNx + 2β. (3.41)

Putting this all into a matrix system, we must solve

3 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 3





Φ1

Φ2
...

ΦNx−1

ΦNx


=



h2xn1 + 2α

h2xn2
...

h2xnNx−1

h2xnNx + 2β


. (3.42)

This system is symmetric positive definite (SPD) and always has a unique solution.

Next, we turn our attention to the case of Neumann boundary conditions:

dΦ

dx
(−L) = α,

dΦ

dx
(L) = β. (3.43)

In this case, using a second-order approximation at the boundary, we must solve matrix system

1 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 1





Φ1

Φ2
...

ΦNx−1

ΦNx


=



h2xn1 − hxα
h2xn2
...

h2xnNx−1

h2xnNx + hxβ


. (3.44)
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This is a symmetric positive semi-definite (SPSD) system. It has a unique mean-zero solution,

that is, a solution satisfying

hx

Nx∑
i=1

Φi = 0, if and only if hx

Nx∑
i=1

ni = α− β.

This is the discrete analog of the standard continuous compatibility conditions for unique

solvability.

Given f 2i,j , we compute the accompanying macroscopic density,

n2i = hv

Nv∑
j=1

f 2i,j ,

and then the associated electric potential Φ2
i , as described above. Once the discrete potential

is available, the acceleration may be approximated via

a2i+1/2 = −χ
Φ2

i+1 −Φ2
i

hx
.

3.5 Sample Computations and Accuracy Tests

In this section, we report on several numerical tests showing accuracy of the numerical im-

plementation.

Relaxation Test

This first test is designed to confirm that the BGK operator is calculated correctly for the

single species case. We consider, in particular, the space homogeneous case: the IPDE

becomes the following IODE:
df
dt
= λ(Mf − f ) (x, v , t) ∈ Ω× V × [0,∞)

f (x, v , 0) = f0(x, v) (x, v , t) ∈ Ω× V × {t = 0}
. (3.45)

Recall that as shown in Section 2.1.2, the exact solution is

f (x, v , t) = e−λtf (x, v , 0) +
(
1− e−λt

)
Mf (x, v , 0). (3.46)

For the first test, we chose a function of the form f0(x, v) = b(v)g(x), where b(v) is a
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compactly supported C∞ function, with nonzero values on v ∈ (−2, 2). In particular, we use
the function g(x) = e−|x | . Consider the function

f (x, v , 0) =


e−|x |

5(v2+4) exp
(
5v

v2−4

)
(v2−4)2

(
1+exp

(
5v

v2−4

))2 if v ∈ (−2, 2)

0 otherwise

.

Observe that

n =

ˆ
V

f (x, v)dv = g(x)

ˆ
V

b(v)dv = g(x) = e−|x |.

Note that b(v) is an even function:

b(−v) =
5 ((−v)2 + 4) exp

(
5(−v)
(−v)2−4

)
((−v)2 − 4)2

(
1 + exp

(
5(−v)
(−v)2−4

))2
=

5 (v 2 + 4) exp
(
− 5v
v2−4

)
(v 2 − 4)2

(
1 + exp

(
− 5v
v2−4

))2 · exp
(
10v
v2−4

)[
exp

(
5v
v2−4

)]2
=

5 (v 2 + 4) exp
(
5v
v2−4

)
(v 2 − 4)2

(
exp

(
5v
v2−4 + 1

))2
= b(v).

Therefore, the function h(v) = vb(v) is odd. Recall that when integrating an odd function

over an interval that is symmetric about the origin, one obtains a zero integral. This means

that u = 1
n

´
V
vf dv ≡ 0.

The energy density moment is not as easy to compute analytically, so we have found a

numerical approximation:

E =
1

2

ˆ
V

v 2f dv ≈ 0.3713094964845e−|x |.

The code is run with λ = 1 up to a final time tF = 1. The error is calculated by taking

the difference of the true solution minus the computed solution. The computational and true

solutions are given in Figures 3.2 and 3.3, respectively. The errors are on the order of 10−5

when a mesh of size Nx = 128, Nv = 130 is used. The plot of the error is given in Figure

3.4.
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Figure 3.1: Initial condition function (“bump function”).

Figure 3.2: Numerical Solution Figure 3.3: Theoretical Solution
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Figure 3.4: Error between theoretical solution and computed solution. This is the theoretical

solution minus the code solution. (Nx = 128, Nv = 130.)
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For the second test, we set f0(x, v) to be the sum of four Gaussians, centered at (x, v) ∈
{(±2,±2)}. See Figure 3.5. The trapezoidal rule is used for the initial moments. The code
is run with λ = 1 up to time tF = 1. The error is calculated by taking the difference of

the true solution minus the computed solution. The computed and true solutions are given

in Figures 3.6 and 3.7 (respectively). The errors are on the order of 10−3, when Nx = 64,

Nv = 256, and are shown in Figure 3.8.

Figure 3.5: Initial condition function (sum of four Gaussians).

Figure 3.6: Numerical Solution Figure 3.7: Theoretical Solution
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Figure 3.8: Error between theoretical solution and computed solution. This is the theoretical

solution minus the code solution.
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Sod Shock Tube (Euler Equation Limit of BGK)

The Sod shock tube test is a standard test. Formally, in the collision limit as λ → ∞, the
BGK equation is asymptotically equivalent to the Euler Equations. (That is, f converges

to the Maxwellian Mf , and the moments n, u, θ follow the Euler equations.) Thus, we may

test the ability of the code to solve the Sod shock tube problem, by letting λ be large (or

equivalently, letting τ = λ−1 be small), and setting the initial conditions appropriately. For

the test, we set λ = 104 (τ = 10−4).

The BGK equation in 1 dimension is

∂f

∂t
+ v
∂f

∂x
= λ(Mf − f ). (3.47)

To test our IMEX code, we compared the profiles of the number density (n =
´
f dv),

bulk velocity (u = (
´
vf dv)/n), pressure (P = nθ), and internal energy (E = 1

2
θ) to the

theoretical solution, worked out using the book by Toro [30]. We set the phase-space domain

equal to Ω×V = [−0.75, 0.75]× [−10, 10]. Since the moments are calculated over Rd , then
we must have a function that integrates to approximately the same value, when restricting

Rd to the computational velocity domain (in this case, [−10, 10] ⊂ R). That is, we must
ensure that ˆ

Rd
f (x, v , t)dv ≈

ˆ
V

f (x, v , t)dv,

where V is the truncated velocity domain. Using [−10, 10] gives a reasonable approximation,
as we show.

The setup for the Sod problem is a contact discontinuity separating gases of differing

density and temperature, and zero velocity. Thus, for the Sod problem, the initial condition

for the particle density is a piecewise Maxwellian with the following values:
nL

uL

θL

 =

1.0

0.0

1.0

 , x ∈ (−0.75, 0),


nR

uR

θR

 =

0.125

0.0

0.8

 , x ∈ (0, 0.75). (3.48)

That is, the initial condition function (contour plot shown in Figure 3.9) is given by

f0(x, v) =


1.0√
2π(1.0)

exp
(
− |v−0.0|

2

2(1.0)

)
x ∈ [−0.75, 0], v ∈ [−10, 10]

0.125√
2π(0.8)

exp
(
− |v−0.0|

2

2(0.8)

)
x ∈ (0, 0.75], v ∈ [−10, 10]

. (3.49)
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Figure 3.10 shows the moments of the numerical/computed solution at time tF = 0.20.

The profiles of the solution seem to follow the correct values (as computed, using the Toro

book, [30], for reference).

Figure 3.9: Contour plot of Sod initial condition function.
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Figure 3.10: Numerical (Blue, BGK, λ = 104) and Theoretical (Orange, Euler) Solution for

Sod Shock tube problem. (γ = 3) at final time tF = 0.20.
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Square Pulse Rotation

Consider the Vlasov Equation in 1 dimension:

∂f

∂t
+ v
∂f

∂x
+ a
∂f

∂v
= 0 (3.50)

Setting the acceleration term to a = −x results in a system where an initial distribution is
advected counterclockwise, along circular characteristics around the origin. For constructing

the characteristics curves, we have the system of ODEs:

dt

ds
= 1 (3.51)

dx

ds
= v (3.52)

dv

ds
= −x. (3.53)

The first equation gives t = s, and the remaining two form a system of two coupled ODEs:

ẋ = v (3.54)

v̇ = −x. (3.55)

Taking the derivative of the first equation, and plugging in the second equation, we have

ẍ = v̇ = −x ⇐⇒ ẍ + x = 0. (3.56)

The solution of this equation is

x(t) = c1 cos(t) + c2 sin(t). (3.57)

Thus,

v̇ = −x = −c1 cos(t)− c2 sin(t). (3.58)

Integrating gives

v(t) = −c1 sin(t) + c2 cos(t). (3.59)

Putting these together, we have

x(t) = c1 cos(t) + c2 sin(t) (3.60)
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v(t) = −c1 sin(t) + c2 cos(t). (3.61)

This is a circle of radius
√
c21 + c

2
2 , traversed clockwise around the origin in the (x, v)-plane.

Figure 3.11 shows an image of four square pulses rotated counterclockwise, until the final

time tF =
π
2
is reached, representing a quarter rotation.

Figure 3.11: Rotation Problem: ∂tf + v∂x f − x∂v f = 0. Grid = 4002
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Two Stream Instability (Vlasov-Poisson)

The next test that we performed is known as the Two-Stream Instability Test, and the present

version is taken from Section 5.1.2 of [7]. In this test, two streams of electrons interact and

create a highly filamented vortex. The test is designed to assess the code’s ability to capture

fine structure and examines only the advection piece of our equation (the Vlasov-Poisson

equation):

∂tf + v∂x f + E∂v f = 0 , (x, v , t) ∈ [−2π, 2π]× [−2π, 2π]× [0,∞) (3.62)

where

−∂xxΦ =
e

ϵ0
(n − n), E = −∂xΦ, n =

ˆ
f dv , n =

1

|V |

ˆ
V

f dv . (3.63)

For our test runs, we used e
ϵ0
= 1. The initial condition function for the test is

f (x, v , 0) =
v 2√
8π

(
2− cos

(x
2

))
e−

v2

2 . (3.64)

The test uses periodic boundary conditions in x , and zero flow boundary conditions in v .

Figure 3.12, taken from [7] shows the plots of the solution at tF = 5 and tF = 45. Figures

3.13 and 3.14 show the results of running the code until tF = 5 and tF = 45, respectively.

For these plots, we used 8002 grid points; this is twice the number of grid points as in the

paper (4002). We find good agreement with the computed solutions.
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Figure 3.12: Two Stream Instability test case. Figure taken from Garrett & Hauck paper.

Figure 3.13: Code generated solution at

t = 5.

Figure 3.14: Code generated solution at

t = 45.
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Landau Damping (Vlasov-Poisson)

This test is from Section 5.1.3 of [7]. To perform the test, the Vlasov-Poisson equation

is solved and the L2 norm of the electric field is computed at each time step. The initial

condition function is

f (x, v , 0) =
1√
2π
(1 + α cos(kx)) e−

v2

2 , (3.65)

where α = 0.01, k = 0.5. According to the paper, with these parameters, the L2 norm of the

electric field should decay exponentially at a rate of −0.1533. Figure 3.15 shows the plots
taken from the paper. Figure 3.16 shows the result from our code and indicates qualitative

agreement.

Figure 3.15: Landau Damping test case. Figure taken from Garrett and Hauck [7], with

permission.

56



January 29, 2024 E. Habbershaw and S.M. Wise

Figure 3.16: L2 norm of the electric field.
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Chapter 4

Discrete-Velocity Numerical Methods for

the Single Species BGK Problem

Let us start with the standard discrete-velocity BGK problem first. After that, we will consider

the space homogeneous case.

4.1 A Fully Explicit Scheme

Let us again consider the d = 1 case. In other words, for simplicity, we will assume that the

dimension of physical space is one and the dimension of velocity space is one. We will work

under the assumption that velocity space is discrete and the discrete-velocity Maxwellian is

computed via optimization. In other words, our starting model is the following:

∂tf (x, j, t) + vj∂x f (x, j, t) = λ (MJ ,f (x, j, t)− f (x, j, t)) , ∀ j ∈ J , ∀x ∈ [a, b], (4.1)

where

MJ ,f (x, j, t) = exp(αJ ,f (x, t) ·mJ (j)), ∀ j ∈ J ,

and αJ ,f (x, t) ∈ R3 is the solution to

⟨exp(αJ ,f (x, t) ·mJ )mJ ⟩J = ⟨f (x, · , t)mJ ⟩J .

For simplicity, we assume that the discrete velocities satisfy

vj = hv ·
(
j−
1

2

)
, j ∈ J , J := {−J + 1, · · · , J} .
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Definition 4.1.1. The first-order explicit discrete-velocity scheme is defined as follows:

f n+1i,j = f ni,j −
∆t

hx

(
F̂ (xi+1/2, vj, t

n)− F̂ (xi−1/2, vj, tn)
)
+
∆t

τ

(
Mn

i,j − f ni,j
)

where

Mn
i,j = exp(α

n
i ·mJ (j)),

and αn
i ∈ R3 is the solution to

⟨exp(αn
i ·mJ )mJ ⟩J = ⟨f ni,·mJ ⟩J .

The first-order numerical flux is obtained via a simple upwind methodology:

F̂ (xi+1/2, vj, t
n) =

vjf ni,j if vj ≥ 0,

vjf
n
i,j+1 if vj < 0.

Based on our construction, we have the following result:

Theorem 4.1.2. Suppose that f 0i,j > 0, for all j ∈ J , and all 1 ≤ i ≤ Nx . Then, for all n ∈ N,

hx

Nx∑
i=1

〈
mJ ( · )f ni,·

〉
J = hx

Nx∑
i=1

〈
mJ ( · )f 0i,·

〉
J . (4.2)

Additionally, provided that the CFL condition

∆t

(
1

τ
+max

j∈J

|vj|
hx

)
≤ 1

holds, it follows that, for all n ∈ N, j ∈ J , and i ∈ {1, 2, · · · , Nx}, f ni,j > 0. Furthermore, for
all n ∈ N,

hx

Nx∑
i=1

〈
ln
(
f ni,·
)
f ni,·
〉
J ≤ hx

Nx∑
i=1

〈
ln
(
f n−1i,·

)
f n−1i,·

〉
J . (4.3)

In other words, the scheme is entropy-stable.

Proof. For vj > 0, the scheme can be written as

f n+1i,j = f ni,j −
∆tvj
hx

(
f ni,j − f ni,j−1

)
+
∆t

τ

(
Mn

i,j − f ni,j
)

=

(
1−
∆tvj
hx
−
∆t

τ

)
f ni,j +

∆tvj
hx
f ni,j−1 +

∆t

τ
Mn

i,j
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=

(
1−
∆t|vj|
hx
−
∆t

τ

)
f ni,j +

∆t|vj|
hx
f ni,j−1 +

∆t

τ
Mn

i,j.

