
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Faculty Publications and Other Works --
Mathematics Mathematics

Summer 7-8-2022

A Progress Report on Numerical Methods for BGK-Type Kinetic A Progress Report on Numerical Methods for BGK-Type Kinetic

Equations Equations

Evan Habbershaw
University of Tennessee, Knoxville, ehabbers@vols.utk.edu

Steven M. Wise
University of Tennessee, Knoxville, swise1@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_mathpubs

 Part of the Fluid Dynamics Commons, Numerical Analysis and Computation Commons, and the

Plasma and Beam Physics Commons

Recommended Citation Recommended Citation
Habbershaw, Evan and Wise, Steven M., "A Progress Report on Numerical Methods for BGK-Type Kinetic
Equations" (2022). Faculty Publications and Other Works -- Mathematics.
https://trace.tennessee.edu/utk_mathpubs/10

This Report is brought to you for free and open access by the Mathematics at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Faculty Publications and Other Works -- Mathematics by
an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please
contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_mathpubs
https://trace.tennessee.edu/utk_mathpubs
https://trace.tennessee.edu/utk-math
https://trace.tennessee.edu/utk_mathpubs?utm_source=trace.tennessee.edu%2Futk_mathpubs%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/201?utm_source=trace.tennessee.edu%2Futk_mathpubs%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=trace.tennessee.edu%2Futk_mathpubs%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/205?utm_source=trace.tennessee.edu%2Futk_mathpubs%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

A Progress Report on Numerical Methods for

BGK-Type Kinetic Equations

Evan Habbershaw† and Steven M. Wise∗†

†Department of Mathematics, The University of Tennessee, Knoxville, TN,

37996

July 8, 2022

Abstract

In this report we review some preliminary work on the numerical solution of BGK-

type kinetic equations of particle transport. Such equations model the motion of fluid

particles via a density field when the kinetic theory of rarefied gases must be used in place

of the continuum limit Navier-Stokes and Euler equations. The BGK-type equations

describe the fluid in terms of phase space variables, and, in three space dimensions,

require 6 independent phase-space variables (3 for space and 3 for velocity) for accurate

simulation. This requires sophisticated numerical algorithms and efficient code to realize

predictions over desired space and time scales. In particular, stable numerical methods

must be designed to handle potential discontinuities (shocks) and rarefaction waves in the

solutions coming from conservative advection terms and, in addition, numerical stiffness

owing to diffusive particle collision terms. Furthermore, the particle interaction terms

are non-local in nature, adding yet another layer of complexity, and the interaction length

scales of the non-local terms may be orders of magnitude different, when multiple particle

species are involved. In this report, we outline strategies for generating efficient and stable

numerical algorithms and code, including the use of (i) stable high-order finite volume

methods, (ii) fully implicit and implicit-explicit (IMEX) time integration techniques, and

(iii) adaptive time-phase-space multi-level methods. The preliminary codes, which will be

demonstrated herein, are built in the commercial software package MATLAB for quick

∗Corresponding author. Email address: swise1@utk.edu

1

swise1@utk.edu

July 8, 2022 E. Habbershaw and S.M. Wise

and easy prototyping, but will later be translated into production software using modern

open languages.

Key words: Boltzmann equation, BGK approximation, multi-species BGK models, finite

volume schemes, MUSCL methods, numerically stiff equations, implicit-explicit time stepping

strategies, Runge-Kutta methods.

2

July 8, 2022 E. Habbershaw and S.M. Wise

Contents

1 Introduction 2

2 Single Species BGK Kinetic Models 6

2.1 Collision Invariants . 7

2.2 Space-Homogeneous Problem . 14

2.3 The H-Theorem . 17

2.4 Numerical Approximation . 20

2.4.1 Finite Volume Space and Velocity Discretization 20

2.4.2 Implicit-Explicit Runge Kutta Time Stepping 24

2.4.3 Fully Discrete Scheme . 26

2.4.4 Poisson Solver for Vlasov-Poisson-BGK Equation 27

2.5 Sample Computations and Accuracy Tests 29

2.5.1 Relaxation Test . 29

2.5.2 Sod Shock Tube (Euler Equation Limit of BGK) 35

2.5.3 Square Pulse Rotation . 38

2.5.4 Two Stream Instability (Vlasov-Poisson) 40

2.5.5 Landau Damping (Vlasov-Poisson) 42

3 Multispecies BGK Equations 44

3.1 Theory . 44

3.2 Numerics . 51

4 Summary and Next Steps 52

5 Acknowledgements 54

6 References 55

A A Technical Lemma 57

B Code 59

B.1 Main Driver: vlasovPoissonBGKMain.m . 59

B.2 vlasovPoissonBGKSolver.m . 66

B.3 BGKCollision.m . 70

3

July 8, 2022 E. Habbershaw and S.M. Wise

B.4 divFlux.m . 73

B.5 slopeReconstruction.m . 75

B.6 minMod.m . 77

B.7 sodSoln.m . 78

B.8 pStarSolve.m . 81

1

July 8, 2022 E. Habbershaw and S.M. Wise

1 Introduction

The Navier-Stokes and Euler equations, with which most computational fluid dynamicists are

familiar, are used to describe the evolution of a fluid under the assumption that the constituent

particles move in, essentially, lock-step motion. In other words, fluid particles with small space

separation are assumed to have nearly identical velocity vectors. To be precise, suppose that

the mean free path (diffusion length scale) of particles is denoted λ, and the characteristic

spatial size of the problem is denoted L. The Knudsen number is defined as Kn = λ/L.

When Kn ≪ 1, the diffusion length scale is too small to resolve accurately, and, in fact, the
individual motions and interactions of constituent particles can be coarse-grained (averaged

out) without significant loss of fidelity [19]. Indeed, the Navier-Stokes equation, which is

applicable in this physical regime, is a highly successful and accurate model.

However, when Kn = O(1), the Navier-Stokes equation is no longer valid, and particle
interactions must be taken into account. Particles with small space separation could move

in entirely contrary directions, and, in this regime, the Boltzmann transport equation is an

important model of particle evolution [19]. It describes the distribution of particles as a

function time, space (3 dimensions), and velocity (3 dimensions). The three dimensions

of space and three dimensions of velocity comprise what is known as phase space. The

Boltzmann equation is complicated not only by the high dimensionality of phase space but

also the highly nonlinear, highly nonlocal nature of the collision (particle interaction) operator.

The Vlasov-Boltzmann equation for a single species dilute gas is given as follows:

∂f

∂t
+ v · ∇x f + a · ∇v f = Q[f](x , v , t), (1)

where f is the density of particles at position x with velocity v at time t; and a is a particle

acceleration determined by an external field, for example, an electric or magnetic field. The

Boltzmann transport equation results from setting a ≡ 0. The derivation of the equation is a
simple exercise using the chain rule. In particular, the total time derivative of the distribution

f can be realized as

d

dt
f (x , v , t) =

d∑
i=1

∂f

∂xi

dxi
dt
+

d∑
i=1

∂f

∂vi

dvi
dt
+
∂f

∂t

= v · ∇x f + a · ∇v f +
∂f

∂t
.

Thus, the Vlasov-Boltzmann equation may be realized through the following law: the total

2

July 8, 2022 E. Habbershaw and S.M. Wise

time derivative of the distribution is equal to the collision operator. In other words,

d

dt
f (x , v , t) = Q[f](x , v , t).

The Bolztmann collision operator, Q[f], requires much more physical insight for a clear

derivation [19], involving conservation principles, in particular. Therefore, we will content

ourselves by only stating its generic form:

Q[f](x , v , t) =

ˆ
R3×S2
[f (x , v ′, t) f (x , v ′⋆, t)− f (x , v , t) f (x , v ⋆, t)]B(|v − v ⋆|,σ)dσdv ⋆,

where B is the collision kernel describing interactions between particles and σ is the unit

vector in the scattering direction v−v ⋆. The velocities of the two interacting particles before
collision, v ′ and v ′⋆, can be expressed in terms of the velocities of the particles after collision,

v and v ⋆, via the expressions

v ′ =
v + v ⋆
2
+
|v − v ⋆|
2

σ, v ′⋆ =
v + v ⋆
2
−
|v − v ⋆|
2

σ.

The computation of the Boltzmann collision operator is very expensive. For the 3D case,

the (5 dimensional) integral must be computed at every value of (x , v) in phase space.

Additionally, the integral cannot be evaluated analytically, except for the simplest of cases

(e.g., Maxwell molecules, with carefully prepared initial conditions). Thus, computation of

the collision operator is usually the most expensive part of computing numerical solutions of

the Boltzmann equation. For this reason, Monte Carlo methods are generally preferred for

numerical simulation [15]. Unfortunately, these are slow to converge, as is well known. What

is worse, for the Ns-species case, there are N
2
s collision operators that must be considered.

Thus, a simpler, less costly approximation is typically desired and implemented.