For vj < 0, the scheme is

f n+1i,j = f ni,j −
∆tvj
hx

(
f ni,j+1 − f ni,j

)
+
∆t

τ

(
Mn

i,j − f ni,j
)

=

(
1 +
∆tvj
hx
−
∆t

τ

)
f ni,j −

∆tvj
hx
f ni,j+1 +

∆t

τ
Mn

i,j

=

(
1−
∆t|vj|
hx
−
∆t

τ

)
f ni,j +

∆t|vj|
hx
f ni,j+1 +

∆t

τ
Mn

i,j.

The composite scheme can be written as

f n+1i,j =

(
1−
∆t|vj|
hx
−
∆t

τ

)
f ni,j +

∆t(|vj| − vj)
2hx

f ni,j+1 +
∆t(|vj|+ vj)
2hx

f ni,j−1 +
∆t

τ
Mn

i,j,

which is a convex combination of f ni,j, f
n
i,j−1, f

n
i,j+1, andMn

i,j. If all of these values are positive,

then f n+1i,j is positive. Since the function x ln(x) is convex, it follows that, if α ∈ (0, 1) and
x ̸= y , x, y ∈ (0,∞), then

(αx + (1− α)y) ln(αx + (1− α)y) ≤ αx ln(x) + (1− α)y ln(y).

Thus,

f n+1i,j ln
(
f n+1i,j

)
≤
(
1−
∆t|vj|
hx
−
∆t

τ

)
f ni,j ln

(
f ni,j
)
+
∆t(|vj| − vj)
2hx

f ni,j+1 ln
(
f ni,j+1

)
+
∆t(|vj|+ vj)
2hx

f ni,j−1 ln
(
f ni,j−1

)
+
∆t

τ
Mn

i,j ln
(
Mn

i,j

)
.

Summing on k , we have

〈
f n+1i,· ln

(
f n+1i,·

)〉
J ≤

〈(
1−
∆t|v·|
hx

−
∆t

τ

)
f ni,· ln

(
f ni,·
)〉
J

+

〈
∆t(|v·| − v·)
2hx

f ni+1,· ln
(
f ni+1,·

)〉
J

+

〈
∆t(|v·|+ v·)
2hx

f ni−1,· ln
(
f ni−1,·

)〉
J
+

〈
∆t

τ
Mn

i,· ln
(
Mn

i,·
)〉
J
,
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We next invoke the minimization property in (2.47): for all i,

〈
f n+1i,· ln

(
f n+1i,·

)〉
J ≤

〈(
1−
∆t|v·|
hx

−
∆t

τ

)
f ni,· ln

(
f ni,·
)〉
J

+

〈
∆t(|v·| − v·)
2hx

f ni+1,· ln
(
f ni+1,·

)〉
J

+

〈
∆t(|v·|+ v·)
2hx

f ni−1,· ln
(
f ni−1,·

)〉
J
+

〈
∆t

τ
f ni,· ln

(
f ni,·
)〉
J

=

〈(
1−
∆t|v·|
hx

)
f ni,· ln

(
f ni,·
)〉
J

+

〈
∆t(|v·| − v·)
2hx

f ni+1,· ln
(
f ni+1,·

)〉
J

+

〈
∆t(|v·|+ v·)
2hx

f ni−1,· ln
(
f ni−1,·

)〉
J
,

Summing on i and using the spatial periodicity, completes the proof of (4.3). The proof of

(4.2) is an easy exercise. ■

4.2 An Explicit Scheme for the Space-Homogeneous Case

In this section, we will explore an explicit scheme for the space-homogeneous, discrete-velocity

BGK problem. Recall that the one-dimensional, space homogeneous, discrete-velocity model

is as follows:

∂tf (j, t) = λ (MJ ,f (j, t)− f (j, t)) , ∀ j ∈ J , (4.4)

where

MJ ,f (j, t) = exp(αJ ,f (t) ·mJ (j)), ∀ j ∈ J ,

and αJ ,f (t) ∈ R3 is the solution to

⟨exp(αJ ,f (t) ·mJ )mJ ⟩J = ⟨f ( · , t)mJ ⟩J .

As before, it may be useful to suppose that the discrete velocities satisfy

vj = hv ·
(
j−
1

2

)
, j ∈ J , J := {−J + 1, · · · J} ,
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though this can be generalized without any difficulty. The explicit scheme for the space-

homogeneous case is given by the following:

Definition 4.2.1. The first-order explicit discrete-velocity scheme is defined as follows:

f n+1j = f nj +
∆t

τ
(Mn

j − f nj ) ,

where

Mn
j = exp(α

n ·mJ (j)), (4.5)

and αn ∈ R3 is the solution to

⟨exp(αn ·mJ )mJ ⟩J = ⟨f n· mJ ⟩J . (4.6)

We have the following result, which shows that an explicit scheme will always have a time

step restriction owing to the stiffness of the BGK problem:

Theorem 4.2.2. Suppose that f 0j > 0, for all j ∈ J . Then, for all n ∈ N,

⟨mJ ( · )f n· ⟩J =
〈
mJ ( · )f 0·

〉
J . (4.7)

Additionally, provided that the condition

∆t

τ
≤ 1

holds, it follows that, for all n ∈ N and j ∈ J , f nj > 0. Furthermore, for all n ∈ N,

⟨ln (f n· ) f n· ⟩J ≤
〈
ln
(
f n−1·

)
f n−1·

〉
J . (4.8)

In other words, the scheme is entropy-stable. Finally,

Mn
j =M0

j , ∀ j ∈ J , (4.9)

for all n ∈ N.

Proof. The scheme can be written as

f n+1j =

(
1−
∆t

τ

)
f nj +

∆t

τ
Mn

j ,
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which is a convex combination of f nj and Mn
j . Clearly, f

n+1
j is positive. Since the function

x ln(x) is convex, it follows that

f n+1j ln
(
f n+1j

)
≤
(
1−
∆t

τ

)
f nj ln (f

n
j ) +

∆t

τ
Mn

j ln (Mn
j ) .

Summing on j, we have

〈
f n+1· ln

(
f n+1·

)〉
J ≤

〈(
1−
∆t

τ

)
f n· ln (f

n
· )

〉
J
+

〈
∆t

τ
Mn
· ln (Mn

· )

〉
J
,

Using the minimization property in (2.47), we find that,

〈
f n+1· ln

(
f n+1·

)〉
J ≤

〈(
1−
∆t

τ

)
f n· ln (f

n
· )

〉
J
+

〈
∆t

τ
Mn
· ln (Mn

· )

〉
J

≤
〈(
1−
∆t

τ

)
f n· ln (f

n
· )

〉
J
+

〈
∆t

τ
f n· ln (f

n
· )

〉
J

= ⟨f n· ln (f n· )⟩J .

The proof of (4.7) is an easy exercise and is skipped for brevity. The proof of (4.9) follows

from (4.7), (4.5), and (4.6). ■

4.3 An Implicit Scheme for the Space Homogeneous Case

In the last section, we learned that an explicit scheme for the space homogeneous case still

requires a potentially restrictive time step constraint for stability. But, this can be easily

ovecome in the space homogeneous case.

Definition 4.3.1. The first-order implicit discrete-velocity scheme is defined as follows:

f n+1j = f nj +
∆t

τ

(
Mn

j − f n+1j

)
,

where

Mn
j = exp(α

n ·mJ (j)), (4.10)

and αn ∈ R3 is the solution to

⟨exp(αn ·mJ )mJ ⟩J = ⟨f n· mJ ⟩J . (4.11)
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Technically, the last scheme is an IMEX scheme, but we will stick to our definition, since

we can show that, actually,Mn
j =Mn+1

j . Specifically, we have the following result:

Theorem 4.3.2. Suppose that f 0j > 0, for all j ∈ J . Then, for all n ∈ N,

⟨mJ ( · )f n· ⟩J =
〈
mJ ( · )f 0·

〉
J . (4.12)

Additionally, for all n ∈ N and j ∈ J , f nk > 0, and for all n ∈ N,

⟨ln (f n· ) f n· ⟩J ≤
〈
ln
(
f n−1·

)
f n−1·

〉
J . (4.13)

In other words, the scheme is entropy-stable. Finally,

Mn
j =M0

j , ∀ j ∈ J , (4.14)

for all n ∈ N. All of these properties hold unconditionally.

Proof. The scheme can be written as(
1 +
∆t

τ

)
f n+1j = f nj +

∆t

τ
Mn

j ,

or, equivalently, as

f n+1j =
1(

1 + ∆t
τ

) f nk + ∆t
τ(

1 + ∆t
τ

)Mn
j , (4.15)

which is again a convex combination of f nj andMn
j . Clearly, f

n+1
j is positive, provided f nj and

Mn
j are positive. Let us write, for simplicity,

α :=
1

1 + ∆t
τ

and β :=
∆t
τ

1 + ∆t
τ

.

Since the function x ln(x) is convex, it follows that

f n+1j ln
(
f n+1j

)
≤ αf nj ln (f nj ) + βMn

j ln (Mn
j ) .

Summing on j, we have

〈
f n+1· ln

(
f n+1·

)〉
J ≤ ⟨αf

n
· ln (f

n
· )⟩J + ⟨βM

n
· ln (Mn

· )⟩J ,
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Using the minimization property in (2.47), we find that,

〈
f n+1· ln

(
f n+1·

)〉
J ≤ ⟨αf

n
· ln (f

n
· )⟩J + ⟨βM

n
· ln (Mn

· )⟩J
≤ ⟨αf n· ln (f n· )⟩J + ⟨βf

n
· ln (f

n
· )⟩J

= ⟨f n· ln (f n· )⟩J .

Next, summing mJ ( · ) times (4.15) on j, we have〈
mJ ( · )f n+1·

〉
J = ⟨αmJ ( · )f

n
· ⟩J + ⟨βmJ ( · )M

n
· ⟩J

= ⟨αmJ ( · )f n· ⟩J + ⟨βmJ ( · )f
n
· ⟩J

= ⟨mJ ( · )f n· ⟩J ,

which proves (4.12), and, finally, (4.14) follows directly from (4.12). ■
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Chapter 5

Multispecies BGK Equations

In the present section, we describe a relatively recent BGK-type model for the multi-species

setting [9]. This model, which generalizes the one-species case, satisfies a multi-species

analog of Boltzmann’s H-Theorem [9]. In the multispecies setting, the locally conserved

quantities are the species number mi⟨fi⟩, the total momentum
∑
i mi⟨v fi⟩, and the total

energy
∑
i mi⟨|v |2fi⟩; and the dissipated entropy (Lyapunov functional) is the total (mathe-

matical) entropy
∑
i η(fi), where η(f ) := f ln(f ) − f is the kinetic entropy density. In the

zero-relaxation-time limit, hydrodynamic equations can be derived along the lines of the single

species BGK equation [9]. Other consistent multi-species models can be found in [11, 14].

5.1 Formulation and Properties

Suppose that there are Ns ∈ N (Ns ≥ 2) species of particles in a mixture of gases. For
each species, i ∈ {1, · · · , Ns}, denote the kinetic distribution of particles with mass mi , by
fi(x , v , t), so that fi(x , v , t) describes the density of species-i particles at x ∈ Ω ⊂ Rd , with
microscopic velocity v ∈ Rd , at time t ≥ 0, with respect to the measure dv dx . Define the
number density ni , bulk velocity u i , and temperature Ti , via

ni =

ˆ
Rd
fi dv , u i =

1

ni

ˆ
Rd
fiv dv , Ti =

mi
nid

ˆ
Rd
fi |u i − v |2 dv , (5.1)

and the mass density ρi , momentum density k i , and energy density Ei by

ρi = mini k i = ρiu i Ei =
1

2
ρi |u i |2 +

d

2
niTi . (5.2)
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Themultispecies Vlasov-BGK equation models the evolution of the distribution fields fi(x , v , t),

i = 1, · · · , Ns , via the system

∂fi
∂t
+ v · ∇x fi + ai · ∇v fi =

Ns∑
j=1

λi ,j (Mi ,j − fi) , i = 1, · · · , Ns , (5.3)

where ai describes the acceleration of particles of species i , λi ,j is the collision frequency

between species i and j , and the Maxwellian distribution Mi ,j is defined as

Mi ,j = Mi ,j [fi , fj ](x , v , t) = ni

(
mi
2πTi ,j

) d
2

exp

(
−
mi |v − u i ,j |2

2Ti ,j

)
, (5.4)

using the mixture velocities and mixture temperatures,

u i ,j =
λi ,jρiu i + λj,iρju j
λi ,jρi + λj,iρj

(5.5a)

Ti ,j =
λi ,jniTi + λj,injTj
λi ,jni + λj,inj

+
λi ,jρi (|u i |2 − |u i ,j |2) + λj,iρj (|u j |2 − |u j,i |2)

d(λi ,jni + λj,inj)
. (5.5b)

The mixture velocities and temperatures, u i ,j and Ti ,j , are chosen so that certain collision

invariances hold, as we show momentarily. The existence and uniqueness of nonnegative mild

solutions to the multispecies BGK equation was proved by Klingenberg & Pirner (2018) [13],

for periodic physical space and under certain restrictions on the collision frequencies.

It is straightforward to check that the proposed system satisfies the usual conservation

properties and an entropy dissipation property via an H-Theorem-like result. See [9] for details.

In this next computation, we show that the system, as defined above, satisfies certain collision

invariances.

Lemma 5.1.1. If the mixture velocities u i ,j and the mixture temperatures Ti ,j are as given in

(5.5), then the multispecies BGK collision operators

Qi ,j [fi , fj ] = λi ,j(Mi ,j − fi) (5.6)

satisfy the following conservation properties, which correspond to the conservation of mass,

total momentum, and total energy: for any i , j ∈ {1, · · · , Ns},
ˆ
Rd
λi ,j(Mi ,j − fi) dv = 0, (5.7a)
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ˆ
Rd
λi ,j(Mi ,j − fi)miv dv +

ˆ
Rd
λj,i(Mj,i − fj)mjv dv = 0, (5.7b)

ˆ
Rd
λi ,j(Mi ,j − fi)mi |v |2 dv +

ˆ
Rd
λj,i(Mj,i − fj)mj |v |2 dv = 0. (5.7c)

Proof. Note that using the substitution

s =
v − u i ,j(
2Ti ,j
mi

) 1
2

=⇒ ds =

(
mi
2Ti ,j

) d
2

dv , (5.8)

and the fact that

ˆ
Rd
exp(−|s|2) ds = π

d
2 ,

ˆ
Rd
s exp(−|s|2) ds = 0,

ˆ
Rd
|s|2 exp(−|s|2) ds =

d

2
π
d
2 , (5.9)

straightforward computations show that the moments of the Maxwellian Mi ,j satisfy

ˆ
Rd
Mi ,j dv = ni ,

ˆ
Rd
vMi ,j dv = niu i ,j ,

ˆ
Rd
|v |2Mn,u,θ dv = ni |u i ,j |2 + dni

Ti ,j
mi
. (5.10)

Using these identities, the collision invariance properties of (5.7) follow. First, note that

I1 :=

ˆ
Rd
QBGKi,j dv = λi ,j

ˆ
Rd
Mi ,j dv − λi ,j

ˆ
Rd
fi dv = λi ,jni − λi ,jni = 0, (5.11)

which establishes (5.7a). To prove (5.7b), note that

I2 :=

ˆ
Rd
QBGKi,j mivdv +

ˆ
QBGKj,i mjvdv

= miλi ,j

ˆ
Rd
Mi ,jv dv −miλi ,j

ˆ
Rd
fiv dv +mjλj,i

ˆ
Rd
Mj,iv dv −mjλj,i

ˆ
Rd
fjv dv

= ρiλi ,ju i ,j − λi ,jρiu i + ρjλj,iu j,i − ρjλj,iu j . (5.12)

Rearranging this, and using the symmetry assumption, u i ,j = u j,i the result follows:

u i ,j =
λi ,jρiu i + λj,iρju j,i
λi ,jρi + λj,iρj

=⇒ (λi ,jρi + λj,iρj)u i ,j − λi ,jρiu i − λj,iρju j = I2 = 0. (5.13)

Finally, for (5.7c), note that

68



January 29, 2024 E. Habbershaw and S.M. Wise

I3 =

ˆ
Rd
QBGKi,j mi |v |2 dv +

ˆ
Rd
QBGKj,i mj |v |2 dv

= miλi ,j

ˆ
Rd
Mi ,j |v |2 dv −miλi ,j

ˆ
Rd
fi |v |2 dv +mjλj,i

ˆ
Rd
Mj,i |v |2 dv −mjλj,i

ˆ
Rd
fj |v |2 dv

= miλi ,j

(
ni |u i ,j |2 + dni

Ti ,j
mi

)
−miλi ,j

(
ni |u i |2 + dni

Ti
mi

)
+mjλj,i

(
nj |u j,i |2 + dni

Tj,i
mj

)
−mjλj,i

(
nj |u j |2 + dnj

Tj
mj

)
= ρiλi ,j

[
|u i ,j |2 − |u i |2

]
+ ρjλj,i

[
|u j,i |2 − |u j |2

]
+ dniλi ,j [Ti ,j − Ti ] + dnjλj,i [Tj,i − Tj ] (5.14)

Using symmetry assumptions u i ,j = u j,i and Ti ,j = Tj,i , and gathering terms as in (5.13),

Ti ,j =
niλi ,jTi + njλj,iTj
niλi ,j + njλj,i

+
ρiλi ,j (|u i |2 − |u i ,j |2) + ρjλj,i (|u j |2 − |u i ,j |2)

d(niλi ,j + dnjλj,i)

=⇒ Ti ,jd [niλi ,j + njλj,i ] = d [niλi ,jTi + njλj,iTj ] + ρiλi ,j
[
|u i ,j |2 − |u i |2

]
+ ρjλj,i

[
|u j,i |2 − |u j |2

]
=⇒ I3 = 0. (5.15)

The proof is complete. ■

The converse of the last result is also true, as is easy to show. We omit the proof for the

sake of brevity.

Lemma 5.1.2. Suppose that, for any i , j ∈ {1, · · · , Ns}, the following collision invariances
hold:

ˆ
Rd
λi ,j(Mi ,j − fi) dv = 0, (5.16)

ˆ
Rd
λi ,j(Mi ,j − fi)miv dv +

ˆ
Rd
λj,i(Mj,i − fj)mjv dv = 0, (5.17)

ˆ
Rd
λi ,j(Mi ,j − fi)mi |v |2 dv +

ˆ
Rd
λj,i(Mj,i − fj)mj |v |2 dv = 0. (5.18)

Consequently, it must be that the mixture velocities and temperatures satisfy

u i ,j =
λi ,jρiu i + λj,iρju j
λi ,jρi + λj,iρj

(5.19)

Ti ,j =
λi ,jniTi + λj,injTj
λi ,jni + λj,inj

+
λi ,jρi (|u i |2 − |u i ,j |2) + λj,iρj (|u j |2 − |u j,i |2)

d(λi ,jni + λj,inj)
. (5.20)
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5.2 Numerical Approximation

For certain parameter regimes, the problem may become numerically stiff, requiring pro-

hibitively small time steps to resolve the dynamics of the particle interactions. To enable

taking larger time steps, we aim to develop implicit and semi-implicit methods for the mul-

tispecies problem, wherein the collision term is computed implicitly. Thus, to see what

difficulties lie ahead for the numerical analysis of the multi-species case, let us first examine

the space homogeneous problem,

∂fi
∂t
=

Ns∑
j=1

λi ,j(Mi ,j − fi), for i ∈ {1, · · · , Ns}. (5.21)

As a prototype for the implicit treatment of the collision term, we discretize using the

Backward Euler method:

f n+1i − f ni
∆t

=

Ns∑
j=1

λi ,j(M
n+1
i ,j − f

n+1
i ) (5.22)

⇐⇒ f n+1i = f ni + ∆t

Ns∑
j=1

λi ,jM
n+1
i ,j − ∆tf

n+1
i

Ns∑
j=1

λi ,j (5.23)

⇐⇒ f n+1i

(
1 + ∆t

Ns∑
j=1

λi ,j

)
= f ni + ∆t

Ns∑
j=1

λi ,jM
n+1
i ,j (5.24)

⇐⇒ f n+1i =
f ni + ∆t

∑Ns
j=1 λi ,jM

n+1
i ,j

1 + ∆t
∑Ns
j=1 λi ,j

. (5.25)

Note that (5.25) has the terms Mn+1
i ,j . Recall that for the space homogeneous, single

species model, the Maxwellian is time invariant (see (2.35)), so that Mn = Mn+1. This

temporal invariance does not hold in the multispecies case, and this represents a significant

numerical challenge. Care must be taken to give a proper implicit update for the collision

operator, and this is the subject of current work in the project.

As with fluid equations, spatially adaptive meshes are a requirement for highly efficient

simulations of flows with fine-scale structures in phase space. However, kinetic equations also

require adaptivity, not only for the resolution of fine scale structures, but also to address the

fact that the effective support of the kinetic distribution may vary dramatically in phase space.

Typically the size of the domain is based on the temperature of the distribution; for multi-

species problems, each species may have its own temperature, which adds a complication
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not found in the single species setting. In other words, the Maxwellians may require different

phase space resolutions. One way that this can be addressed is by defining the Maxwellians

on different compatible grids that adequately resolve their individual supports.
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Chapter 6

Asymptotic Relaxation of Multi-Species

Moment Equations

In the current chapter, which is based on the preprint [10], we study the space-homogeneous,

multi-species BGK equations from [9], which can be understood as a special, illustrative

case of the equations in [3] or [15]. We do so in the context of collision frequencies that are

independent of the phase-space velocity, but depend on both number density and temperature.

In particular, we analyze the ODE system for the momentum and energy moments (the

number density evolution is trivial), which is important for asymptotic analysis and for the

development of numerical methods.

Indeed, many numerical simulations of the full BGK system (including phase-space advec-

tion) rely on implicit-explicit (IMEX) methods that treat the space-homogeneous component

implicitly. In this setting, the result of solving the associated moments equations first is to

effectively linearize and diagonalize (with respect to the phase-space velocity) the required

implicit solve, yielding a significant reduction in computational cost. (See [5, 23] for appli-

cations to the single species case and [25, Section 4] for an extension to the multi-species

setting when the collision frequencies depend only on the number densities.)

In this chapter, we first establish existence and uniqueness of the momentum-energy ODE

system, which follows from standard theory once a lower positive bound can be established

on the species temperatures. We show monoticity of the minimum temperature envelope as

well as upper and lower bounds on the bulk velocity. We then prove exponential decay of the

species momenta and energies to their steady state values, thereby generalizing some of the

results in [6] to a system with an arbitrary number of species.
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6.1 Model Equations

Here we recap the multi-species BGK equation, specifically for the case that the collision

frequencies are dependent upon species temperatures. We denote by fi the kinetic distribution

of particles of species i ∈ {1, · · · , N} having mass mi . More specifically, fi(x , v , t) is the
density of species i particles at the point x ∈ Ω ⊂ Rd , with microscopic velocity v ∈ Rd , at
time t ≥ 0, with respect to the measure dv dx . Associated to each fi are the species number
density ni , mass density ρi , bulk velocity u i , and temperature Ti , defined by

ρi = mini = mi

ˆ
Rd
fi dv , u i =

1

ρi

ˆ
Rd
miv fi dv , Ti =

mi
nid

ˆ
Rd
|v − u i |2 fi dv . (6.1)

The species momentum densities k i and species energy densities Ei are given by

k i = ρiu i and Ei =
1

2
ρi |u i |2 +

d

2
niTi . (6.2)

BGK models are expressed in terms of Maxwellian distributions that depend on these mo-

ments.

Definition 6.1.1. Given n > 0, u ∈ Rd , θ > 0, a Maxwellian Mn,u,θ is a function of the form

Mn,u,θ(v) =
n

(2πθ)
d
2

exp

(
−
|v − u|2

2θ

)
. (6.3)

Straightforward computations show that the moments of a Maxwellian satisfy

ˆ
Rd
Mn,u,θ dv = n,

ˆ
Rd
vMn,u,θ dv = nu,

ˆ
Rd
|v |2Mn,u,θ dv = n|u|2 + dnθ. (6.4)

We consider in this paper the multi-species BGK equation from [9], given by

∂fi
∂t
+ v · ∇x fi =

1

ε

∑
j

λi ,j(Mi ,j − fi), ∀i ∈ {1, · · · , N}, (6.5)

where ε > 0 is the Knudsen number, λi ,j > 0 is the (nondimensional) frequency of collisions

between species i and j (independent of v), and Mi ,j(v) = Mni ,u i ,j ,Ti ,j/mi (v) is a Maxwellian

defined by (6.3), using the mixture velocities and temperatures

u i ,j =
ρiλi ,ju i + ρjλj,iu j
ρiλi ,j + ρjλj,i

, Ti ,j =
niλi ,jTi + njλj,iTj
niλi ,j + njλj,i

+
1

d

ρiρjλi ,jλj,i
ρiλi ,j + ρjλj,i

|u i − u j |2

niλi ,j + njλj,i
. (6.6)
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The existence and uniqueness of nonnegative mild solutions to (a more general) multi-species

BGK equation was proved in [13] for periodic spatial domains and the collision frequencies

that depend on the number densities.

6.1.1 Model Properties

The BGK collision operators in (6.5) satisfy the following invariance properties: For any i , j,

ˆ
Rd
λi ,j(Mi ,j − fi) dv = 0 (6.7)

ˆ
Rd
λi ,j(Mi ,j − fi)miv dv +

ˆ
Rd
λj,i(Mj,i − fj)mjv dv = 0 (6.8)

ˆ
Rd
λi ,j(Mi ,j − fi)mi |v|2 dv +

ˆ
Rd
λj,i(Mj,i − fj)mj |v|2 dv = 0, (6.9)

corresponding to conservation of species mass, total momentum, and total energy, respec-

tively. Furthermore, an entropy dissipation condition is satisfied: For a spatially homogeneous

mixture, the entropy function H =
∑
i

´
Rd fi log fi dv satisfies

d
dt
H ≤ 0. Moreover, d

dt
H = 0 if

and only if fi = Mni ,ueq,Ti ,j/mi (v) for all i ∈ {1, · · · , N}, where ueq and Teq are the equilibrium
bulk velocity and temperature, respectively, which are common to all species [9].

The collision frequencies λi ,j are typically expressed as functions of the species moments

given in (6.1). To define these collision frequencies, [9] presents a recipe based on matching

either momentum or energy relaxation rates of the Boltzmann equation, given either a dif-

ferential cross section or a momentum transfer cross section. In this paper, we consider the

case of hard sphere collisions, for which the momentum transfer cross section is independent

of microscopic velocity and given by [2]

σMT = π

(
di + dj
2

)2
= πd2i ,j , (6.10)

where di and dj are reference diameters for the particles of species i and j ; reference diameters

for several species are given in [2] and [4]. Following the recipe for matching energy relaxation

rates from Sec. 4.3 of [9], we obtain the following collision frequencies for hard sphere

interactions:

λHSi ,j =
32π2

3(2π)3/2
mimj

(mi +mj)2
(di + dj)

2nj

√
Ti
mi
+
Tj
mj
. (6.11)

While the formula in (6.11) is specific to the physically relevant case d = 3, collision frequen-
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cies can be derived in arbitrary dimensions in a similar fashion.

The dependence of the collision frequencies on the temperature makes the BGK model

considered here more complicated than many models considered in the literature which assume

that λi ,j is a constant or depends only on nj . This is largely due to the non-Lipschitz nature

of the square root function near zero and the fact that the frequencies are time-dependent

functions. While we focus on the hard spheres model in this paper for simplicity, the analysis

provided here is readily applied to other models in the literature [2] .

6.1.2 Moment Equations

The focus of the present work is the space-homogeneous multi-species BGK equation, ob-

tained by removing the advection terms from (6.5). In this case fi = fi(v , t) satisfies

∂fi
∂t
=
1

ε

∑
j

λi ,j(Mi ,j − fi), i ∈ {1, · · · , N}. (6.12)

Multiplication of (6.12) by mi , miv , and mi |v |2, followed by integration with respect to v ,
gives equations for the mass density, momentum density, and energy density of each species

dρi
dt
= 0, (6.13a)

d(ρiu i)

dt
=
1

ε

∑
j

Ai ,j(u j − u i), (6.13b)

dEi
dt
=
1

ε

∑
j

Bi ,j

(
Ej
nj
−
Ei
ni

)
+
1

2ε

∑
j

Bi ,jSi ,j(mi −mj), (6.13c)

where the equations for ρiu i and Ei are derived using the definitions for u i ,j and Ti ,j from

(6.6) and the N × N matrices A, B, C, D, F , G, and S are given by

[A]i ,j =
ρiρjλi ,jλj,i
ρiλi ,j + ρjλj,i

, [B]i ,j =
ninjλi ,jλj,i
niλi ,j + njλj,i

, [S]i ,j = |u i ,j |
2
, [C]i ,j = Bi ,jSi ,j , (6.14a)

[D]i ,j =
(∑
k

Ai ,k

)
δi ,j , [F ]i ,j =

(∑
k

Bi ,k

)
δi ,j , [G]i ,j =

(∑
k

Ci ,k

)
δi ,j . (6.14b)

According to (6.13a), each individual species mass density ρi (or, equivalently, number density

ni) is conserved (i.e., constant in time). However, only the total momentum and energy are
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conserved. Indeed, summing (6.13b) and (6.13c) over all species yields:

N∑
i=1

d(ρiu i)

dt
= 0 and

N∑
i=1

dEi
dt
= 0, (6.15)

respectively.