The Vlasov-BGK equation — BGK stands for the names Bhatnagar, Gross, and Krook,

who introduced it 1954 [1] — is a model derived by approximating the Boltzmann collision

operator with a simpler nonlinear, nonlocal relaxation operator of the form

QBGK[f](x , v , t) = λ(Mf (x , v , t)− f (x , v , t)), (2)

where λ = 1
τ
is the collision frequency between particles, τ > 0 is a characteristic time, and

3

July 8, 2022 E. Habbershaw and S.M. Wise

Mf is the Maxwellian, which is defined by

Mf (x , v , t) := n
(m
2πθ

) d
2

exp

(
−
m|v − u|2

2θ

)
, (3)

n(x , t) :=

ˆ
Rd
f dv , (4)

u(x , t) :=
1

n

ˆ
Rd
f v dv , (5)

E(x , t) :=

ˆ
Rd

1

2
|v |2f dv , (6)

d

2
n(x , t)θ(x,t) :=

ˆ
Rd

m

2
|v − u|2f dv . (7)

Here m stands for the mass of the particles, and the space-time fields n, u, E, and θ, are the

macroscopic (coarse grained) density, velocity, energy and temperature, respectively. Using

this approximation drastically reduces the computational cost of the simulation of dilute

gases, and recovers both equilibrium and streaming behavior of the Boltzmann equation

in collision-dominated, and collision-free limits. The BGK collision operator also satisfies

conservation and entropy properties of the Boltzmann operator, as we show below. Of

course, the basic design and principle of the BGK approximation is that the density f should

relax over time toward the Maxwellian, and, clearly, at this state, the collision operator gives

a zero contribution.

However, the BGK collision operator does not capture some important properties. First,

it fails to capture the correct Prandtl number (essentially the ratio of viscosity to thermal

conductivity), largely because the collision rate is velocity independent. As a result, the

model may not agree with the compressible Navier-Stokes Equations that are derived from

the Boltzmann equation in high collision regimes. A number of generalizations of the BGK

model have been proposed to deal with this shortcoming. These include the ES-BGK [6] and

Shakov [18] models, which incorporate extra degrees of freedom. The model of Mieussens and

Struchtrup [11] incorporates a velocity dependent collision rate, which improves the capture

of the correct Prandtl number. These models give a more physically realistic model, but

cause a substantial increase to computational costs.

To summarize, the single-species Vlasov-BGK equation has the form

∂f

∂t
+ v · ∇x f + a · ∇v f = λ(Mf (x , v , t)− f (x , v , t)), (8)

and, in analogy to the previous setting, the single-species BGK equation results from setting

4

July 8, 2022 E. Habbershaw and S.M. Wise

a ≡ 0. When, in equation 8, the acceleration is determined by an electric field, according to
the model

a(x , t) = −χ∇xΦ(x , t),

where χ > 0 is a constant, and

−∆Φ(x , t) = n(x , t),

the resulting model is known as the Vlasov-Poisson-BGK equation.

Numerical methods for the BGK family of equations have been proposed and analyzed

extensively. The discretization of phase space is costly, and there are challenges that occur

in high-collision regimes. First, the BGK operator becomes stiff as the collision frequency

becomes large, so an implicit approach is desired for this term, to avoid unacceptably small

time steps. In a seminal paper[2], it was shown that a Backward Euler step could be applied

in an explicit manner, allowing stable time stepping for a wide range of collisional regimes.

Taking advantage of this, the paper [15] introduced an implicit-explicit (IMEX) Runge-Kutta

scheme, treating the convection term explicitly and the collision term implicitly. Second,

stable and accurate high-order conservation schemes are required for the convection terms.

For example, Pieraccini and Puppo [15] use a high-order weighted essentially non-oscillatory

(WENO) finite volume scheme, though high-order flux-limited schemes perform well, as we

show, and are easily scaled to higher dimensions.

Most of the numerical schemes for the BGK equation, including the one that we focus on

here from [15], lose the exact conservation of mass, momentum and energy at the discrete

level, and, additionally, the entropy dissipation at the discrete level. This shortcoming is

overcome in the work by Mieussens [9, 10]. Exact conservation is obtained by computing a

discrete equilibrium function, which requires the solution of a nonlinear system of 5 equations

for the BGK model and a nonlinear system of 10 equations for the ES-BGK model at each

grid point in space. Another challenge is to recover consistent numerical solutions of the

Euler and Navier-Stokes Equations for compressible flows, which can be derived from the

BGK model using a Chapman-Enskog expansion [19].

In some situations, an explicit treatment of the advection terms in the BGK equation —

even while giving the collision operator an implicit treatment — can lead to a method that

requires excessively small time steps for stability and accuracy [3]. This can happen when

there are long time scales that lead to incompressible equations in the high collision limit,

or in problems for which the maximum velocity in the computational domain is significantly

5

July 8, 2022 E. Habbershaw and S.M. Wise

larger than the fluid speed of sound. A fully implicit approach can be taken to address these

issues. This is common for time dependent kinetic equations in radiation transport contexts,

and has been considered for electron transport problems [3]. Fully implicit methods for dilute

gases and collisionless plasmas have been proposed in [3]. These approaches use sophisticated

iterative methods to manage the cost and memory requirements of the implicit update.

In this progress report, some background for BGK-type models is presented. We do

not conduct an extensive review but give the reader (especially those unfamiliar with kinetic

equations) a gentle, albeit brief, introduction. In Section 2 we introduce the single species

BGK Equation. We describe some basic theory (Sections 2.1 – 2.3), deriving conservation and

(mathematical) entropy dissipation properties. Finite volume implicit-explicit (IMEX) Runge-

Kutta (RK) numerical methods are presented in Section 2.4. We give some preliminary

simulation results in Section 2.4, for problems including the Sod shock tube benchmark and

two-stream instability. In Section 3, we give a very brief introduction to multispecies BGK

models in order to explain some numerical challenges for such equations. We conclude the

report with a brief summary of preliminary work and near future work in Section 4. A prototype

1x1v MATLAB code for the Sod shock tube problem is contained in Appendix B.

2 Single Species BGK Kinetic Models

In this section, we describe some basic theory for the single species BGK equation [1, 19],

namely,
∂f

∂t
+ v · ∇x f = λ (Mf − f) . (9)

The existence of nonnegative solutions to the (single species) BGK equation was proved for

x ∈ Rd by Perthame (1989) [14], and on bounded domains by Ringeissen (1991) [16]. Unique-
ness of mild solutions for the (single species) periodic (in x) case was shown by Perthame

and Pulvirenti (1993) [13], and extended to the full space, x ∈ Rd , by Mischler (1996) [12].
Beyond questions about existence and uniqueness of solutions, it is important to have

a firm grasp of the properties of solutions to BGK-type equations, since it is vital to build

numerical approximation schemes that respect analogous features at the fully discrete level.

Herein, we review conservation and entropy dissipation solution properties, and, later, we

discuss how these are used in the design of numerical schemes.

6

July 8, 2022 E. Habbershaw and S.M. Wise

2.1 Collision Invariants

Let us begin with an important property for the well-definedness of the model. In particular,

the temperature is non-negative, since f is nonnegative. To see this, let us show that

Proposition 2.1. If f : Ω× Rd × [0,∞)→ R is non-negative, then n is nonnegative and

d

2
n(x , t)θ(x , t) =

1

2

ˆ
Rd
|v − u(x , t)|2f (x , v , t) dv ≥ 0.

Thus, the temperature is nonnegative.

Proof. Expanding the right-hand side of the last equation, we have

1

2

ˆ
Rd
|v − u(x , t)|2f (x , v , t) dv =

1

2

ˆ
Rd
|v |2f (x , v , t) dv − u(x , t) ·

ˆ
Rd
v f (x , v , t) dv

+
|u(x , t)|2

2

ˆ
Rd
f (x , v , t) dv

= E(x , t)− u(x , t) · u(x , t)n(x , t) +
1

2
n(x , t)|u(x , t)|2

= E(x , t)−
1

2
n(x , t)|u(x , t)|2

=
d

2
n(x , t)θ(x , t).

The proof is complete. ■

For convenience, we define ⟨ · ⟩ : C(Rd ;Rp)→ Rp by

⟨g⟩ =
ˆ
Rd
g(v) dv ,

for all g : Rd → Rp. Therefore,
n(x , t)

n(x , t)u(x , t)

E(x , t)

 =
〈
f (x , v , t)

1

v
1
2
|v |2

〉
.

Thus, the macroscopic density, n, momentum, p := nu, and energy, E, may be viewed as

the first three moments of the particle density function f . The first three moments of the

collision operator are equal to zero. This gives us some conservation properties, as we show

below.