In terms of the vectorized quantities

U = [u1, . . . , uN]
⊤ ∈ RN×d and E = [E1, . . . EN]

⊤ ∈ RN, (6.16)

the equations in (6.13) take the form

P
dU

dt
= −
1

ε
(D − A)U, (6.17a)

dE

dt
= −
1

ε
(F − B)Q−1E +

1

2ε
(G − C)M1, (6.17b)

where P = diag{ρk} ∈ RN×N, Q = diag{nk} ∈ RN×N, and M = diag{mk} ∈ RN×N. To
simplify the analysis later, it will be convenient to introduce variables

W = P
1
2U ∈ RN×d and ξ = Q−

1
2E ∈ RN. (6.18)

In terms of W and ξ, (6.17) takes the form

dW

dt
= −
1

ε
ZW , (6.19a)

dξ

dt
= −
1

ε
Ẑξ +

1

2ε
Q−

1
2 (G − C)M1, (6.19b)

where

Z = P−
1
2 (D − A)P−

1
2 ∈ RN×N and Ẑ = Q−

1
2 (F − B)Q−

1
2 ∈ RN×N. (6.20)

6.2 Properties of the ODE system

The main result of this section is to show that there is a unique solution to the ODE system

(6.17) for all physically meaningful initial conditions. When the collision frequencies are

constant in time, such a result follows directly from the standard ODE theory for systems

with Lipschtiz dynamics. However, because the collision frequencies in (6.11) depend on
√
Ti ,
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only a local Lipschitz condition can be obtained for the right-hand side of (6.17). Thus the

key step is to show that the species temperatures are bounded below away from zero. This

bound will also be important for establishing exponential decay to steady-state in Section 6.3.

We also establish upper and lower bounds on the bulk velocity components that will be used

in the decay estimates.

6.2.1 Positivity of the Temperature

To make the following proofs easier to manage, we introduce the parameters

αi ,j =
ρiλi ,j

ρiλi ,j + ρjλj,i
and βi ,j =

niλi ,j
niλi ,j + njλj,i

, (6.21)

which satisfy the conditions αi ,j + αj,i = 1 = βi ,j + βj,i . With these parameters, the mixture

values in (6.6) can be expressed as

u i ,j = αi ,ju i + αj,iu j and Ti ,j = βi ,jTi + βj,iTj +
1

d
miαj,iβi ,j |u i − u j |2 . (6.22)

Lemma 6.2.1. The temperatures Ti , i ∈ {1, . . . , N}, satisfy the ODE

dTi
dt
=
1

ε

∑
j

λi ,jβj,i(Tj − Ti) +
1

εd

∑
j

λi ,jmiαj,i(αj,i + βi ,j)|u i − u j |2. (6.23)

Proof. The proof is a direct calculation. From (6.13b) and the fact that Ai ,j = αj,iρiλi ,j , it

follows that

ρi
d

dt
|u i |2 =

1

ε

∑
j

ρiλi ,j(2αj,i⟨u i , u j⟩ − 2αj,i |u i |2), (6.24)

where ⟨·, ·⟩ denotes the standard Euclidean inner product on Rd . The equation in (6.23)
can be obtained by (i) using (6.2) to express (6.13c) in terms of the temperatures and

velocities; (ii) invoking (6.24) to eliminate the time derivative of |u i |2; (iii) using the formula
in (6.22) to replace u i ,j wherever it appears; and (iv) applying the elementary relations α

2
j,i =

αj,i − αi ,jαj,i = 2αj,i + α2i ,j − 1. ■

Theorem 6.2.2. Suppose that for some tf > 0, there exists a local solution U ∈ C1
(
[0, tf];RN×d

)
and E ∈ C1

(
[0, tf];RN

)
to the system given by (6.17), with initial conditions U(0) and E(0)

such that Ti(0) > 0 for all i ∈ {1, · · · , N}. Then Ti(t) ≥ Tmin := mink{Tk(0)} for all
t ∈ [0, tf] and all i ∈ {1, · · · , N}.
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Proof. The proof relies on an integrating factor technique that yields a Grönwall-type esti-

mate. Define a lower temperature envelope T⋆(t) = mink{Tk(t)}. From (6.23) it follows
that, for i ∈ {1, · · · , N},

dTi
dt
+ ci(t)Ti(t) ≥ ci(t)T⋆(t), where ci(t) =

1

ε

∑
j

λi ,j(t)βj,i(t). (6.25)

Let ai(t) =
´ t
0
ci(s) ds. Then a

′
i(t) = ci(t) and

d

dt

(
eai (t)Ti(t)

)
= eai (t)

[
d

dt
Ti(t) + ci(t)Ti(t)

]
(6.25)

≥ eai (t)ci(t)T⋆(t) =
d

dt

(
eai (t)

)
T⋆(t).

(6.26)

For each γ > 0, define the set

Sγ =

{
t ∈ [0, tf]

∣∣∣∣ T⋆(t) < 1

1 + γ
T⋆(0)

}
. (6.27)

We now argue by contradiction. Assume that Sγ is nonempty and let t⋆ = inf Sγ. Then by

definition,

T⋆(t⋆) ≤
1

1 + γ
T⋆(0) < T⋆(0). (6.28)

However, because Ti in continuous on [0, tf], it follows that T⋆(t) ≥ T⋆(t⋆) for every t ∈ [0, t⋆]
which, along with (6.26), implies that

d

dt

(
eai (t)Ti(t)

)
≥
d

dt

(
eai (t)

)
T⋆(t⋆), ∀t ∈ [0, t⋆]. (6.29)

Integrating both sides of (6.29) from [0, t⋆] and then multiplying the result by e
−ai (t⋆) ≥ 0

gives

Ti(t⋆) ≥ Ti(0)e−ai (t⋆) + T⋆(t⋆)
(
1− e−ai (t⋆)

)
≥ T⋆(0)e−ai (t⋆) + T⋆(t⋆)

(
1− e−ai (t⋆)

)
. (6.30)

Define i⋆ such that Ti⋆(t⋆) = T⋆(t⋆). If i = i⋆, then (6.30) becomes

T⋆(t⋆) ≡ Ti⋆(t⋆) ≥ T⋆(0)e−ai⋆(t⋆) + T⋆(t⋆)
(
1− e−ai⋆(t⋆)

)
, (6.31)

which, after some simple algebra, implies that T⋆(t⋆) ≥ T⋆(0). However this results con-
tradicts (6.28) which means that no such t⋆ exists and the set Sγ must be empty. As a
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consequence, T⋆(t) ≥ 1
1+γ
T⋆(0) for all t ∈ [0, tf]. Since γ > 0 is arbitrary, the limit γ → 0

yields T⋆(t) ≥ T⋆(0) = Tmin for all t ∈ [0, tf]. The proof is complete. ■

6.2.2 Velocity Bounds

For each component j ∈ {1, · · · , d}, define the lower and upper velocity envelopes

uk(t) = min
j
{U j,k(t)}, uk(t) = max

j
{U j,k(t)}, (6.32)

and the components of the vector umax ∈ Rd

[umax(t)]k = max {|uk(t)| , |uk(t)|} . (6.33)

Theorem 6.2.3. Suppose that the assumptions of Theorem 6.2.2 hold. Then for each

j ∈ {1, · · · , d}, the velocity components follow the inequalities

uk(0) ≤ uk(t) ≤ U i ,k(t) ≤ uk(t) ≤ uk(0) (6.34)

for all t ∈ [0, tf] and all i ∈ {1, · · · , N}. Further, for any t ∈ [0, tf], and all i ∈ {1, · · · , N},

∥u i(t)∥2 ≤ ∥umax(t)∥2 ≤ ∥umax(0)∥2 =: umax. (6.35)

Proof. The proof of the inequalities in (6.34) are similar to the proof of the temperature

lower bound given in Theorem 6.2.2. From the velocity equation, (6.13b),

d

dt
U i ,k +

(
1

ε

∑
j

λi ,jαj,i

)
U i ,k =

1

ε

∑
j

λi ,jαj,iU j,k , (6.36)

we obtain, using the definitions U j,k(t) ≤ uk(t), and ci = 1
ε

∑
j λi ,jαj,i ,

d

dt
U i ,k + ci(t)U i ,k ≤ ci(t)uk(t). (6.37)

From this point the proof of the upper bound in (6.34) follows that of Theorem 6.2.2, with

(6.37) being the analog of (6.25). The proof of the lower bound is even more similar.

Finally, the bound in (6.35) follows from (6.34). Specifically, if a, b, and c are real-valued
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scalars such that a ≤ b ≤ c , then |b| ≤ max{|a|, |c |}. Hence

∥u i∥22 =
d∑
k=1

U2i ,k ≤
d∑
k=1

max {|uk(0)| , |uk(0)|}
2 = ∥umax(0)∥22 = u2max. (6.38)

■

6.2.3 Existence and Uniqueness

According to (6.13a), the number densities ni and mass densities ρi are non-negative con-

stants in time:

ni(0) = ni(t), ρi(0) = ρi(t) = mini(t), ∀ i ∈ {1, · · · , N}, t ∈ [0, tf]. (6.39)

To avoid any degenerate cases, we assume that nmin := minj nj(0) > 0 and ρmin := minj ρj(0) >

0. Then, given any velocity-energy pair (u i , Ei), the associated temperature Ti is given by

(cf. (6.1))

Ti = ϑi(u i , Ei) :=
2

dni
Ei −

mi
d
|u i |2, (6.40)

and the set of all realizable velocity and energy states is given by

R =
{
(U,E) ∈ RN×d × RN

∣∣∣ ϑi(u i , Ei) ≥ 0, ∀ i ∈ {1, · · · , N}} , (6.41)

where ϑi is defined in (6.40). Given positive scalars Tmin ∈ (0,∞) and Etot ∈ (0,∞), let

D(Tmin, Etot) =

{
(U,E) ∈ R

∣∣∣∣∣
N∑
i=1

Ei = Etot and ϑi(u i , Ei) ≥ Tmin, ∀ i ∈ {1, · · · , N}

}
.

(6.42)

Recall that by Theorem 6.2.3, |u i | ≤ umax =: ∥umax(0)∥2 ≤
√
2Etot
ρmin
for all (U,E) ∈ D(Tmin, Etot).

Thus D(Tmin, Etot) is a closed and bounded subset of RN×d × RN.

Lemma 6.2.4. Let Tmin ∈ (0,∞) and Etot ∈ (0,∞) be given. Suppose that for some tf > 0,
there exists a local solution U ∈ C1

(
[0, tf];RN×d

)
and E ∈ C1

(
[0, tf];RN

)
of the system in

(6.17) with initial condition (U0,E0) ∈ D(Tmin, Etot). Then (U(t),E(t)) ∈ D(Tmin, Etot) for
all t ∈ [0, tf]. In particular, Tmin ≤ Ti(t) ≤ Tmax := 2

dnmin
Etot for all t ∈ [0, tf].

Proof. To conclude that (U(t),E(t)) ∈ D for all t ∈ [0, tf], two conditions must be satisfied.
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The first condition:

N∑
i=1

Ei(t) =

N∑
i=1

Ei(0) = Etot, ∀ t ∈ [0, tf], (6.43)

follows immediately from (6.15), and the upper bound Ti(t) ≤ Tmax follows:

Ti(t) =
2

dni
Ei ≤

2

dnmin
Etot = Tmax. (6.44)

The second condition:

Tmin ≤ Ti(t) = ϑ(u i(t), Ei(t)), ∀ t ∈ [0, tf], (6.45)

is a direct consequence of Theorem 6.2.2. ■

Theorem 6.2.5. Suppose that mi > 0 and ni > 0 for all i ∈ {1, · · · , N}. Then for any
(U0,E0) ∈ intR, there exists a global, unique solution (U,E) ∈ C1([0,∞);R) of the sys-
tem (6.17) with the initial conditions (U(0),E(0)) = (U0,E0). Moreover, the associated

temperatures Ti(t) = ϑi(u i(t), Ei(t)) are bounded below by their initial values; that is

min
i
Ti(t) ≥ min

i
Ti(0), ∀t > 0. (6.46)

Proof. The system (6.17) can be written as

d

dt

(
U

E

)
= f (U,E) where f (U,E) :=

(
−1
ε
P−1(D − A)U

−1
ε
(F − B)Q−1E + 1

2ε
(G − C)M1

)
. (6.47)

Let Tmin = mini Ti(0) and Etot =
∑
i Ei(0). Since (U,E) ∈ intR, it follows that Tmin > 0

and Etot > 0. Moreover, there exists an ϵ > 0 such that the closed ϵ-neighborhood of

D(Tmin, Etot), denoted by Dϵ(Tmin, Etot), is contained in intR, i.e., Dϵ(Tmin, Etot) ⊂ intR. In
particular, mini Ti = mini ϑ(u i , Ei) is bounded below on Dϵ(Tmin, Etot). Hence, f is Lipschitz
on Dϵ(Tmin, Etot) with Lipschitz constant L > 0 and bound ∥f (U,E)∥2 ≤ M < ∞. Since
(U0,E0) ∈ D, there is a number β = β(ϵ) > 0, independent of the point (U0,E0), such
that the closed ball B ((U,E), β) ⊂ Dϵ. Appealing to the Picard-Lindelöf Theorem B.0.1,
there exists a unique solution on the interval [0, δ], where δ = min

(
1
2L
, βM
)
. By Lemma 6.2.4,

(U(t),E(t)) ∈ D, for all t ∈ [0, δ]. Since (U(δ),E(δ)) ∈ D, we can apply the Picard-Lindelöf
Theorem to (6.17) again, but with the initial condition = (U(δ),E(δ)), and thereby extend
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the unique solution to the interval [0, 2δ]. Again, (U(2δ),E(2δ)) ∈ D, and the process can
be continued indefinitely, with, crucially, no degradation of δ > 0, since M and L cannot

grow larger and β does not shrink. The result follows. ■

6.3 Long-time Behavior

Having proven the existence of unique, global, physically realizable solutions for (6.17), we

now seek to characterize the asymptotic behavior of those solutions. In particular, we want

to show that solutions converge to

U∞(t) = 1 (u∞)⊤ and E∞(t) =
|u∞(t)|2

2
P1+

dT∞(t)

2
Q1, (6.48)

where

u∞(t) =

∑
i ρiu i(t)∑
i ρi

and T∞(t) =

∑
i niTi(t)∑
i ni

+

∑
i ρi(|u i(t)|2 − |u∞(t)|2)

d
∑
i ni

. (6.49)

are constant functions of time.

Proposition 6.3.1. Suppose that (U,E) ∈ C1 ([0,∞);R) is a unique global-in-time solution
to the system (6.17a)-(6.17b) with assumptions as given in Theorem 6.2.5. Further let

T ∈ C1
(
[0,∞);RN

)
be the associated temperature vector, whose components satisfy (6.23).

Then u∞, T∞, and E∞ are time invariant quantities, and T∞ > 0.

Proof. By conservation of mass, (6.13a), and total momentum, (6.15),
∑
i ρi and

∑
i ρiu i

are constant. Thus u∞ is time invariant. To show that T∞ is constant in time, multiply

(6.49) by the expression d
2

∑
i ni , which is constant by (6.13a), to obtain

d

2

(∑
i

ni

)
T∞ =

∑
i

[
d

2
niTi +

1

2
ρi |u i |2

]
−
1

2

(∑
i

ρi

)
|u∞|2 =

∑
i

Ei −
1

2

(∑
i

ρi

)
|u∞|2.

(6.50)

The first term on the right-hand side of (6.50) is constant by conservation of total energy,

(6.15); the second term is constant by conservation of species mass, (6.13a), and the fact

that u∞ is constant. Thus T∞ is time invariant. It follows immediately from (6.48) that E∞

is also time invariant.

Since (U(t),E(t)) ∈ R for all t > 0, it follows that Ti(t) = ϑ(u i(t), Ei(t)) ≥ 00 for all
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t > 0. Thus to show that T∞ > 0, it is sufficient to show that
∑
i ρi(|u i |2 − |u∞|2) ≥ 0.

Let ri =
ρi∑
k ρk
> 0. Then

∑
i ri = 1 and |u∞|2 = (

∑
i riu i)

⊤(
∑
j rju j) =

∑
i

∑
j ri rju

⊤
i u j .

Therefore

∑
i

ρi(|u i |2 − |u∞|2) =
∑
k

ρk

[∑
i ,j

ri rj |u i |2 −
∑
i ,j

ri rju
⊤
i u j

]
=
1

2

∑
k

ρk
∑
i ,j

ri rj |u i − u j |2 ≥ 0.

(6.51)

■

Remark 6.3.2. The quantities u∞ and T∞ were referred to as the mixture mean velocity and

mixture temperature, respectively, in [8]. However, in this paper, we reserve these terms for

the quantities u i ,j and Ti ,j , respectively.

The convergence of u i , Ti , and E as t → ∞ is established by the following result, the
proof of which is the focus of the rest of this section.

Theorem 6.3.3. Under the assumptions of Proposition 6.3.1, for all i ∈ {1, · · · , N},

lim
t→∞
u i(t) = u

∞, lim
t→∞
Ti(t) = T

∞, and lim
t→∞
E(t) = E∞, (6.52)

and bounds for the decay rates of the bulk velocities and energies are given by

∥u i(t)− u∞∥2 ≤ CU exp
(
−
zmin
ε
t
)
, i ∈ {1, . . . , N} (6.53)

∥E(t)− E∞∥2 ≤ C1e−
ẑmin
ε
t + C2

e−
zmin
ε
t − e−

ẑmin
ε
t

ẑmin − zmin
, (6.54)

where zmin > 0 and ẑmin > 0 are lower bounds on the positive eigenvalues of Z and Ẑ,

respectively, and CU > 0, C1 > 0, and C2 > 0 are constants depending only on the initial

conditions of the system.

6.3.1 Null Spaces of D − A, Z, F − B, and Ẑ

To prove Theorem 6.3.3, we first characterize the null spaces of the matrices D − A, Z,
F − B, and Ẑ, which are defined in (6.14), and (6.20).

Lemma 6.3.4. The matrices D − A and Z are symmetric positive semi-definite (SPSD),
each with a one dimensional null space. In particular, N (D − A) = span({1}) and N (Z) =
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span
({
P
1
21
})
. Moreover, the null space and range space of Z are invariant with respect to

time.

Proof. Clearly D − A and Z are symmetric by inspection. For any y ∈ RN,

y⊤(D − A)y =
1

2

∑
i ,j

Ai ,j(yi − yj)2 ≥ 0. (6.55)

Moreover, since Ai ,j > 0,
1
2

∑
i ,j Ai ,j(yi − yj)2 = 0 if and only if yi = yj for all i and j , in

which case y = c1 for some c ∈ R. Thus D − A is SPSD, with a one-dimensional null
space spanned by the eigenvector 1. Similarly y⊤Zy = (P−

1
2y)⊤(D − A)(P− 12y) ≥ 0, and

Zy = 0 ⇐⇒ P−
1
2y = c1 ⇐⇒ y = cP

1
21, for some c ∈ R. Thus Z is SPSD, with a one

dimensional null space spanned by the eigenvector P
1
21. By conservation of mass, (6.13a),

P
1
21 is indepedent of time. Thus the null space of Z is invariant with respect to time. The

symmetry of Z implies that R(Z) = N (Z)⊥ is also invariant. ■

Lemma 6.3.5. The matrices F − B and Ẑ are symmetric positive semi-definite (SPSD). In
particular N (F − B) = span ({1}) and N (Ẑ) = span

({
Q
1
21
})
. Moreover, the null space

and range space of Ẑ are invariant with respect to time.

Proof. The proof follows closely that of Lemma 6.3.4. Details are left to the reader. ■

6.3.2 Velocity Relaxation Proof

Theorem 6.3.6. Under the assumptions of Proposition 6.3.1, limt→∞ u i(t) = u
∞ and

∥u i(t)− u∞∥2 ≤ CU exp
(
−
zmin
ε
t
)
, i = 1, · · · , N, (6.56)

where CU > 0 is a constant that depends on the initial conditions of the system and zmin > 0

is a lower bound on the positive eigenvalues of Z.

Proof. The proof is based on (6.19a) which is equivalent to (6.17a). Let W∞ = P
1
2U∞,

where U∞ = 1 (u∞)⊤ is given in (6.48). Then Lemma 6.3.4 implies that ZW∞ = 0 ∈ RN×d .
Moreover, since P and U∞ are independent of time, so too is W∞. Thus in terms of

W̃ := W −W∞, (6.19a) takes the form

dW̃

dt
= −
1

ε
ZW̃ . (6.57)
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Write the element W̃ as a sum of the null and range space components with respect to Z:

W̃ = W̃R+W̃N . As shown in Appendix D, W̃N = 0. Hence W̃ = V A, where the columns of

V = [v 1, · · · , vN−1] ∈ RN×(N−1) are a set of orthonormal eigenvectors of Z that span R(Z)
and A = [a1, · · · , ad ] ∈ R(N−1)×d . Using this formulation, the ODE system (6.57) becomes

dA

dt
= −
1

ε
V ⊤ZV A. (6.58)

The eigenvalues of V ⊤ZV are strictly positive and bounded below by zmin := Nmax{ρk}−1mini ,j Ai ,j
(see Appendix C). Thus

(
A, V ⊤ZV A

)
F
≥ zmin ∥A∥2F, where ∥ · ∥F is the Frobenius norm. Let

s(t) = ∥A∥2F. Then, using (6.58),

1

2

ds

dt
=

(
A,
dA

dt

)
F

=

(
A,−

1

ε
V ⊤ZV A

)
F

≤ −
zmin
ε
∥A∥2F = −

zmin
ε
s (6.59)

which implies that

∥A(t)∥2F ≤ ∥A(0)∥
2
F e
− 2zmin

ε
t . (6.60)

Since V ⊤V = IN−1, it follows then ∥W̃∥2F = ∥V A∥
2
F = ∥A∥

2
F . Thus, (6.60) becomes

∥W (t)−W∞∥2F ≤ ∥bf W (0)−W
∞∥2F e−

2zmin
ε
t . (6.61)

Since W = P
1
2U, it follows that

∥W −W∞∥2F =
d∑
k=1

N∑
j=1

[
ρj ((u j)k − u∞k )

2
]
=

N∑
j=1

ρj ∥u j − u∞∥22 ≥ min{ρk} ∥u i − u
∞∥22 ,

(6.62)

for any i ∈ {1, · · · , N}. Thus, (6.61) gives the decay bound

∥u i(t)− u∞∥22 ≤
1

min{ρk}
∥W (t)−W∞∥2F ≤

1

min{ρk}
∥∥W 0 −W∞∥∥2

F
e−

2zmin
ε
t =: C2Ue

− 2zmin
ε
t ,

(6.63)

and limt→∞ u i = u
∞, as desired. ■

85



January 29, 2024 E. Habbershaw and S.M. Wise

6.3.3 Energy Relaxation Proof

Theorem 6.3.7. With the same assumptions as in Proposition 6.3.1, limt→∞ E(t) = E
∞ and

∥E(t)− E∞∥2 ≤ C1e−
ẑmin
ε
t + C2

e−
zmin
ε
t − e−

ẑmin
ε
t

ẑmin − zmin
, (6.64)

where C1 > 0 and C2 > 0 are constants that depend on the initial conditions of the system

(6.17) and ẑmin is a lower bound on the positive eigenvalues of Ẑ.

Proof. The proof is based on (6.19), which is equivalent to (6.17). Set ξ∞ := Q−
1
2E∞, and

note that

Ẑξ∞ =
|u∞|2

2
Q−

1
2 (F − B)M1. (6.65)

Since Q and E∞ are time invariant, so too is ξ∞. Hence ξ̃ := ξ − ξ∞ satisfies the ODE

dξ̃

dt
= −
1

ε
Ẑξ̃ +

1

2ε
Q−

1
2

[
(G − C)− |u∞|2(F − B)

]
M1. (6.66)

Consider the null and range space components of ξ̃ with respect to Ẑ: ξ̃ = ξ̃R + ξ̃N . It

can be shown that ξ̃N ≡ 0. (See Appendix D.) Therefore ξ̃ = ξ̃R = V̂ b, where V̂ =
[v̂ 1, · · · , v̂N−1] ∈ RN×(N−1) is a matrix whose columns form an orthonormal basis for the
range of Ẑ and b = V̂ ⊤ξ̃ ∈ RN−1. Multiplication of (6.66) by b⊤V̂ ⊤ gives

1

2

d

dt
∥b∥22 = −

1

ε
b⊤V̂ ⊤ẐV̂ b +

1

2ε
b⊤V̂ ⊤Q−

1
2

[
(G − C)− |u∞|2(F − B)

]
M1. (6.67)

The eigenvalues of V̂ ⊤ẐV̂ are strictly positive and bounded below by ẑmin := Nmax{nk}−1mini ,j Bi ,j
(see Appendix C), which gives the bound b⊤V̂ ⊤ẐV̂ b ≥ ẑmin∥b∥22 for any b ∈ RN−1. With this
bound and an application of the Cauchy-Schwarz inequality, (6.67) becomes

d

dt
∥b∥22 ≤ −

2ẑmin
ε
∥b∥22 +

1

ε
∥b∥2

1

min{nk}
1
2

∥∥[(G − C)− |u∞|2(F − B)]M1∥∥
2
. (6.68)

The next step is to bound the source term in (6.68). Standard norm inequalities and the

definitions in (6.14), and Appendix C, give

∥∥[(G − C)− |u∞|2 (F − B)]M1∥∥
2
≤ 2max{mk}

N∑
i=1

N∑
j=1
j ̸=i

Bmax
∣∣|u i ,j |2 − |u∞|2∣∣ . (6.69)
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Meanwhile, to bound |Si ,j − |u∞|2|, we use (i) the decay bound in (6.56), (ii) the definitions
of u i ,j and u

∞, (iii) the triangle inequality and Cauchy Schwarz inequality, (iv) the fact that

αi ,j + αj,i = 1, and (v) the fact that |u i ,j | ≤ maxi ,j{|u i |, |u j |} ≤ umax to obtain

∣∣|u i ,j |2 − |u∞|2∣∣ = ∣∣(u i ,j + u∞)⊤(u i ,j − u∞)∣∣ ≤ 2umax ∥u i ,j − u∞∥2
≤ 2umax (αi ,j∥u i − u∞∥2 + αj,i∥u j − u∞∥2) ≤ 2CUumax exp

(
−
zmin
ε
t
)
. (6.70)

Together (6.69) and (6.70) give

∥∥[(G − C)− |u∞|2(F − B)]M1∥∥
2
≤ 4N(N − 1)CUumaxBmaxmax{mk}e−

zmin
ε
t , (6.71)

and (6.68) becomes, after dividing through by ∥b∥2,

d

dt
∥b∥2 ≤ −

ẑmin
ε
∥b∥2 +

1

ε
C0e

− zmin
ε
t , (6.72)

where C0 =
1
2
4N(N−1)CUumaxBmaxmax{mk}

min{nk}
1
2

, or equivalently,

d

dt

(
∥b∥2e

ẑmin
ε
t
)
≤
C0
ε
e
ẑmin−zmin

ε
t . (6.73)

Integrating both sides above in t gives

∥b∥2 ≤ ∥b0∥2e−
ẑmin
ε
t +
C0
ε

ε

ẑmin − zmin

(
e−

zmin
ε
t − e−

ẑmin
ε
t
)
. (6.74)

Since V̂ ⊤V̂ = IN−1, it follows that ∥ξ̃∥22 = ∥V̂ b∥22 = ∥b∥
2
2 . Thus, (6.74) becomes

∥ξ − ξ∞∥2 ≤
∥∥ξ0 − ξ∞∥∥

2
e−

ẑmin
ε
t + C0

e−
zmin
ε
t − e−

ẑmin
ε
t

ẑmin − zmin
. (6.75)

Further, since

∥ξ − ξ∞∥22 = ∥Q−
1
2 (E − E∞)∥22 =

N∑
i=1

n−1i |Ei − E
∞
i |2 ≥

1

max{nk}
∥E − E∞∥22 , (6.76)

it follows that

∥E(t)− E∞∥2 ≤ max{nk}
1
2

(∥∥ξ0 − ξ∞∥∥
2
e−

ẑmin
ε
t + C0

e−
zmin
ε
t − e−

ẑmin
ε
t

ẑmin − zmin

)
, (6.77)
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which recovers (6.64) with C1 := max{nk}
1
2

∥∥ξ0 − ξ∞∥∥
2
and C2 := C0max{nk}

1
2 . Thus

limt→∞ E(t) = E
∞, as desired. ■

6.3.4 Temperature Relaxation

Corollary 6.3.8. With the same assumptions as in Proposition 6.3.1, for each species i ∈
{1, · · · , N}, limt→∞ Ti(t) = T∞, and

|Ti − T∞| ≤
2

d min{nk}

[
C1e

− ẑmin
ε
t + C2

e−
zmin
ε
t − e−

ẑmin
ε
t

ẑmin − zmin

]
+
max{mk}
d

2umaxCUe
− zmin

ε
t .

(6.78)

Proof. For each i ,

Ti =
2

dni
Ei −

mi
d
|u i |2 and T∞ =

2

dni
E∞i −

mi
d
|u∞|2. (6.79)

Therefore

|Ti − T∞| ≤
2

d min{nk}
|Ei − E∞i |+

max{mk}
d

∣∣|u∞|2 − |u i |2∣∣ . (6.80)

The velocity decay bound (6.56), gives

∣∣|u∞|2 − |u i |2∣∣ ≤ 2umax∥u∞ − u i∥2 ≤ 2umaxCUe− zminε t . (6.81)

Using this and the energy decay bound (6.64), the result follows. ■

Remark 6.3.9. The result in Corollary 6.3.8 can also be verified directly, using the formulation

of the temperature equation (6.23) and an approach similar to the proof of Theorem 6.3.7.