7

July 8, 2022 E. Habbershaw and S.M. Wise

Lemma 2.2. The following equality holds:

〈
1

v
|v |2
2

λ(Mf − f)
〉
= 0. (10)

Proof. 1. First we show that ˆ
Mf dv =

ˆ
f dv . (11)

By definition,

ˆ
Rd
Mf dv =

ˆ
Rd

n

(2πθ)
d
2

exp

(
−
|v − u|2

2θ

)
dv

=
n

(2πθ)
d
2

ˆ
Rd
exp

− ∣∣∣∣∣v − u(2θ)
1
2

∣∣∣∣∣
2
 dv . (12)

Consider the substitution

s =
v − u
(2θ)

1
2

=⇒ ds =

(
1

(2θ)
1
2

)d
dv =⇒ dv = (2θ)

d
2 ds. (13)

The integral becomes

ˆ
Rd
Mf dv =

n

(2πθ)
d
2

ˆ
Rd
exp(−|s|2)(2θ)

d
2 ds

=
n(2θ)

d
2

π
d
2 (2θ)

d
2

ˆ
Rd
e−|s|

2

ds

=
n

π
d
2

· π
d
2

=

ˆ
Rd
f dv , (14)

as desired. Note that we have used the definition n =
´
Rd f dv , and the fact that in d

dimensions, the integral
´
Rd e

−|x |2dx = π
d
2 . We will use this frequently.

2. Next we show that ˆ
Rd
vMf dv =

ˆ
Rd
v f dv . (15)

8

July 8, 2022 E. Habbershaw and S.M. Wise

Following a similar line of work, we have

ˆ
Rd
vMf dv =

ˆ
Rd

n

(2πθ)
d
2

v exp

(
−
|v − u|2

2θ

)
dv

=
n

(2πθ)
d
2

ˆ
Rd
v exp

− ∣∣∣∣∣v − u(2θ)
1
2

∣∣∣∣∣
2
 dv . (16)

Using the same substitution as above, the integral becomes

ˆ
Rd
vMf dv =

n

(2πθ)
d
2

ˆ
Rd

(
(2θ)

1
2 s + u

)
exp(−|s|2) · (2θ)

d
2 ds

=
n(2θ)

d
2

π
d
2 (2θ)

d
2

[
(2θ)

1
2

ˆ
Rd
se−|s|

2

ds + u

ˆ
Rd
e−|s|

2

ds

]
=
n

π
d
2

[
(2θ)

1
2

ˆ
Rd
se−|s|

2

ds + u

ˆ
Rd
e−|s|

2

ds

]
. (17)

Let us deal with the first term in (17). One can easily show that

ˆ ∞
−∞
xe−x

2

dx = 0 =⇒
ˆ
Rd
se−|s|

2

ds = 0.

Therefore, we have

ˆ
Rd
vMf dv =

n

π
d
2

· u
ˆ
Rd
e−|s|

2

ds =
nu

π
d
2

· π
d
2 = nu =

ˆ
Rd
v f dv .

3. Finally, we show that ˆ
|v |2

2
Mf dv =

ˆ
|v |2

2
f dv . (18)

First, observe that ˆ
Rd
|s|2e−|s|2ds =

d

2
π
d
2 . (19)

(To see how to prove such results, see Appendix A). Now, consider the LHS of (18):

ˆ
|v |2

2
Mf dv =

ˆ
|v |2

2

n

(2πθ)
d
2

exp

(
−
|v − u|2

2θ

)
dv

=
1

2

n

(2πθ)
d
2

ˆ
|v |2e−

|v−u|2
2θ dv

=
1

2

n

(2πθ)
d
2

ˆ
|u + (v − u)|2e−

|v−u|2
2θ dv

9

July 8, 2022 E. Habbershaw and S.M. Wise

=
1

2

n

(2πθ)
d
2

ˆ (
|u|2 + 2uT (v − u) + |v − u|2

)
e−

|v−u|2
2θ dv

=
1

2

n

(2πθ)
d
2

ˆ (
|u|2 + 2uT v − 2uTu + |v − u|2

)
e−

|v−u|2
2θ dv

=
n

2(2πθ)
d
2

ˆ (
−|u|2 + 2uT v + |v − u|2

)
e−

|v−u|2
2θ dv

=
−n|u|2

2(2πθ)
d
2

ˆ
e−

|v−u|2
2θ dv +

2n

2(2πθ)
d
2

uT
ˆ
ve−

|v−u|2
2θ dv

+
n

2(2πθ)
d
2

ˆ
|v − u|2e−

|v−u|2
2θ dv . (20)

Using the same substitution as above,

s =
v − u
(2θ)

1
2

=⇒ v − u = (2θ)
1
2 s =⇒ v = (2θ)

1
2 s + u (21)

ds =
1

(2θ)
d
2

dv =⇒ dv = (2θ)
d
2 ds, (22)

the definition of the moment E, namely,

ˆ
|v |2

2
f dv = E =

1

2
n|u|2 +

d

2
nθ, (23)

and (19), we have

ˆ
|v |2

2
Mf dv =

−n|u|2

2(2πθ)
d
2

ˆ
e−|s|

2

(2θ)
d
2 ds +

n

(2πθ)
d
2

uT
ˆ [
(2θ)

1
2 s + u

]
e−|s|

2

(2θ)
d
2 ds

+
n

2(2πθ)
d
2

ˆ ∣∣∣(2θ) 12 s∣∣∣2 e−|s|2(2θ) d2 ds
=
−n|u|2

2(2πθ)
d
2

(2θ)
d
2π

d
2 +
n(2θ)

d
2
+ 1
2

(2πθ)
d
2

uT
ˆ
se−|s|

2

ds +
n(2θ)

d
2

(2πθ)
d
2

uTu

ˆ
e−|s|

2

ds

+
n(2θ)(2θ)

d
2

2(2πθ)
d
2

ˆ
|s|2e−|s|2ds

=
−n|u|2

2
+ 0 +

n|u|2

π
d
2

· π
d
2 +
nθ

π
d
2

ˆ
|s|2e−|s|2ds

=
1

2
n|u|2 +

nθ

π
d
2

·
d

2
π
d
2

=
1

2
n|u|2 +

d

2
nθ

= E

10

July 8, 2022 E. Habbershaw and S.M. Wise

=

ˆ
|v |2

2
f dv . (24)

Therefore, ˆ
|v |2

2
Mf dv =

ˆ
|v |2

2
f dv ,

as desired.

■

Definition 2.3. We say that a quantity g(v) is collision invariant iff

ˆ
Rd
g(v) (Mf − f) dv = 0.

From the last Lemma, we observe that 1, v and |v |2 are collision invariant. Of course,
any linear combination of these functions will also be collision invariant.

Multiplying the BGK Equation by the vector (1, v , |v |2)T and integrating, we get expres-
sions for the conservation of mass, momentum, and energy, respectively.

Lemma 2.4. Suppose that f solves the BGK equation, under the assumption that a ≡ 0.
The following conservation equations hold:

∂

∂t
n +∇x · (nu) = 0, (25)

∂

∂t
(nu) +∇x · (nu ⊗ u + P) = 0, (26)

∂

∂t
E +∇x · (Eu + Pu + q) = 0, (27)

where

P :=

ˆ
Rd
(v − u)⊗ (v − u)f dv

is the pressure tensor and

q :=
1

2

ˆ
Rd
|v − u|2(v − u)f dv

is the heat flux.

Proof. 1. Multiplying the BGK equation by 1 and integrating, we have

ˆ
Rd

[
∂f

∂t
+∇x · (v f)

]
dv =

ˆ
Rd
λ(Mf − f)dv (28)

⇐⇒
∂

∂t

(ˆ
Rd
f dv

)
+∇x ·

(ˆ
Rd
v f dv

)
= 0 (29)

11

July 8, 2022 E. Habbershaw and S.M. Wise

⇐⇒
∂

∂t
n +∇x · (nu) = 0. (30)

This verifies the first equation, which is an expression for the conservation of mass.

2. Next, multiplying by v and integrating, we have

ˆ
Rd

[
v
∂f

∂t
+∇x · (v ⊗ v f)

]
dv =

ˆ
Rd
vλ(Mf − f)dv (31)

⇐⇒
∂

∂t

(ˆ
Rd
v f dv

)
+∇x ·

(ˆ
Rd
v ⊗ v f dv

)
= 0. (32)

The first term is equal to ∂t(nu), as desired. It remains to show that

ˆ
Rd
v ⊗ v f dv = nu ⊗ u + P.

Writing v = u + (v − u), we have
ˆ
Rd
v ⊗ v f dv =

ˆ
Rd
[u + (v − u)]⊗ [u + (v − u)] f dv

=

ˆ
Rd
[u ⊗ u + u ⊗ (v − u) + (v − u)⊗ u + (v − u)⊗ (v − u)] f dv

= u ⊗ u
ˆ
Rd
f dv + 2

ˆ
Rd
u ⊗ (v − u)f dv +

ˆ
Rd
(v − u)⊗ (v − u)f dv

= nu ⊗ u + P+ 2

ˆ
Rd
u ⊗ (v − u)f dv . (33)

The final term in the above expression is equal to zero:

u ⊗
ˆ
Rd
(v − u)f dv = u ⊗

[ˆ
Rd
v f dv − u

ˆ
Rd
f dv

]
= u ⊗ [nu − un] = 0.

Putting it all together, we have the second equation, an expression for the conservation

of momentum.

3. Finally, multiplying by 1
2
|v |2 and integrating, we have

ˆ
Rd

1

2
|v |2

(
∂f

∂t
+∇x · (v f)

)
dv =

ˆ
Rd

1

2
|v |2λ(Mf − f)dv (34)

⇐⇒
∂

∂t

(ˆ
Rd

1

2
|v |2f dv

)
+∇x ·

(ˆ
Rd

1

2
|v |2v f dv

)
= 0. (35)

12

July 8, 2022 E. Habbershaw and S.M. Wise

The first term is equal to ∂t(E), as desired. It remains to show that

1

2
|v|2v f dv = Eu + Pu + q.

Writing v = u + (v − u), we have
ˆ
Rd

1

2
|v |2v f dv =

1

2

ˆ
Rd
|v |2 [u + (v − u)] f dv

= u

ˆ
Rd

1

2
|v |2f dv +

1

2

ˆ
Rd
|v |2(v − u)f dv

= Eu +
1

2

ˆ
Rd
[u + (v − u)]T [u + (v − u)] (v − u)f dv

= Eu +
1

2

ˆ
Rd

[
|u|2 + 2uT (v − u) + |v − u|2

]
(v − u)f dv

= Eu +
1

2
|u|2
ˆ
Rd
(v − u)f dv +

ˆ
Rd
uT (v − u)(v − u)f dv

+
1

2

ˆ
Rd
|v − u|2(v − u)f dv

= Eu + q +
1

2
|u|2

(ˆ
Rd
v f dv − u

ˆ
Rd
f dv

)
+

ˆ
Rd
uT (v − u)(v − u)f dv

= Eu + q +
1

2
|u|2 (nu − un) +

ˆ
Rd
uT (v − u)(v − u)f dv

= Eu + q +

ˆ
Rd
uT (v − u)(v − u)f dv . (36)

It can be shown that

uT (v − u)(v − u) = [(v − u)⊗ (v − u)] u.

Thus, the final term in the above Equation is

ˆ
Rd
uT (v − u)(v − u)f dv =

ˆ
Rd
[(v − u)⊗ (v − u)] uf dv

=

(ˆ
Rd
(v − u)⊗ (v − u)f dv

)
u

= Pu. (37)

Putting it all together, we have the third equation, which gives an expression for the

13

July 8, 2022 E. Habbershaw and S.M. Wise

conservation of energy.

■

The conservation laws/properties above are reminiscent of those involved with the deriva-

tions of the Navier-Stokes and Euler equations. In fact, using the Chapman-Enskog expansion

method one can show that in the limit as λ→∞, or τ → 0, one recovers macroscopic Navier-
Stokes and/or Euler equations as formal limits, under certain assumptions [17, 22, 21, 19].

These limits can even guide in the design of stable numerical methods for the macroscopic

models [22].

2.2 Space-Homogeneous Problem

Suppose that the density function is spatially homogeneous and/or particle advection may

be neglected in the system. In this case, the disribution function f satisfies the space-

homogeneous problem
∂f

∂t
= λ(Mf − f). (38)

This is a first order integro-differential equation (IDE), which can be solved using the inte-

grating factor method.

Lemma 2.5. Suppose that f is a solution to the space homogeneous problem (38). Then

f (x , v , t) = e−λtf (x , v , 0) +
(
1− e−λt

)
Mf (x , v , 0). (39)

Proof. We begin by proving that ∂n
∂t
= 0 = ∂θ

∂t
, ∂u
∂t
= 0, and ∂Mf

∂t
= 0.

1. First we show that ∂n
∂t
= 0. Utilizing the IDE, we have

∂

∂t
n =

∂

∂t

ˆ
Rd
f dv =

ˆ
Rd

∂f

∂t
dv =

ˆ
Rd
λ(Mf − f)dv = 0, (40)

where the last equality follows from Lemma 2.2. Therefore, ∂n
∂t
= 0, as desired.

2. Next we show that ∂u
∂t
= 0. Recall the definition of u =

´
Rd v f dv´
Rd f dv

⇐⇒ nu =
´
Rd v f dv .

Applying the quotient rule to u = nu
n
, and using the fact that ∂n

∂t
= 0, we have

∂

∂t
u =

∂

∂t

nu

n

=
∂
∂t
(nu) · n − (nu) · ∂n

∂t

n2

14

July 8, 2022 E. Habbershaw and S.M. Wise

=
1

n

∂

∂t

ˆ
Rd
v f dv

=
1

n

ˆ
Rd
v
∂f

∂t
dv

=
λ

n

ˆ
Rd
v(Mf − f)

= 0, (41)

where, again, the last equality follows from Lemma 2.2. Therefore, ∂u
∂t
= 0, as desired.

3. Next, we show that ∂θ
∂t
= 0. Recall that d

2
nθ = E − 1

2
n|u|2 ⇐⇒ θ = 2E

dn
− 1
d
|u|2, where

d is the dimension of the space. Using the quotient rule, we have

∂θ

∂t
=
∂

∂t

(
2E

dn

)
−
1

d

∂

∂t
|u|2

=
2

d

(
∂E
∂t

)
(n)− (E)

(
∂n
∂t

)
n2

−
1

d

(
2u ·
∂u

∂t

)
=
2

dn

∂E

∂t

=
2

dn

∂

∂t

ˆ
Rd

|v |2

2
f dv

=
2

dn

ˆ
Rd

|v |2

2

∂f

∂t
dv

=
2

dn

ˆ
Rd

|v |2

2
λ(Mf − f)dv

= 0, (42)

where the last equality follows from Lemma 2.2.

4. Next, we prove the ∂Mf
∂t
= 0.

∂

∂t
Mf (x , v , t) =

∂

∂t

[
n(x , t)

(2πθ(x , t))
d
2

exp

(
−
|v − u(x, t)|2

2θ(x , t)

)]

= (2π)−
d
2
∂

∂t

[
n(x , t)θ(x , t)−

d
2 exp

(
−
1

2
|v − u(x, t)|2θ(x , t)−1

)]
= (2π)−

d
2

[
∂n

∂t
θ−

d
2 exp

(
−
1

2
|v − u|2θ−1

)
+ n(x , t)

(
−
d

2

)
θ−

d+2
2
∂θ

∂t
exp

(
−
1

2
|v − u|2θ−1

)

15

July 8, 2022 E. Habbershaw and S.M. Wise

+ nθ−
d
2 exp

(
−
1

2
|v − u|2θ−1

)
∂

∂t

[
−
1

2
|v − u|2θ−1

]]
= −
1

2
(2π)−

d
2 nθ−

d
2 exp

(
−
1

2
|v − u|2θ−1

)
∂

∂t

[
|v − u|2θ−1

]
= −
1

2
(2π)−

d
2 nθ−

d
2 exp

(
−
1

2
|v − u|2θ−1

)
[0]

= 0. (43)

5. So, we have ∂n
∂t
= 0 = ∂θ

∂t
, ∂u
∂t
= 0, and ∂Mf

∂t
= 0. To finish, we use these properties to

solve the IDE. Rearranging Equation (38) we have

df

dt
+ λf = λM.

Multiplying by the integrating factor, eλt , and applying the product rule in reverse, we

have
d

dt

(
eλtf

)
= λMf e

λt .

Integrating with respect to t, we have

eλtf = C + λ

ˆ
eλtMf (x , v , t) dt,

Now, since Mf = Mf (x , v , t) is constant with respect to t, Mf (x , v , t) = Mf (x , v , 0).

Hence, it can be pulled through the integral sign:

eλtf = C + λMf (x , v , 0)

ˆ
eλt dt

= C +Mf (x , v , 0)e
λt . (44)

Plugging in t = 0, we can get an expression for the constant term:

e0f (x , v , 0) = C + e0M(x , v , 0) (45)

⇐⇒ C = f (x , v , 0)−M(x , v , 0). (46)

Putting everything together, and multiplying by e−λt , we have the following solution to

the space homogeneous problem:

f (x , v , t) = e−λt (f (x, v , 0)−Mf (x , v , 0)) +Mf (x , v , 0)

16

July 8, 2022 E. Habbershaw and S.M. Wise

= e−λtf (x , v , 0) +
(
1− e−λt

)
Mf (x , v , 0). (47)

■

Since we have the true solution to this space homogeneous problem, this allows us to test

the accuracy of the code on the right hand side source term. Initial tests are performed in

the Section 2.5.1.

2.3 The H-Theorem

In this section, we discuss a very important solution property for the BGK equation, namely

the entropy dissipation property. This is a key stability concept that should, in some way, be

preserved in numerical approximations. We start off this section with a definition.

Definition 2.6. Suppose that f : Ω × Rd × [0,∞) → [0,∞) is a particle density function.
The object

H[f](x , t) :=

ˆ
Rd
f (x , v , t) ln(f (x , v , t)) dv

is called the H functional.

We will need the following technical lemma.

Lemma 2.7. For any x, y ∈ (0,∞)

(ln(x)− ln(y)) (x − y) ≥ 0.

Proof. Observe that the function q(x) = x ln(x) is strictly convex on [0,∞). In fact, for any
x ∈ (0, 1),

q′′(x) =
1

x
> 0.