The difference in the proofs comes from the fact that the nullspace component analogous to

ξ̃N is no longer zero when using (6.23).

6.4 Numerical Demonstration

In this section, we compute temperature and velocity profiles using a fully implicit (backward)

Euler time stepping scheme.1 We assume a slab geometry in the x1 direction. Thus while

1The Backward Euler method preserves the monotonicity properties of the temperature and bulk velocity

established in Section 6.2. This fact will be will proved in future work.
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d = 3, the quantities of interest depend only on x1. Moreover the bulk velocities in the x2

and x3 direction are identically zero, i.e., Ui ,j = 0 for all j ∈ {2, 3}.
We consider systems with three different gas species chosen from a collection of four

possible elements: Helium (He), Argon (Ar), Krypton (Kr), and Xenon (Xe). The masses

and diameters of these elements are taken from [4] and are given below in SI units:
mHe

mAr

mKr

mXe

 =

6.6464731

66.335209

139.14984

218.01714

× 10−27 kg,

dHe

dAr

dKr

dXe

 =

2.193

3.659

4.199

4.939

× 10−10 m. (6.82)

In all of the examples below, the monotonocity of the mininum temperature (Theorem 6.2.2)

and the upper and lower bounds on the bulk velocities (Theorem 6.2.3) are respected.

Example 1: Temperature Decay, Ar-Kr-Xe Mixture. The purpose of this example is to

demonstrate temperature relaxation when the bulk velocities are zero. The initial number

densities, velocities, and temperatures are given by
n0Ar

n0Kr

n0Xe

 =

1

1

1

× 1028 m−3, U0 =


0 0 0

0 0 0

0 0 0

 m/s, T 0 =


1000

2000

3000

 K. (6.83)
Figure 6.1 shows the relaxation of the temperatures to their steady state value. In this case

the decay rate established in (6.78) is fairly sharp, even though the temperatures may not

approach steady state monotonically.

Example 2: Velocity Decay, Ar-Kr-Xe Mixture. The purpose of this example is to demon-

strate the velocity relaxation, with minimal effects from the temperature. A positive velocity

is given to one particle type, and each temperature is set to the same constant. The initial

number densities, velocities, and temperatures are given by
n0Ar

n0Kr

n0Xe

 =

3

2

1

× 1028 m−3, U0 =


100 0 0

0 0 0

0 0 0

 m/s, T 0 =


1000

1000

1000

 K.
(6.84)
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(a) Species and steady state tempera-

tures.

(b) Deviation from steady state temper-

ature and analytical decay estimate from

(6.78).

Figure 6.1: Temperature Decay of Ar-Kr-Xe Mixture in Example 1.

Figure 6.2 shows the relaxation of the velocities and temperatures to the steady state values.

The decay rate established for the velocities and temperatures in (6.56) and (6.78) under-

estimate the true decay rates in the example. The results also demonstrate that, unlike the

two-species case, particle velocities may not converge to the steady-state value monotonically.

Example 3: Velocity-Temperature Relaxation, He-Kr-Xe Mixture This test case exer-

cises the model due to the large kinetic energy differences between the species. The initial

number densities, velocities, and temperatures are given by
n0He

n0Kr

n0Xe

 =

0.01

1

1

× 1028 m−3, U0 =


864.8 0 0

0 0 0

0 0 0

 m/s, T 0 =


3000

300

300

 K.
(6.85)

The momentum equilibration has a corresponding kinetic energy redistribution which causes

non-monotonic changes in the temperature profile, as seen in Figure 6.3c. Because of the

large differences in the particle masses and number densities, the estimates for the decay

rates established in (6.56) and (6.78) are very weak.
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(a) Species and steady state velocities. (b) Deviation from steady state veloc-

ity and analytical decay estimate from

(6.56).

(c) Species and steady state tempera-

tures.

(d) Deviation from steady state veloc-

ity and analytical decay estimate from

(6.78).

Figure 6.2: Velocity and Temperature Decay of Ar-Kr-Xe Mixture in Example 2.

6.5 Conclusions

In this chapter, we have studied the moment equations associated to a recently developed

multi-species BGK kinetic model for rarefied gas dynamics in the spatially homogeneous

setting. The model includes collision frequencies that, unlike most models in the literature,

depend on the species temperatures. This fact complicates the analysis of the moment

equations and subsequent numerical tools. We have proven that all species temperatures

are bounded below by a positive, non-decreasing temperature envelope, thus establishing

that species temperatures always remain positive. We have also established upper and lower

bounds on the components of the bulk velocity that are in terms of the initial data.

Using the lower bound on the species temperatures, we have shown that the moments
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(a) Species and steady state velocities. (b) Deviation from steady state veloc-

ity and analytical decay estimate from

(6.56).

(c) Species and steady state tempera-

tures.

(d) Deviation from steady state veloc-

ity and analytical decay estimate from

(6.78).

Figure 6.3: Velocity and Temperature Decay of He-Kr-Xe Mixture in Example 3.

always stay within a bounded, time-invariant set of physically realizable states, which, in turn,

leads to the existence of global unique solutions. Finally, we have proved that unique equilibria

exist for the moment equations, and solutions converge to these equilbria exponentially in

time. In addition, we have established bounds on the convergence rates to equilibria. We

concluded the examination of the space homogeneous problem with some basic numerical

simulations that demonstrate some of the established theoretical behavior.

The numerical results in this chapter are computed with a backward Euler method, using

an iterative scheme to solve the relevant non-linear algebraic equations at each time-step. In

future work, we will describe the scheme more fully and prove convergence under a suitable

time step restriction that does not require resolution of the parameter ε. We will use the

backward Euler method as a component in an IMEX scheme for simulating multi-species BGK
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models that include phase-space advection.
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Chapter 7

Progress Summary and Next Steps

7.1 Summary

This Year-2 progress report presents a review of basic background on the theory and numerical

solution of BGK approximations for Boltzmann-type kinetic equations. The BGK equations,

which simplify their Boltzmann equation counterparts, are highly nonlinear, nonlocal, and

high-dimensional models of particle kinetics in rarified gases and plasmas. We discuss both

single species models and self-consistent extensions to multi-species BGK models. Preliminary

work toward the efficient numerical simulation of BGK-type kinetic equations is presented via

several benchmark problems.

Theoretical aspects of single species BGK kinetic models have been presented in order

to motivate and describe the numerical methods used. In particular, conservation and en-

tropy dissipation properties were presented, along with an analysis of the space homogeneous

(no advection) problem. Numerical methods must be sophisticated enough to respect these

conservation and dissipation properties at the fully discrete level. A stable finite volume nu-

merical approximation framework has been outlined to capture potential discontinuities in

the approximate solutions. Since the problem can be numerically stiff for some parameter

regimes, implicit and semi-implicit time integration schemes are of particular importance for

stability. Particular focus is given to implicit-explicit Runge-Kutta (IMEX-RK) time stepping

methods, as they give a reasonable balance between accuracy, efficiency, and stability. How-

ever, in some cases, fully implicit integration strategies are demanded, and the work here is

a stepping stone toward developing such algorithms and codes.

Several numerical benchmark problems and tests of the prototype MATLAB codes are

presented, including the Sod shock tube and two-stream instability test cases. The tests are
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presented for 1x1v phase spaces, but code is currently under development for more realistic

higher-dimensional cases. In particular, 1x3v and 2x3v codes for “slab geometries” will be

designed and benchmarked in the near future. The numerical methods that are presented

are inherently scalable, and, thus, the only impediment for efficient and stable numerical

simulation is the increased number of degrees of freedom. An example 1x1v code, used for

numerical solutions of the Sod shock tube problem, is given in Appendix E. This work is done

to address the goal of developing practical stable and efficient semi-implicit and fully implicit

time integrator strategies for the problem.

An introduction to a particular self-consistent BGK-type model for multi-species particle

kinetics is given. The combinatorial complexity of the model grows with the addition of

distinct chemical constituents, making such multi-species models even more challenging for

numerical solution. We have discussed the moment equations for the multispecies case,

as the moments can be used to update the Maxwellians in an IMEX approach. We have

studied the asymptotic relaxation behavior of the moment equations and have proven that

the temperatures always remain positive, which guarantees the existence and uniqueness of

the moment equations.

7.2 Next Steps

There are several outstanding issues that this work will address in the future. In particular,

as in the single species case, an implicit (or, at least, semi-implicit) approach is desired for

the computation of the stiff collision operators in the multi-species case to acheive numerical

stability. However, the procedures used in the single species case do not work directly in

the multi-species case. Solving the moment equation system is a fundamental bridge toward

an efficient IMEX scheme for the multi-species case. A sophisticated fixed point iterative

scheme is currently in development to address this issue in computing the implicit update

for the moment equations. The scheme is designed to relax the implicit updates of the

velocity and temperature to appropriate values, depending on collisional frequencies that

themselves depend on the implicit moments. This allows for the desired implicit update of

the BGK collision operators. Beyond the multispecies BGK model presented, we will examine

a multispecies ellipsoidal statistical BGK model (ES-BGK), that allows for simulation with

the correct Prandtl number, and captures anisotropic effects in the flow behavior. We will

examine the moment system for this model, and develop iterative methods akin to the ones

currently in development, to update the moment system.
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In the longer term, in addition to semi- and fully-implicit solvers, this work will focus on the

design of fast adaptive phase-space methods and block-structured adaptive mesh refinement

(AMR) that will efficiently accommodate disparate scales that are inherent in multi-species

problems, owing, for example, to disparate particle sizes and temperatures. Incorporating

implicit solver technology with AMR, especially in the context of such highly nonlinear and

nonlocal models is expected to be challenging. We will also develop efficient discrete velocity

methods for multi-species BGK models, extending the framework that we outlined herein for

the single species case.
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Appendix A

An Important Integral

We need to compute the following generalized Gaussian integral in several places in the report.

Lemma A.0.1. ˆ
Rd
|s|2e−|s|2 ds =

d

2
π
d
2 . (A.1)

Proof.

ˆ
Rd
|s|2e−|s|2 ds =

ˆ
Rd
(s21 + · · ·+ s2d )e−(s

2
1+···+s2d ) ds

=

ˆ
Rd

(
d∑
j=1

s2j

)
d∏
k=1

e−s
2
k ds

=

ˆ
Rd
s21

d∏
k=1

e−s
2
k ds + · · ·+

ˆ
Rd
s2d

d∏
k=1

e−s
2
k ds

=

 d∏
k=1
k ̸=1

ˆ
R
e−s

2
k dsk

 ˆ
R
s21e

−s21 ds1 + · · ·+

 d∏
k=1
k ̸=d

ˆ
R
e−s

2
k dsk

 ˆ
R
s2de

−s2d dsd

=
(
π
1
2

)d−1 ˆ
R
s21e

−s21 ds1 + · · ·+
(
π
1
2

)d−1 ˆ
R
s2de

−s2d dsd

= π
d−1
2

d∑
i=1

ˆ
R
s2i e

−s2i dsi , (A.2)

where we have used many elementary integration techniques, and the fact that
´
R e
−x2 dx =

π
1
2 . It remains to determine the value of the terms of the form

´
R s
2e−s

2
ds. To that end,
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utilizing integration by parts, with

u = si =⇒ du = dsi (A.3)

dv = 2sie
−s2i dsi =⇒ v = −e−s2i , (A.4)

we have

1

2

ˆ
R
2s2i e

−s2i dsi =
1

2

[[
−sie−s

2
i

]∞
−∞
−
ˆ
R
−e−s2i dsi

]
=
1

2

ˆ
R
e−s

2
i dsi

=
1

2
π
1
2 . (A.5)

Thus, Equation (A.2) gives us

ˆ
Rd
|s|2e−|s|2 ds = π

d−1
2

d∑
i=1

1

2
π
1
2 = π

d−1
2

(
d

2
π
1
2

)
=
d

2
π
d
2 , (A.6)

as desired. ■
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Appendix B

Picard-Lindelöf Theorem

We will make use of the following version of the Picard-Lindelöf Theorem for autonomous

systems:

Theorem B.0.1. Suppose that u0 ∈ Rd and f ∈ C(B(u0, β);Rd), where B(u0, β) (B(u0, β))
denotes the open (closed) Euclidean ball of radius β centered at u0. Suppose further that

∥f (v)∥2 ≤ M, for all v ∈ B(u0, β), and f is Lipschitz continuous, with constant L > 0, on
B(u0, β). Set δ = min

(
1
2L
, β
M

)
. Then the IVP u ′(t) = f (u(t)), u(t0) = u0 has a unique

solution on the interval [t0 − δ, t0 + δ].
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Appendix C

Bounding the Eigenvalues of Z and Ẑ

The matrices Z and Ẑ, defined in (6.20), play a key role in the dynamics of (6.17) and the

equivalent system (6.19). In this appendix, we prove bounds on the eigenvalues of these

matrices. With the collision frequencies defined in (6.11), the matrices A and B, defined in

(6.14a), take the form

Ai ,j =
16

3

√
π

2

mimj(di + dj)
2

(mi +mj)3
ρiρj

√
Ti
mi
+
Tj
mj
, (C.1)

Bi ,j =
8

3

√
π

2

(di + dj)
2

(mi +mj)2
ρiρj

√
Ti
mi
+
Tj
mj
. (C.2)

Since each value used to define the matrix elements is positive and bounded above and below

(importantly, the temperature), then their values can be bounded as follows:

Amin(t) := min
i ,j
Ai ,j(t) ≤ Ai ,j(t) ≤ max

i ,j
Ai ,j(t) =: Amax(t) (C.3)

Bmin(t) := min
i ,j
Bi ,j(t) ≤ Bi ,j(t) ≤ max

i ,j
Bi ,j(t) =: Bmax(t) (C.4)

Theorem C.0.1 (Eigenvalue Bounds). Let A,B,D, F ∈ RN×N be the matrices defined in
(6.14), and let Amin = mini ,j Ai ,j , Bmin = mini ,j Bi ,j , Amax = maxi ,j Ai ,j , and Bmax = maxi ,j Bi ,j .