By Taylor’s theorem, for any x, y ∈ (0,∞),

x ln(x) = y ln(y) + (ln(y) + 1)(x − y) +
1

2

1

ξ
(x − y)2 ≥ y ln(y) + (ln(y) + 1)(x − y),

for some ξ between x and y . The inequality above can be rewritten as

x ln(x)− x ln(y) ≥ x − y .

17

July 8, 2022 E. Habbershaw and S.M. Wise

Reversing the roles of x and y , we have

y ln(y)− y ln(x) ≥ y − x.

Adding the inequalities, we have

(x − y)(ln(x)− ln(y)) ≥ 0,

which is the desired result. ■

Lemma 2.8. The function ln(Mf) is a collision invariant, that is

ˆ
Rd
ln(Mf) (Mf − f) dv = 0.

Proof. We already know that 1, v , and |v |2 are collision invariants, as are any linear combi-
nations of these functions. Since

ln(Mf) = ln

(
n

(2πθ)d/2

)
+
|v − u|2

2θ
,

it follows that ln(Mf) is also a collision invariant. ■

Theorem 2.9. Suppose that f : Ω × Rd × [0,∞) → [0,∞) is a solution to the spatially
homogeneous BGK problem, that is,

∂f

∂t
=
1

τ
(Mf − f) .

In particular, let us assume that f has no variation with respect to x , i.e., ∇x f = 0. Then

d

dt
H[f] ≤ 0.

Proof. Observe that

d

dt
H[f](t) =

ˆ
Rd

∂f

∂t
(ln(f) + 1) dv

=

ˆ
Rd
(Mf − f) (ln(f) + 1) dv

=

ˆ
Rd
ln(f) (Mf − f) dv

18

July 8, 2022 E. Habbershaw and S.M. Wise

To finish the proof, we use that fact that ln(Mf) is a collision invariant, that is

ˆ
Rd
ln(Mf) (Mf − f) dv = 0.

Thus

d

dt
H[f](t) =

ˆ
Rd
(ln(f)− ln(Mf)) (Mf − f) dv

= −
ˆ
Rd
(ln(Mf)− ln(f)) (Mf − f) dv ≤ 0,

where in the last step we used the fact that

(ln(x)− ln(y)) (x − y) ≥ 0, ∀ x, y ∈ (0,∞).

■

More generally, we have

Theorem 2.10. Suppose that f : Ω × Rd × [0,∞) → [0,∞) is an Ω-periodic (spatially
periodic) solution to the BGK equation, that is,

∂tf + v · ∇x f =
1

τ
(Mf − f) .

Then
d

dt

ˆ
Rd
H[f] dx ≤ 0.

Proof. Using the same ideas as in the last proof, we can show that

∂t

ˆ
Rd
f ln(f) dv +∇x ·

ˆ
Rd
v f ln(f) dv = −

ˆ
Rd
(f −Mf)(ln(f)− ln(Mf))dv .

Using the Ω-periodicity and integrating over Ω, we have

dt

ˆ
Ω

ˆ
Rd
f ln(f) dvdx = −

ˆ
Ω

ˆ
Rd
(f −Mf)(ln(f)− ln(Mf))dvdx ≤ 0,

which proves the result. ■

We should point out that physicists generally prefer a definition of entropy that sees the

entropy increasing as a function of time. But, for historical reasons, in the mathematical

19

July 8, 2022 E. Habbershaw and S.M. Wise

and numerical theory of the Boltzmann and the BGK equations, the prevailing definition of

entropy is such that it is non-increasing in time. In any case, this is simply a matter of a sign

difference, and the mathematical dissipation property is an important marker for the design of

numerical methods. In particular, a numerical approximation scheme should satisfy, if possible,

some discrete form of entropy dissipation. However, designing fully discrete approximation

schemes that theoretically satisfy discrete dissipation (as determined by a rigorous proof) is

a challenging task. The papers [9, 10] address this issue for the single species BGK equation,

but, this dissipation property comes at a rather high computational cost. Thus, it is not

clear whether it is practical to pursue this property from the theoretical point of view. On

the other hand, checking the dissipation property numerically for benchmark simulations is

certainly a worthwhile endeavor.

2.4 Numerical Approximation

In this section, we consider the d = 1 case. Therefore, phase space is two-dimensional,

with one dimension for physical space and one for velocity space. It is not necessary to

equate the dimensions of velocity and physical space, but this is a common practice, and, for

the purpose of describing the numerical methods, one does not lose much generality using

such simplifying assumptions. We call the present case the 1x1v case. The methods that

we describe in this section are scalable, meaning that, as more phase-space dimensions are

added, the methods themselves change only little. The biggest obstacle for high-dimensional

numerical simulation is the added number of degrees of freedom that accompany an increase

in phase-space dimensions. Of course, this increase can be significant, since real-world phase

space has 6 dimensions in the model.

2.4.1 Finite Volume Space and Velocity Discretization

Since the Vlasov-BGK equation is a nonlinear conservation-like law, shocks (discontinuities)

and rarefaction waves can form and propagate in the solution. Thus, the integro-differential

equation does not necessarily hold in the classical (strong) sense. In this case, finite volume

methods, which are based on the integral form of the differential equation, are typically more

appropriate and simpler to use.

First, we truncate the velocity space so that it is finite in size: V = [−vmax, vmax], where
vmax > 0. This limits the range of velocities that may be approximated, but, as we will see,

does not generally affect the accuracy of approximation as long as vmax is chosen sufficiently

20

July 8, 2022 E. Habbershaw and S.M. Wise

large. We note that it is not necessary to make a symmetric truncation about zero velocity,

and sometimes it is not advantageous to do so. This is only done for simplicity of presentation.

In similar fashion, let us assume that Ω = [−L, L], with L > 0.
Let us define

hx :=
2L

Nx
and hv :=

2vmax
Nv
,

and then set

xℓ := −L+ (ℓ− 1/2)hx and vℓ := −vmax + (ℓ− 1/2)hv ,

where ℓ can take integer and half-integer values. To discretize phase space, we break the

rectangular 1x1v domain, Ω× V , into a two dimensional grid of cells with finite volume, and
approximate the cell average of the function. Ω× V ⊂ R2 can be written as the union of the
cells:

Ω× V =
Nx ,Nv⋃
i ,j=1

Ci ,j =

Nx ,Nv⋃
i ,j=1

Cxi × Cvj =
Nx ,Nv⋃
i ,j=1

[
xi− 1

2
, xi+ 1

2

]
×
[
vj− 1

2
, vj+ 1

2

]
, (48)

with the point (xi , vj) at the center of cell Ci ,j = C
x
i × Cvj . Next, we define

f i ,j(t) := f (xi , vj , t) :=
1

|Cxi × Cvj |

ˆ
Cxi ×C

v
j

f (x, v , t) dxdv. (49)

The integral form of the Vlasov-BGK equation is

∂tf i ,j(t) +
1

|Ci ,j |

ˆ
Ci ,j

(∂x(vf) + ∂v(a(x, t)f)) dxdv =
λ

|Ci ,j |

ˆ
Ci ,j

Mf (x, v , t) dxdv − λf i ,j(t),

(50)

where we have assumed that the acceleration of particles due to the external field, a, is

independent of velocity. Let us define the flux function, F , via

F (x, v , t) := [vf (x, v , t), a(x, t)f (x, v , t)]T := [F (x, v , t), G(x, v , t)]T ,

where

F (x, v , t) := vf (x, v , t), G(x, v , t) := a(x, t)f (x, v , t).

Define

M i ,j(t) :=
1

|Ci ,j |

ˆ
Ci ,j

Mf (x, v , t) dxdv.

21

July 8, 2022 E. Habbershaw and S.M. Wise

Applying the Divergence Theorem,

∂tf i ,j(t) + λf i ,j(t)− λM i ,j(t) = −
1

hxhv

ˆ
Cvj

(
F (xi+1/2, v , t)− F (xi−1/2, v , t

)
dv

−
1

hxhv

ˆ
Cxi

(
G(x, vj+1/2, t)− G(x, vj−1/2, t

)
dx. (51)

Now, (51) is exact. To gain a practical numerical method, we must make some approxi-

mations. Let us first approximate the flux integrals:

1

hxhv

ˆ
Cvj

(
F (xi+1/2, v , t)− F (xi−1/2, v , t

)
dv ≈

F (xi+1/2, vj , t)− F (xi−1/2, vj , t)
hx

, (52)

1

hxhv

ˆ
Cxi

(
G(x, vj+1/2, t)− G(x, vj−1/2, t

)
dx ≈

G(xi , vj+1/2, t)− G(xi , vj−1/2, t)
hv

. (53)

To approximate the density function on the cell Ci ,j , we use piecewise linear reconstructions:

pi ,j(x, v , t) = f i ,j(t) + σ
x
i,j(x − xi) + σvi,j(v − vj),

with the θ-minmod slope limiter,

σxi,j = minmod

((
f i+1,j − f i−1,j

2hx

)
, θx
(
f i ,j − f i−1,j
hx

)
, θx
(
f i+1,j − f i ,j
hx

))
, (54)

σvi,j = minmod

((
f i ,j+1 − f i ,j−1

2hv

)
, θv
(
f i ,j − f i ,j−1
hv

)
, θv
(
f i ,j+1 − f i ,j
hv

))
, (55)

where θx , θv ∈ [1, 2]. Note that for three real arguments, the minmod function is defined by

minmod(x, y , z) :=

min{x, y , z} if x, y , z ≥ 0

max{x, y , z} if x, y , z ≤ 0

0 otherwise

.