Then the eigenvalues of the matrices Z = P−
1
2 (D−A)P− 12 and Ẑ = Q− 12 (F −B)Q− 12 satisfy

0 = z0 < zmin ≤ z1 ≤ · · · ≤ zN−1 ≤ zmax, (C.5)

0 = ẑ0 < ẑmin ≤ ẑ1 ≤ · · · ≤ ẑN−1 ≤ ẑmax, (C.6)
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where

zmin =
AminN

max{ρk}
, zmax =

Amax(N − 1)
min{ρk}

, (C.7)

ẑmin =
BminN

max{nk}
, ẑmax =

Bmax(N − 1)
min{nk}

. (C.8)

Proof. The proofs of (C.5) and (C.6) are similar; thus we prove (C.5) and leave the remaining

details to the reader. The (single) zero eigenvalue of (D−A) corresponds to the eigenvector,
1, spanning the null space of (D−A). To find bounds on the other eigenvalues, let y ∈ R(D−
A) = N (D−A)⊥, so that y⊤1 =

∑
i yi = 0. Recall that y

⊤(D−A)y = 1
2

∑
i

∑
j Ai ,j(yi−yj)2.

Using
∑
i yi = 0,

y⊤(D − A)y ≤
Amax
2

∑
i

∑
j

(yi − yj)2 =
Amax
2

∑
i

∑
j ̸=i

(
y 2i + y

2
j

)
= Amax(N − 1) ∥y∥22 .

(C.9)

Thus if y = P−
1
2 z , then

z⊤Zz ≤ (N − 1)Amaxz⊤P−1z = (N − 1)Amax
∑
i

1

ρi
z2i ≤

(N − 1)Amax
min{ρk}

∥z∥22 =: zmax ∥z∥
2
2 ,

(C.10)

which gives the upper bound in (C.5). For the lower bound,

y⊤(D − A)y ≥
Amin
2

N∑
i=1

N∑
j=1

(y 2i + y
2
j ) = AminN ∥y∥

2
2 . (C.11)

Thus if y = P−
1
2 z , then

z⊤Zz ≥ NAminz⊤P−1z ≥
NAmin
max{ρk}

∥z∥22 =: zmin ∥z∥
2
2 . (C.12)

■
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Appendix D

Null Space Components of W̃ and ξ̃

In this appendix, we show that W̃N (the projection of W̃ onto N (Z)) and ξ̃N (the projection
of ξ̃ onto N (Ẑ)) are both zero. These results are used in the proofs of Theorems 6.3.6
and 6.3.7, respectively.

Lemma D.0.1. W̃N ≡ 0.

Proof. Since the null space of Z is spanned by P
1
21, it is sufficient to show that W̃

⊤
P
1
21 = 0.

Write u∞ = U⊤P1
1⊤P1 and (U

∞)⊤ = u∞1⊤, so that

W̃
⊤
P
1
21 = (W −W∞)⊤ P

1
21 = U⊤P1− (U∞)⊤ P1 = U⊤P1−

U⊤P1

1⊤P1
1⊤P1 = 0. (D.1)

■

Lemma D.0.2. ξ̃N ≡ 0.

Proof. Since the null space of Ẑ is spanned by Q
1
21, it is sufficient to show that ξ̃

⊤
Q
1
21 = 0.

Recall that ξ̃ = Q−
1
2 (E − E∞) ; hence

ξ̃
⊤
Q
1
21 = (E − E∞)⊤ 1 =

N∑
i=1

Ei −
N∑
i=1

E∞i = 0, (D.2)

where the fact that
∑
i Ei =

∑
i E
∞
i is a consequence of (6.50) in the proof of Proposi-

tion 6.3.1. ■
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Appendix E

Code

The MATLAB code listed in this appendix is that used to generate the results of Section 3.5

for the Sod shock tube benchmark problem. This code is developed for prototyping and

demonstration purposes only and is not meant to represent production-quality software.

E.1 Main Driver: vlasovPoissonBGKMain.m

% Script to solve Vlasov-Poisson-BGK Equation:

%

% 1X1V

%

% f t + v * f x + a * f v = 1/tau * (M-f)

%

% This set of code is designed to solve the Sod Shock tube problem.

% In the limit as (\tau -> 0) or (\lambda -> \infty), BGK -> Euler.

% So, for the current test, set tau=10ˆ{-N}, set a = 0.

%

% Scheme:

% IMEX RK: Explicit Advection, Implicit Collision.

%

clear;

clc;

tic

%

% Number of ghost cells:
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del = 1;

%

% Collision time:

tau = 10ˆ(-4);

%

% Theta values for minmod:

thetaX = 2;

thetaV = 2;

%

% Spatial domain:

xL = -0.5;

xR = 0.5;

%

% Number of cells:

Nx = 256;

%

% Cell edge points:

x = linspace(xL,xR,Nx+1);

%

% Cell center points:

xC = x(1:end-1) + 0.5 * (x(2:end) - x(1:end-1));

xCenter = [xC(1:del) , xC , xC(end-del+1:end)];

hX = xC(2) - xC(1);

%

% Velocity domain:

vMin = -10;

vMax = 10;

%

% Number of cells:

Nv = 258;

%

% Cell edge points:

v = linspace(vMin,vMax,Nv+1);

%

% Cell center points:

vC = v(1:end-1) + 0.5 * (v(2:end) - v(1:end-1));

vCenter = [vC(1:del) , vC , vC(end-del+1:end)];

hV = vC(2) - vC(1);

%

% Define time levels:

105



January 29, 2024 E. Habbershaw and S.M. Wise

tInit = 0;

tFin = 0.2;

%

% Vectors for ghost cells

gVx = [1,length(xC)]+del;

gVv = [1,length(vC)]+del;

%

tableNum = 8;

[Ae,be,ce,Ai,bi,ci] = butcherTable(tableNum);

butcher.Ae = Ae; butcher.Ai = Ai;

butcher.be = be; butcher.bi = bi;

butcher.ce = ce; butcher.ci = ci;

%

% Stiffness matrix for the Poisson solve...zero Dirichlet BC

% (as per the test problems). This is not needed for the Sod problem,

% but I kept it so I didn't have to change all my function

% dependencies.

%

temp = zeros(1,Nx);

temp(1)=2; temp(2)=-1;

A = toeplitz(temp);

A(1,1) = 3; A(end,end) = 3;

%

grid.del = del;

grid.gVx = gVx; grid.Nx = Nx; grid.xC = xC; grid.xCenter = xCenter;

grid.gVv = gVv; grid.Nv = Nv; grid.vC = vC; grid.vCenter = vCenter;

grid.hX = hX;

grid.hV = hV;

grid.xL = xL ; grid.xR = xR ;

grid.vMin = vMin; grid.vMax = vMax;

grid.tInit = tInit; grid.tFin = tFin;

grid.thetaX = thetaX;

grid.thetaV = thetaV;

%

testNum = 1;

[f] = initialCondition(testNum,grid);

%

[tVec,y,MAX] = vlasovPoissonBGKSolver(f,butcher,grid,tau,A,f);

%

figure(107)
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pcolor(xC,vC,y);

title(['Contour plot of computed f, in the Velocity/Space', ...

' Domain, for Time t = ', num2str(tFin), ' '])

xlabel('x')

ylabel('v')

shading interp;

colormap(jet);

colorbar;

%

toc

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Embedded functions below:

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

function [f] = initialCondition(testNum,grid)

%

xC = grid.xC; xCenter = grid.xCenter;

vC = grid.vC; vCenter = grid.vCenter;

%

% Initialize solution array:

f = zeros(length(vC),length(xC),1);

%

switch testNum

case 1 % tFin = 0.250

nL = 1.00000; uL = 0.00000; thetaL = 0001.000;

nR = 0.12500; uR = 0.00000; thetaR = 0000.800;

case 2 % tFin = 0.150

nL = 1.00000; uL = -2.00000; thetaL = 0000.400;

nR = 1.00000; uR = 2.00000; thetaR = 0000.400;

case 3 % tFin = 0.012

nL = 1.00000; uL = 0.00000; thetaL = 1000.000;

nR = 1.00000; uR = 0.00000; thetaR = 0000.010;

case 4 % tFin = 0.035

nL = 1.00000; uL = 0.00000; thetaL = 0000.010;

nR = 1.00000; uR = 0.00000; thetaR = 0100.000;

case 5 % tFin = 0.035

nL = 5.99924; uL = 19.59750; thetaL = 0460.894;
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nR = 5.99242; uR = -6.19633; thetaR = 046.0950;

end

%

% Initial condition (make a separate function?):

%

for j = 1:length(vC)

for i = 1:length(xC)

if xCenter(i) <= 0.0

f(j,i) = nL / sqrt(2*pi*thetaL) * exp(-(vC(j)-uL)ˆ2 ...

/ (2*thetaL));

else

f(j,i) = nR / sqrt(2*pi*thetaR) * exp(-(vC(j)-uR)ˆ2 ...

/ (2*thetaR));

end

end

end

%

% %Plot the initial conditions....

% figure(110)

% % pcolor(x c,v c,f);

% surf(x c,v c,f); view(-30,50); zlim([0,2.1]);

% % title(['Contour plot of f, in the Velocity/Space Domain,' ...

% ' for Time t = ',num2str(0),' '])

% xlabel('x')

% ylabel('v')

% shading interp;

% colormap(jet);

% colorbar;

%

end

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

function [Ae,be,ce,Ai,bi,ci] = butcherTable(table)

%

% Butcher Tableaux for the IMEX-RK scheme. Tables 2-6 come from

% the Pareschi & Russo paper. Table 7 is Backward Euler. Table 8

% (needs reference, from Cory).

%

switch table
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case 2

Ae = [0,0 ; 1,0];

be = [0.5 ; 0.5];

ce = [0 ; 1];

%

gam = 1-1/sqrt(2);

Ai = [gam,0 ; 1-2*gam,gam];

bi = [0.5 ; 0.5];

ci = [gam ; 1-gam];

%

case 3

Ae = [0,0,0 ; 0,0,0 ; 0,1,0];

be = [0 ; 0.5 ; 0.5];

ce = [0 ; 0 ; 1];

%

Ai = [0.5,0,0 ; -0.5,0.5,0 ; 0,0.5,0.5];

bi = [0 ; 0.5 ; 0.5];

ci = [0.5 ; 0 ; 1];

%

case 4

Ae = [0,0,0 ; 0.5,0,0 ; 0.5,0.5,0];

be = [1/3 ; 1/3 ; 1/3];

ce = [0 ; 0.5 ; 1];

%

Ai = [0.25,0,0 ; 0,0.25,0 ; 1/3,1/3,1/3];

bi = [1/3 ; 1/3 ; 1/3];

ci = [0.25 ; 0.25 ; 1];

%

case 5

Ae = [0,0,0 ; 1,0,0 ; 0.25,0.25,0];

be = [1/6 ; 1/6 ; 2/3];

ce = [0 ; 1 ; 0.5];

%

gam = 1-1/sqrt(2);

Ai = [gam,0,0 ; 1-2*gam,gam,0 ; 0.5-gam,0,gam];

bi = [1/6 ; 1/6 ; 2/3];

ci = [gam ; 1-gam ; 0.5];

%

case 6

Ae = [0,0,0,0 ; 0,0,0,0 ; 0,1,0,0 ; 0,0.25,0.25,0];
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be = [0 ; 1/6 ; 1/6 ; 2/3];

ce = [0 ; 0 ; 1 ; 0.5];

%

alpha = 0.24169426078821;

beta = 0.06042356519705;

eta = 0.12915286960590;

Ai = [alpha,0,0,0; -alpha,alpha,0,0; 0,1-alpha,alpha,0; ...

beta,eta,0.5-beta-eta-alpha,alpha];

bi = [0 ; 1/6 ; 1/6 ; 2/3];

ci = [alpha ; 0 ; 1 ; 0.5];

%

case 7

%

% Forward Euler:

Ae = 0;

be = 1;

ce = 0;

%

% Backward Euler

Ai = 1;

bi = 1;

ci = 1;

%

case 8

gam = 1 - 1/sqrt(2);

delt = 1 - 1/(2*gam);

%

Ae = [0,0,0 ; gam,0,0 ; delt,1-delt,0];

be = [delt;1-delt;0];

ce = [0;gam;1];

%

Ai = [0,0,0 ; 0,gam,0 ; 0,1-gam,gam];

bi = [0;1-gam;gam];

ci = [0;gam;1];

end

end

Listing E.1: Main driver: vlasovPoissonBGKMain.m.
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E.2 vlasovPoissonBGKSolver.m

function [t,Z,M] = vlasovPoissonBGKSolver(y0,butcher,grid,tau,A,f)

%

% y0 = IC grid function (j,i) = (velocity,space)

% Ae, be, ce: Butcher Tableau for explicit solve

% Ai, bi, ci: Butcher tableau for implicit solve

%

Ai = butcher.Ai;

bi = butcher.bi;

ci = butcher.ci;

Ae = butcher.Ae;

be = butcher.be;

ce = butcher.ce;

%

gVx = grid.gVx; Nx = grid.Nx; hX = grid.hX;

gVv = grid.gVv; Nv = grid.Nv; hV = grid.hV;

%

% A is the stiffness matrix for the Poisson solve.

%

% Number of ghost cells

del = grid.del;

%

% Spatial domain:

xL = grid.xL; xR = grid.xR;

%

% Velocity domain:

vMin = grid.vMin; vMax = grid.vMax;

%

% Define CFL(s)

CFLMaxX = min(hX) / max(abs(vMax),abs(vMin));

CFLMaxV = min(hV) / max( abs(xL) , abs(xR) );

%

% Define initial/final time levels:

tCurrent = grid.tInit;

tFinal = grid.tFin ;

%

% size of grid function array y including ghost cells:

d = size(y0)+2*del;
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%

% Initialize array of solutions:

y = zeros([d,2]);

%

% Input initial conditions into solution vector

y(gVv(1):gVv(2),gVx(1):gVx(2),1) = f;

%

% Store appropriate initial values in ghost cells

for i = 1:del

y(:,gVx(1)-i,1) = y(:,gVx(1),1);

y(:,gVx(2)+i,1) = y(:,gVx(2),1);

end

for j = 1:del

y(gVv(1)-j,:,1) = y(gVv(1),:,1);

y(gVv(2)+j,:,1) = y(gVv(2),:,1);

end

%

% Number of stages of RK scheme:

s = length(ce);

%

% Initial vectors for RK scheme:

uo = zeros([d,s]);

fI = zeros([d,s]);

fE = zeros([d,s]);

M = zeros([d,s]);

%

redo = 0;

EMax = 1;

t = 1;

%

while tCurrent < tFinal

%

dt = min(0.24 * min(CFLMaxX,CFLMaxV),tFinal-tCurrent) ...

/ (1 + (redo > 0));

%

% This flag indicates that the electric field gets bigger than E max.

% If so, the step needs to recalculate.

redo = 0;

%

uo(:,:,:) = 0;
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uo(:,:,1) = y(:,:,1);

[~,M(:,:,1)] = BGKCollision(tCurrent,y(:,:,1),grid,tau,tCurrent);

u(:,:,1) = (tau*uo(:,:,1) + dt*Ai(1,1)*M(:,:,1)) ...