The reconstructions make the density approximation multi-valued at the cell edges, a fact

that we use to our advantage in the numerical approximation. Using the reconstructions, we

define the density at the midpoints of each cell edge as follows:

f −i+1/2,j(t) := pi ,j(xi+1/2, vj , t), f +i+1/2,j(t) := pi+1,j(xi+1/2, vj , t),

22

July 8, 2022 E. Habbershaw and S.M. Wise

and, likewise,

f −i ,j+1/2(t) := pi ,j(xi , vj+1/2, t), f +i ,j+1/2(t) := pi ,j+1(xi , vj+1/2, t).

Next, the exact fluxes are replaced by numerical fluxes of the form

F (xi+1/2, vj , t) ≈ F̃ (f +i+1/2,j(t), f
−
i+1/2,j(t)) =: F̂i+1/2,j(t)

and

G(xi , vj+1/2, t) ≈ G̃(f +i ,j+1/2(t), f
−
i ,j+1/2(t)) =: Ĝi ,j+1/2(t).

We use a simple upwind strategy to construct the numerical fluxes:

F̂i+1/2,j(t) = F̃ (f
+
i+1/2,j(t), f

−
i+1/2,j(t)) =

vj f −i+1/2,j(t) if vj ≥ 0vj f
+
i+1/2,j(t) if vj < 0

, (56)

Ĝi ,j+1/2(t) = G̃(f
+
i ,j+1/2(t), f

−
i ,j+1/2(t)) =

a(xi , t)f −i ,j+1/2(t) if a(xi , t) ≥ 0a(xi , t)f
+
i ,j+1/2(t) if a(xi , t) < 0

. (57)

We can write the approximation scheme to this point as follows:

∂tf i ,j(t) + λf i ,j(t)− λM i ,j(t) = −
F̂i+1/2,j(t)− F̂i−1/2,j(t)

hx

−
Ĝi ,j+1/2(t)− Ĝi ,j−1/2(t)

hv
+ Ẽi ,j(t), (58)

where Ẽi ,j(t) is a local truncation (approximation) error.

Finally, to complete the spatial discretization of the Vlasov-BGK equation, we need to

approximate the Maxwellian. For this we use the following:

ni(t) = hv

Nv∑
j=1

f i ,j(t), (59)

ui(t) =
hv
ni(t)

Nv∑
j=1

vj f i ,j(t), (60)

θi(t) =
hv
ni(t)

Nv∑
j=1

|vj |2f i ,j(t)− |ui(t)|2, (61)

23

July 8, 2022 E. Habbershaw and S.M. Wise

M i ,j(t) ≈ M̂i ,j(t) =
ni(t)

(2πθi(t))1/2
exp

(
−
(vj − ui(t))2

2θi(t)

)
. (62)

Since we are replacing integrations by midpoint quadratures, we lose the collision invariances

that we enjoyed at the continuum level. But, for the purpose of approximation, we will

continue to assume that these invariances still exist at the discrete level.

We conclude this section by stating the spatially discrete approximation to the Vlasov-

BGK equation:

dtf i ,j(t) + λf i ,j(t)− λM̂i ,j(t) = −
F̂i+1/2,j(t)− F̂i−1/2,j(t)

hx

−
Ĝi ,j+1/2(t)− Ĝi ,j−1/2(t)

hv
+ Êi ,j(t), (63)

where Êi ,j(t) is a local truncation (approximation) error.

2.4.2 Implicit-Explicit Runge Kutta Time Stepping

In this section we introduce an implicit-explicit (IMEX) Runge Kutta (RK) method for inte-

gration in time that was proposed in [15]. The convection part is treated using an explicit

method, while the collision part is solved using a diagonally implicit method. We will work

with the phase-space continuous problem first, in order to take advantage of the collision

invariants, before moving to the phase-space discrete problem. Let us rewrite the original

Vlasov-BGK equation as

∂

∂t
f (x, v , t) = T [f](x, v , t) +Q[f](x, v , t)

where T represents the transport term and Q represents the collision term:

T [f](x, v , t) := −v∂x f (x, v , t)− a(x, t)∂v f (x, v , t), (64)

Q[f](x, v , t) := λ(Mf (x, v , t)− f (x, v , t)). (65)

The general s-stage IMEX Runge Kutta scheme (diagonally implicit) is one of the form

y (r) = y k + ∆t

r−1∑
ℓ=1

ãrℓT [y
(ℓ)] + ∆t

r∑
ℓ=1

arℓQ[y
(ℓ)], r ∈ {1, · · · , s}, (66)

24

July 8, 2022 E. Habbershaw and S.M. Wise

y k+1 = y k + ∆t

s∑
r=1

b̃rT [y
(r)] + ∆t

s∑
r=1

brQ[y
(r)], (67)

where ãrℓ, b̃r , arℓ, br are taken from the following Butcher tables, respectively:

c̃ Ã

b̃
T

c A

bT
. (68)

The matrix Ã, for the explicit part, is strictly lower triangular, and A is lower triangular.

To run the algorithm, for each stage, we first calculate

ŷ (r−1) := y k + ∆t

r−1∑
ℓ=1

ãrℓT [y
(ℓ)] + ∆t

r−1∑
ℓ=1

arℓQ[y
(ℓ)]. (69)

We then rearrange the terms in the final sum to find an expression for y (r) :

y (r) = y k + ∆t

r−1∑
ℓ=1

ãrℓT [y
(ℓ)] + ∆t

r∑
ℓ=1

arℓQ[y
(ℓ)]

= ŷ (r−1) + ∆tar rQ[y
(r)]

= ŷ (r−1) + ∆tar rλ(My (r) − y (r))

= ŷ (r−1) + ∆tar rλMy (r) − ∆tar rλy (r) (70)

⇐⇒ (1 + ∆tar rλ)y
(r) = ŷ (r−1) + ∆tar rλMy (r) (71)

⇐⇒ y (r) =
1

1 + ∆tar rλ
ŷ (r−1) +

∆tar rλ

1 + ∆tar rλ
My (r). (72)

Note that we need to compute the Maxwellian My (r), which involves the current stage. This

seems to present an issue. However, using collision invariances, we can circumvent this. In

particular,

ˆ
Rd

1

v

|v |2

 y (r)dv = ˆ
Rd

1

v

|v |2

 ŷ (r−1)dv + ∆tar rλˆ
Rd

1

v

|v |2

 (My (r) − y (r))dv

=

ˆ
Rd

1

v

|v |2

 ŷ (r−1)dv . (73)

25

July 8, 2022 E. Habbershaw and S.M. Wise

Since the first, second, and third moments of ŷ (r−1) are equal to those of y (r), the two

Maxwellians at these stages are equal:

My (r) = Mŷ (r−1).

Therefore, we have the explicit update formula

y (r) =
1

1 + ∆tar rλ
ŷ (r−1) +

∆tar rλ

1 + ∆tar rλ
Mŷ (r−1). (74)

With the above expression for y (r), a convex combination of ŷ (r−1) and Mŷ (r−1), the IMEX-RK

scheme can be completed without any complicated inversions.

2.4.3 Fully Discrete Scheme

When we discretize velocity space, we lose the collision invariances at the discrete level; this

is because velocity integrals are replaced with midpoint rule quadrature, in addition to the

fact that the velocity space is truncated. It follows that (74) breaks down. Nevertheless,

we will assume that the phase-space discrete analog to (74) holds so that stages may be

updated in explicit fashion.

Suppose that f ki,j is an approximation of the cell average of the density field over cell Ci ,j

at time tn := tn−1 + ∆t. Similarly, we denote by f
(ℓ)
i ,j the ℓ

th stage of the IMEX-RK scheme

with respect to f ki,j . Define

T2
i ,j := −

F̂2
i+1/2,j − F̂2

i−1/2,j

hx
−
Ĝ2
i ,j+1/2 − Ĝ2

i ,j−1/2

hv
, (75)

Q2
i ,j := λ(M

2
i ,j − f 2i ,j), (76)

where the fluxes F̂2
i+1/2,j and Ĝ

2
i ,j+1/2 are computed with respect to the cell-centered approx-

imation f 2i ,j and 2 is a stage iteration or a time step index. The fully discrete Maxwellian is

computed via

n2i = hv

Nv∑
j=1

f 2i ,j , (77)

u2i =
hv
n2i

Nv∑
j=1

vj f
2
i ,j , (78)

26

July 8, 2022 E. Habbershaw and S.M. Wise

θ2i =
hv
n2i

Nv∑
j=1

|vj |2f 2i ,j − |u2i |2, (79)

M2
i ,j =

n2i
(2πθ2i)

1/2
exp

(
−
(vj − u2i)

2

2θ2i

)
. (80)

Then we compute

f̂
(r−1)
i ,j := f ki,j + ∆t

r−1∑
ℓ=1

ãrℓT
(ℓ)
i ,j + ∆t

r−1∑
ℓ=1

arℓQ
(ℓ)
i ,j , (81)

f
(r)
i ,j =

1

1 + ∆tar rλ
f̂
(r−1)
i ,j +

∆tar rλ

1 + ∆tar rλ
M̂
(r−1)
i ,j , (82)

f k+1i ,j = f ki,j + ∆t

s∑
r=1

b̃rT
(r)
i ,j + ∆t

s∑
r=1

brQ
(r)
i ,j , (83)

where M̂
(r−1)
i ,j is the discrete Maxwellian computed with respect to the fully discrete approxi-

mation f̂
(r−1)
i ,j . This completes the description of the fully discrete scheme.

2.4.4 Poisson Solver for Vlasov-Poisson-BGK Equation

For the Vlasov-Poisson-BGK equation the acceleration a is determined by an electric field as

follows:

a(x, t) = −χ∂xΦ,

where χ > 0 is a physical constant and Φ is the electric potential determined via

−∂xxΦ(x, t) = n(x, t),

subject to appropriate boundary conditions.

First let us consider Dirichlet boundary conditions:

Φ(x1/2 = −L) = α, Φ(xNx+1/2 = L) = β. (84)

Using the standard three-point stencil approximation, we have, for i = 2, · · · , Nx − 1,

−
1

h2x
[Φi+1 − 2Φi +Φi−1] = ni . (85)

The boundary conditions are specified at the peripheral edges of the domain, −L = x1/2 and

27

July 8, 2022 E. Habbershaw and S.M. Wise

L = xNx+1/2. As is standard, we use the average of the ghost cell and neighboring interior

cell. That is, we use the approximations

Φ0 +Φ1
2

= α, =⇒ Φ0 = 2α−Φ1, (86)

and we cancel the term Φ0 in the stencil approximation. The first equation in the approxi-

mation thus becomes

−Φ2 + 3Φ1 = h2xn1 + 2α. (87)

Using a similar procedure for right boundary condition, we have

ΦNx+1 = 2β −ΦNx , =⇒ −ΦNx−1 + 3ΦNx = h2xnNx + 2β. (88)

Putting this all into a matrix system, we must solve

3 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 3

Φ1

Φ2
...

ΦNx−1

ΦNx

=

h2xn1 + 2α

h2xn2
...

h2xnNx−1

h2xnNx + 2β

. (89)

This is an SPD system and always has a unique solution.

Next, we turn our attention to the case of Neumann boundary conditions:

dΦ

dx
(−L) = α,

dΦ

dx
(L) = β. (90)

In this case, using a second-order approximation at the boundary, we must solve matrix system

1 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 1

Φ1

Φ2
...

ΦNx−1

ΦNx

=

h2xn1 − hxα
h2xn2
...

h2xnNx−1

h2xnNx + hxβ

. (91)

This is a symmetric positive semi-definite (SPSD) system. It has a unique mean-zero solution,

28

July 8, 2022 E. Habbershaw and S.M. Wise

that is, a solution satisfying

hx

Nx∑
i=1

Φi = 0,

if and only if

hx

Nx∑
i=1

ni = α− β.

This is the discrete analog of the standard continuous compatibility conditions for unique

solvability.

Given f 2i ,j , we compute the accompanying macroscopic density,

n2i = hv

Nv∑
j=1

f 2i ,j ,

and then the associated electric potential Φ2
i , as described above. Once the discrete potential

is available, the acceleration may be approximated via

a2i+1/2 = −χ
Φ2
i+1 −Φ2

i

hx
.

2.5 Sample Computations and Accuracy Tests

In this section, we report on several numerical tests showing accuracy of the numerical im-

plementation.

2.5.1 Relaxation Test

This first test is designed to confirm that the BGK operator is calculated correctly for the

single species case. We consider, in particular, the space homogeneous case: the IPDE

becomes the following IODE:
df
dt
= λ(Mf − f) (x, v , t) ∈ Ω× V × [0,∞)

f (x, v , 0) = f0(x, v) (x, v , t) ∈ Ω× V × {t = 0}
. (92)

Recall that as shown in Section 2.2, the exact solution is

f (x, v , t) = e−λtf (x, v , 0) +
(
1− e−λt

)
Mf (x, v , 0). (93)

29

July 8, 2022 E. Habbershaw and S.M. Wise

For the first test, we chose a function of the form f0(x, v) = b(v)g(x), where b(v) is a

compactly supported C∞ function, with nonzero values on v ∈ (−2, 2). In particular, we use
the function g(x) = e−|x | . Consider the function

f (x, v , 0) =

e−|x |

5(v2+4) exp
(
5v

v2−4

)
(v2−4)2

(
1+exp

(
5v

v2−4

))2 if v ∈ (−2, 2)

0 otherwise

.

Observe that

n =

ˆ
V

f (x, v)dv = g(x)

ˆ
V

b(v)dv = g(x) = e−|x |.

Note that b(v) is an even function:

b(−v) =
5 ((−v)2 + 4) exp

(
5(−v)
(−v)2−4

)
((−v)2 − 4)2

(
1 + exp

(
5(−v)
(−v)2−4

))2
=

5 (v 2 + 4) exp
(
− 5v
v2−4

)
(v 2 − 4)2

(
1 + exp

(
− 5v
v2−4

))2 · exp
(
10v
v2−4

)[
exp

(
5v
v2−4

)]2
=

5 (v 2 + 4) exp
(
5v
v2−4

)
(v 2 − 4)2

(
exp

(
5v
v2−4 + 1

))2
= b(v).

Therefore, the function h(v) = vb(v) is odd. Recall that when integrating an odd function

over an interval that is symmetric about the origin, one obtains a zero integral. This means

that u = 1
n

´
V
vf dv ≡ 0.

The energy density moment is not as easy to compute analytically, so we have found a

numerical approximation:

E =
1

2

ˆ
V

v 2f dv ≈ 0.3713094964845e−|x |.

Thus,

θ =
2E

dn
−
1

d
u20 = 2(0.3713094964845)e

−|x |.

The code is run with λ = 1 up to a final time T = 1. The error is calculated by taking

the difference of the true solution minus the computed solution. The computational and true

30

July 8, 2022 E. Habbershaw and S.M. Wise

solutions are given in Figures 2 and 3, respectively. The errors are on the order of 10−5 when

a mesh of size Nx = 128, Nv = 130 is used. The plot of the error is given in Figure 4.

Figure 1: Initial condition function (“bump function”).

Figure 2: Numerical Solution Figure 3: Theoretical Solution

31

July 8, 2022 E. Habbershaw and S.M. Wise

Figure 4: Error between theoretical solution and computed solution. This is the theoretical

solution minus the code solution. (Nx = 128, Nv = 130.)

32

July 8, 2022 E. Habbershaw and S.M. Wise

For the second test, we set f0(x, v) to be the sum of four Gaussians, centered at (x, v) ∈
{(±2,±2)}. See Figure 5. The trapezoidal rule is used for the initial moments. The code is
run with λ = 1 up to time T = 1. The error is calculated by taking the difference of the true

solution minus the computed solution. The computed and true solutions are given in Figures

6 and 7 (respectively). The errors are on the order of 10−3, when Nx = 64, Nv = 256, and

are shown in Figure 8.

Figure 5: Initial condition function (sum of four Gaussians).

Figure 6: Numerical Solution Figure 7: Theoretical Solution

33

July 8, 2022 E. Habbershaw and S.M. Wise

Figure 8: Error between theoretical solution and computed solution. This is the theoretical

solution minus the code solution.

34

July 8, 2022 E. Habbershaw and S.M. Wise

2.5.2 Sod Shock Tube (Euler Equation Limit of BGK)

The Sod shock tube test is a standard test. Formally, in the collision limit as λ → ∞, the
BGK equation is asymptotically equivalent to the Euler Equations. (That is, f converges

to the Maxwellian Mf , and the moments n, u, T follow the Euler equations.) Thus, we may

test the ability of the code to solve the Sod shock tube problem, by letting λ be large (or

equivalently, letting τ = λ−1 be small), and setting the initial conditions appropriately. For

the test, we used two different values, setting λ = 104 and λ = 105 (τ = 10−4, 10−5).

The BGK equation in 1 dimension is

∂f

∂t
+ v
∂f

∂x
= λ(Mf − f). (94)

To test our IMEX code, we compared the profiles of the number density (n =
´
f dv),

bulk velocity (u = (
´
vf dv)/n), pressure (P = nθ), and internal energy (E = 1

2
θ) to the

theoretical solution, worked out using the book by Toro [20]. We set the phase-space domain

equal to Ω×V = [−0.75, 0.75]× [−10, 10]. Since the moments are calculated over Rd , then
we must have a function that integrates to approximately the same value, when restricting

Rd to the computational velocity domain (in this case, [−10, 10] ⊂ R). That is, we must
ensure that ˆ

Rd
f (x, v , t)dv ≈

ˆ
V

f (x, v , t)dv,

where V is the truncated velocity domain. Using [−10, 10] gives a reasonable approximation,
as we show.