/ (tau + dt*Ai(1,1));

fI(:,:,1) = BGKCollision(tCurrent+ci(1)*dt,u(:,:,1),grid, ...

tau,tCurrent);

%

[fE(:,:,1),re] = divFlux(tCurrent+ce(1)*dt,u(:,:,1),grid,EMax,A);

redo = redo+re;

for r = 2:s

uo(:,:,r) = y(:,:,1) ...

+ dt * reshape(Ae(r,:) * reshape(permute(fE,[3,1,2]),s, ...

(Nv+2*del)*(Nx+2*del)), Nv+2*del, Nx+2*del) ...

+ dt * reshape(Ai(r,:) * reshape(permute(fI,[3,1,2]),s, ...

(Nv+2*del)*(Nx+2*del)), Nv+2*del, Nx+2*del);

%

[~,M(:,:,r)] = BGKCollision(tCurrent+ci(r)*dt,uo(:,:,r), ...

grid,tau,tCurrent);

%

u(:,:,r) = (tau*uo(:,:,r) + dt*Ai(r,r)*M(:,:,r)) ...

/ (tau + dt*Ai(r,r));

[fE(:,:,r),re] = divFlux(tCurrent+ce(r)*dt,u(:,:,r),grid,EMax,A);

redo = redo+re;

fI(:,:,r) = BGKCollision(tCurrent+ci(r)*dt,u(:,:,r), ...

grid,tau,tCurrent);

end

%

y(:,:,2) = y(:,:,1) ...

+ (dt * reshape(be' * reshape(permute(fE,[3,1,2]),s, ...

(Nv+2*del)*(Nx+2*del)), Nv+2*del,Nx+2*del) ...

+ dt * reshape(bi' * reshape(permute(fI,[3,1,2]),s, ...

(Nv+2*del)*(Nx+2*del)), Nv+2*del,Nx+2*del) ...

) * (1 - (redo > 0));

%

y(:,:,1) = y(:,:,2);

tCurrent = tCurrent + dt*(1 - (redo>0));

%
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% This computes the moments and Maxwellian at the final time step.

if tCurrent == tFinal

BGKCollision(tCurrent+ci(r)*dt,y(:,:,1),grid,tau,tCurrent);

end

end

%

% Return solution at final time

Z = y(gVv(1):gVv(2),gVx(1):gVx(2),1);

%

end

Listing E.2: vlasovPoissonBGKSolver.m.
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E.3 BGKCollision.m

function [z,M] = BGKCollision(t,y,grid,tau,tCurrent)

%

del = grid.del;

hx = grid.hX; gVx = grid.gVx; x = grid.xC;

hv = grid.hV; gVv = grid.gVv; v = grid.vC;

%

% Grid function array must have ghost cells already.

M = zeros(length(x)+2*del,length(v)+2*del);

nDens = zeros(1,length(x));

mDens = zeros(1,length(x));

EDens = zeros(1,length(x));

uDens = zeros(1,length(x));

theta = zeros(1,length(x));

%

% Moment integrals: n, n*u, and E.

nDens(1:length(x)) = hv * sum(y(gVv(1):gVv(2),1+del:length(x)+del));

mDens(1:length(x)) = hv * sum(v(:).*y(gVv(1):gVv(2), ...

1+del:length(x)+del));

EDens(1:length(x)) = 0.5 * hv * sum(v(:).ˆ2 .* y(gVv(1):gVv(2), ...

1+del:length(x)+del));

uDens(:) = mDens(:)./nDens(:);

theta(:) = 2*EDens(:)./nDens(:)-uDens(:).ˆ2;

M(gVx(1):gVx(2),gVv(1):gVv(2)) = nDens(:) ./ sqrt(2*pi*theta(:)) ...

.* exp(-0.5 * abs(v - uDens(:)).ˆ2 ./ theta(:));

%

% Ghost cells: zero flow boundaries.

for i = 1:del

M(:,gVv(1)-i) = M(:,gVv(1));

M(:,gVv(2)+i) = M(:,gVv(2));

end

for j = 1:del

M(gVx(1)-j,:) = M(gVx(1),:);

M(gVx(2)+j,:) = M(gVx(2),:);
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end

%

if tCurrent == 0.2

%

% initial shock happens here.

x0 = 0;

gam = 3;

uL = [1,0,1]; uR = [0.125,0,0.1];

%

pDens = nDens .* theta;

%

[nSod,uSod,pSod,eSod] = sodSoln(x,tCurrent,uL,uR,gam,x0);

%

figure(1)

plot(x,nDens,'b','LineWidth',3)

hold on

plot(x,nSod,'LineWidth',3)

xlim([-0.5,0.5])

ylim([0,1])

set(gca,'fontsize',24)

legend('BGK','Euler')

hold off

%

figure(2)

plot(x,uDens,'b','LineWidth',3)

hold on

plot(x,uSod,'LineWidth',3)

xlim([-0.5,0.5])

ylim([0,1])

set(gca,'fontsize',24)

legend('BGK','Euler')

hold off

%

figure(3)

plot(x,theta,'b','LineWidth',3)

hold on

plot(x,2*eSod,'LineWidth',3)

xlim([-0.5,0.5])

ylim([0,2]) % may need to shift this

set(gca,'fontsize',24)
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legend('BGK','Euler')

hold off

end

%

z = (M'-y)/tau;

%

% M is a [Nv]X[Nx] array after transpose

M = M';

%

end

Listing E.3: BGKCollision.m
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E.4 divFlux.m

function [z,redo] = divFlux(t,y,grid,EMax,A)

%

% y = grid function of f {ij}ˆk values for fixed k

%

del = grid.del;

hx = grid.hX; gVx = grid.gVx; x = grid.xCenter; thetaX = grid.thetaX;

hv = grid.hV; gVv = grid.gVv; v = grid.vCenter; thetaV = grid.thetaV;

%

fP = zeros(size(y));

fM = zeros(size(y));

gP = zeros(size(y));

gM = zeros(size(y));

%

% construct slopes

[sX(:,:),sV(:,:)] = slopeReconstruction(y,grid);

%

% % Spatial fluxes

fP(:,gVx(1):gVx(2)) = (y(:,gVx(1):gVx(2)) ...

+ 0.5*hx*sX(:,gVx(1):gVx(2))) .* v(:).*(v>0)' ...

+(y(:,gVx(1)+1:gVx(2)+1) - 0.5*hx*sX(:,gVx(1)+1:gVx(2)+1)) ...

.* v(:).*(v<=0)' ;

fM(:,gVx(1):gVx(2)) = (y(:,gVx(1)-1:gVx(2)-1) ...

+ 0.5*hx*sX(:,gVx(1)-1:gVx(2)-1)) .* v(:).*(v>0)' ...

+(y(:,gVx(1):gVx(2)) - 0.5*hx*sX(:,gVx(1):gVx(2))) ...

.* v(:).*(v<=0)' ;

%

% The electric field is unnecessary for this test, so we set it to

% zero here.

E = zeros(1,length(x));

redo = 0;

% % Velocity fluxes

gP(gVv(1):gVv(2),:) = (y(gVv(1):gVv(2),:) ...

+ 0.5*hv*sV(gVv(1):gVv(2),:)) .* E.*(E>0) ...

+ (y(gVv(1)+1:gVv(2)+1,:) - 0.5*hv*sV(gVv(1)+1:gVv(2)+1,:)) ...

.* E.*(E<=0) ;

gM(gVv(1):gVv(2),:) = (y(gVv(1)-1:gVv(2)-1,:) ...
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+ 0.5*hv*sV(gVv(1)-1:gVv(2)-1,:)) .* E.*(E>0) ...

+ (y(gVv(1):gVv(2),:) - 0.5*hv*sV(gVv(1):gVv(2),:)) ...

.* E.*(E<=0) ;

z = - (fP - fM)/hx - (gP - gM)/hv;

end

Listing E.4: divFlux.m
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E.5 slopeReconstruction.m

function [sX,sV] = slopeReconstruction(y,grid)

%

sX = zeros(size(y));

sV = zeros(size(y));

%

del = grid.del;

hx = grid.hX; gVx = grid.gVx; thetaX = grid.thetaX;

hv = grid.hV; gVv = grid.gVv; thetaV = grid.thetaV;

%

SV(:,:,1) = (y(gVv(1)+1:gVv(2)+1,gVx(1):gVx(2)) ...

- y(gVv(1)-1:gVv(2)-1,gVx(1):gVx(2))) / 2 ;

SV(:,:,2) = thetaV * (y(gVx(1):gVv(2),gVx(1):gVx(2)) ...

- y(gVv(1)-1:gVv(2)-1,gVx(1):gVx(2))) ;

SV(:,:,3) = thetaV * (y(gVx(1)+1:gVv(2)+1,gVx(1):gVx(2)) ...

- y(gVv(1):gVv(2),gVx(1):gVx(2))) ;

%

sV(gVv(1):gVv(2),gVx(1):gVx(2)) = minMod(SV)/hv;

%

SX(:,:,1) = (y(gVv(1):gVv(2),gVx(1)+1:gVx(2)+1) ...

- y(gVv(1):gVv(2),gVx(1)-1:gVx(2)-1)) / 2 ;

SX(:,:,2) = thetaX * (y(gVx(1):gVv(2),gVx(1):gVx(2)) ...

- y(gVv(1):gVv(2),gVx(1)-1:gVx(2)-1)) ;

SX(:,:,3) = thetaX * (y(gVx(1):gVv(2),gVx(1)+1:gVx(2)+1) ...

- y(gVv(1):gVv(2),gVx(1):gVx(2))) ;

%

sX(gVv(1):gVv(2),gVx(1):gVx(2)) = minMod(SX)/hx;

%

for i = 1:del

sX(:,gVx(1)-i) = sX(:,gVx(1));

sX(:,gVx(2)+i) = sX(:,gVx(2));

end

for j = 1:del

sV(gVv(1)-j,:) = sV(gVv(2),:);

sV(gVv(2)+j,:) = sV(gVv(1),:);

end

%
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end

Listing E.5: slopeReconstruction.m
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E.6 minMod.m

function M = minMod(x)

%

M(:,:) = 0.25*abs(sign(x(:,:,1))+sign(x(:,:,2))) ...

.*(sign(x(:,:,1))+sign(x(:,:,3))).* min(abs(x),[],3);

%

end

Listing E.6: minMod.m
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E.7 sodSoln.m

function [n,u,p,e] = sodSoln(x,tCurrent,phiL,phiR,gam,x0)

%

% Script to compute theoretical sod solution at given time with

% given gamma.

%

%

% phiL and phiR are ordered as (n,u,p)

nL = phiL(1); uL = phiL(2); pL = phiL(3);

nR = phiR(1); uR = phiR(2); pR = phiR(3);

%

% This function does an iterative solve to compute the value of

% pStar.

pStar = pStarSolve(10ˆ(-8));

thL = pL / nL;

thR = pR / nR;

aL = sqrt(3*thL);

aStarL = aL * (pStar/pL)ˆ((gam-1)/(2*gam));

aR = sqrt(3*thR);

nFan = nL * (2/(gam+1) + (gam-1)*(uL-x/tCurrent) ...

/(gam+1)/aL).ˆ(2/(gam-1));

nStarL = nL * (pStar/pL)ˆ(1/gam);

nStarR = nR * ( (pStar/pR + (gam-1)/(gam+1)) ...

/ ((gam-1)*pStar/(gam+1)/pR + 1) );

uFan = 2/(gam+1) * (aL + (gam-1)*uL/2 + x/tCurrent);

uStar = uL - 2*aL / (gam-1) * ((pStar/pL)ˆ((gam-1)/(2*gam)) - 1);

pFan = pL * (2/(gam+1) + (gam-1)*(uL-x/tCurrent) ...

/ (gam+1) / aL).ˆ(2*gam/(gam-1));

eL = 0.5*pL/nL;

eStarL = 0.5*pStar/nStarL;

eStarR = 0.5*pStar/nStarR;
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eR = 0.5*pR/nR;

sHL = uL - aL;

sTL = uStar - aStarL;

%

% speed of the contact wave.

% lambda 2(U star L) = S 2 = lambda 2(U star R)

% Toro book: Equation 2.134, and page 96

sC = uStar;sR = uR + aR*( (gam+1)*pStar / (2*gam*pR) ...

+ 0.5*(gam-1)/gam)ˆ(0.5);

nFunc = @(x) nL .* ((x<x0 + sHL*tCurrent)) ...

+ nFan .* ((x0 + sHL*tCurrent <= x) & (x < x0 + sTL*tCurrent)) ...

+ nStarL .* ((x0 + sTL*tCurrent <= x) & (x < x0 + sC*tCurrent)) ...

+ nStarR .* ((x0 + sC*tCurrent <= x) & (x < x0 + sR*tCurrent)) ...

+ nR .* ((x0 + sR*tCurrent <= x));

uFunc = @(x) uL .* ((x<x0 + sHL*tCurrent)) ...

+ uFan .* ((x0 + sHL*tCurrent <= x) & (x < x0 + sTL*tCurrent)) ...

+ uStar .* ((x0 + sTL*tCurrent <= x) & (x < x0 + sR*tCurrent)) ...

+ uR .* ((x0 + sR*tCurrent <= x));

pFunc = @(x) pL .* ((x<x0 + sHL*tCurrent)) ...

+ pFan .* ((x0 + sHL*tCurrent <= x) & (x < x0 + sTL*tCurrent)) ...

+ pStar .* ((x0 + sTL*tCurrent <= x) & (x < x0 + sR*tCurrent)) ...

+ pR .* ((x0 + sR*tCurrent <= x));

eFunc = @(x) eL .* ((x<x0 + sHL*tCurrent)) ...

+ (0.5*pFan./nFan) .* ((x0 + sHL*tCurrent <= x) ...

& (x < x0 + sTL*tCurrent)) ...

+ eStarL .* ((x0 + sTL*tCurrent <= x) & (x < x0 + sC*tCurrent)) ...

+ eStarR .* ((x0 + sC*tCurrent <= x) & (x < x0 + sR*tCurrent)) ...

+ eR .* ((x0 + sR*tCurrent <= x));

n = nFunc(x);

u = uFunc(x);

p = pFunc(x);

e = eFunc(x);
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end

Listing E.7: sodSoln.m
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E.8 pStarSolve.m

function pStar = pStarSolve(TOL)

%

% Newton Raphson to compute the pressure in Sod problem.

%

ERR = 1;

%

% Initial guess.

pOld = 0.9;

k = 0;

%

while ERR > TOL

pNew = pOld - (sqrt(3)*pOldˆ(1/3) - sqrt(3) + ...

2*(pOld-0.1)/sqrt(pOld+0.05)) / (sqrt(3)*pOldˆ(-2/3)/3 ...

+ 2*(pOld+0.05)ˆ(-0.5) - (pOld-0.1)*(pOld+0.05)ˆ(-1.5));

ERR = abs(pOld-pNew) / (0.5*(pOld+pNew));

pOld = pNew;

k = k+1;

end

%

pStar = pNew;

%

end

Listing E.8: pStarSolve.m
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