The setup for the Sod problem is a contact discontinuity separating gases of differing

density and temperature, and zero velocity. Thus, for the Sod problem, the initial condition

for the particle density is a piecewise Maxwellian with the following values:
nL

uL

θL

 =

1.0

0.0

1.0

 , x ∈ (−0.75, 0),

nR

uR

θR

 =

0.125

0.0

0.8

 , x ∈ (0, 0.75). (95)

That is, the initial condition function (contour plot shown in Figure 9) is given by

f0(x, v) =

1.0√
2π(1.0)

exp
(
− |v−0.0|

2

2(1.0)

)
x ∈ [−0.75, 0], v ∈ [−10, 10]

0.125√
2π(0.8)

exp
(
− |v−0.0|

2

2(0.8)

)
x ∈ (0, 0.75], v ∈ [−10, 10]

(96)

35

July 8, 2022 E. Habbershaw and S.M. Wise

Figure 10 shows the moments of the numerical/computed solution at time t = 0.20. The

profiles of the solution seem to follow the correct values (as computed, using the Toro book,

[20], for reference).

Figure 9: Contour plot of Sod initial condition function.

36

July 8, 2022 E. Habbershaw and S.M. Wise

Figure 10: Numerical (Blue, BGK, λ = 104) and Theoretical (Orange, Euler) Solution for

Sod Shock tube problem. (γ = 3) at final time T = 0.20.

37

July 8, 2022 E. Habbershaw and S.M. Wise

2.5.3 Square Pulse Rotation

Consider the Vlasov Equation in 1 dimension:

∂f

∂t
+ v
∂f

∂x
+ a
∂f

∂v
= 0 (97)

Setting the acceleration term to a = −x results in a system where an initial distribution is
advected counterclockwise, along circular characteristics around the origin. For constructing

the characteristics curves, we have the system of ODEs:

dt

ds
= 1 (98)

dx

ds
= v (99)

dv

ds
= −x. (100)

The first equation gives t = s, and the remaining two form a system of two coupled ODEs:

ẋ = v (101)

v̇ = −x. (102)

Taking the derivative of the first equation, and plugging in the second equation, we have

ẍ = v̇ = −x ⇐⇒ ẍ + x = 0. (103)

The solution of this equation is

x(t) = c1 cos(t) + c2 sin(t). (104)

Thus,

v̇ = −x = −c1 cos(t)− c2 sin(t). (105)

Integrating gives

v(t) = −c1 sin(t) + c2 cos(t). (106)

Putting these together, we have

x(t) = c1 cos(t) + c2 sin(t) (107)

38

July 8, 2022 E. Habbershaw and S.M. Wise

v(t) = −c1 sin(t) + c2 cos(t). (108)

This is a circle, traversed clockwise around the origin in the (x, v)-plane, whose radius de-

pends on the values of c1, and c2. Figure 11 shows an image of four square pulses rotated

counterclockwise, until the final time T = π
2
is reached, representing a quarter rotation.

Figure 11: Rotation Problem: ∂tf + v∂x f − x∂v f = 0. Grid = 4002

39

July 8, 2022 E. Habbershaw and S.M. Wise

2.5.4 Two Stream Instability (Vlasov-Poisson)

The next test that we performed is known as the Two-Stream Instability Test, and the present

version is taken from Section 5.1.2 of [3]. In this test, two streams of electrons interact and

create a highly filamented vortex. The test is designed to assess the code’s ability to capture

fine structure and examines only the advection piece of our equation (the Vlasov-Poisson

equation):

∂tf + v∂x f + E∂v f = 0 , (x, v , t) ∈ [−2π, 2π]× [−2π, 2π]× [0,∞) (109)

where

−∂xxΦ =
e

ϵ0
(n − n), E = −∂xΦ, n =

ˆ
f dv , n =

1

|V |

ˆ
V

f dv . (110)

For our test runs, we used e
ϵ0
= 1. The initial condition function for the test is

f (x, v , 0) =
v 2√
8π

(
2− cos

(x
2

))
e−

v2

2 . (111)

The test uses periodic boundary conditions in x , and zero flow boundary conditions in v .

Figure 12, taken from the aforementioned paper, shows the plots of the solution at t = 5

and t = 45. Figures 13 and 14 show the results of running the code until t = 5 and t = 45,

respectively. For these plots, we used 8002 grid points; this is twice the number of grid points

as in the paper (4002). We find good agreement with the computed solutions.

40

July 8, 2022 E. Habbershaw and S.M. Wise

Figure 12: Two Stream Instability test case. Figure taken from Garrett & Hauck paper.

Figure 13: Code generated solution at t =

5.

Figure 14: Code generated solution at t =

45.

41

July 8, 2022 E. Habbershaw and S.M. Wise

2.5.5 Landau Damping (Vlasov-Poisson)

This test is from Section 5.1.3 of [3]. To perform the test, the Vlasov-Poisson equation

is solved and the L2 norm of the electric field is computed at each time step. The initial

condition function is

f (x, v , 0) =
1√
2π
(1 + α cos(kx)) e−

v2

2 , (112)

where α = 0.01, k = 0.5. According to the paper, with these parameters, the L2 norm of

the electric field should decay exponentially at a rate of −0.1533. Figure 15 shows the plots
taken from the paper. Figure 16 shows the result from our code and indicates qualitative

agreement.

Figure 15: Landau Damping test case. Figure taken from Garrett and Hauck [3].

42

July 8, 2022 E. Habbershaw and S.M. Wise

Figure 16: L2 norm of the electric field.

43

July 8, 2022 E. Habbershaw and S.M. Wise

3 Multispecies BGK Equations

In the present section, we describe a relatively recent BGK-type model for the multi-species

setting [4]. This model, which generalizes the one-species case, satisfies conservation of

mass, momentum, and total kinetic energy. At the same time, it satisfies a multi-species

analog of Boltzmann’s H-Theorem [4]. In the multispecies setting, the locally conserved

quantities are the species number mi⟨fi⟩, the total momentum
∑
i mi⟨v fi⟩ and the total energy∑

i mi⟨|v |2fi⟩; and the dissipated entropy (Lyapunov functional) is the total (mathematical)
entropy

∑
i η(fi), where η(f) := f ln(f) − f is the kinetic entropy density. In the zero-

relaxation-time limit, hydrodynamic equations can be derived along the lines of the single

species BGK equation [4]. Other consistent multi-species models can be found in [5, 8].

3.1 Theory

Suppose that there are Ns ∈ N (Ns ≥ 2) species of particles in a mixture of gases. The
multispecies Vlasov-BGK equation models the evolution of the distribution fields fi(x , v , t),

i = 1, . . . , Ns , via the system

∂fi
∂t
+ v · ∇x fi + ai · ∇v fi =

Ns∑
j=1

λi ,j (Mi ,j − fi) , i = 1, . . . , Ns , (113)

where ai describes the acceleration of particles of species i , λi ,j is the collision frequency

between species i and j , and

Mi ,j = Mi ,j [fi , fj](x , v , t) = ni

(
mi
2πTi ,j

) d
2

exp

(
−
mi |v − u i ,j |2

2Ti ,j

)
, (114)

ni =

ˆ
Rd
fi dv , (115)

ρi = mini =

ˆ
Rd
mi fi dv , (116)

u i =
1

ρi

ˆ
Rd
miv fi dv =

´
Rd miv fi dv´
Rd mi fi dv

=

´
Rd v fi dv´
Rd fi dv

, (117)

u i ,j =
λi ,jρiu i + λj,iρju j
λi ,jρi + λj,iρj

=
λi ,jρi

λi ,jρi + λj,iρj
u i +

λj,iρj
λi ,jρi + λj,iρj

u j , (118)

Ti =
2

dni

ˆ
Rd

mi
2
|v − u i |2fi dv , (119)

44

July 8, 2022 E. Habbershaw and S.M. Wise

Ti ,j =
λi ,jniTi + λj,injTj
λi ,jni + λj,inj

+
λi ,jρi (|u i |2 − |u i ,j |2) + λj,iρj (|u j |2 − |u j,i |2)

d(λi ,jni + λj,inj)
. (120)

The mixture velocities and temperatures, u i ,j and Ti ,j , are chosen so that certain collision

invariances hold, as we show momentarily. The existence and uniqueness of nonnegative mild

solutions to the multispecies BGK equation was proved by Klingenberg & Pirner (2018) [7],

for periodic physical space and under certain restrictions on the collision frequencies.

It is straightforward to check that the proposed system satisfies the usual conservation

properties and an entropy dissipation property via an H-Theorem-like result. See [4] for details.

In this next computation, we show that the system, as defined above, satisfies certain collision

invariances.

Lemma 3.1. If the mixture velocities u i ,j and the mixture temperatures Ti ,j are given by

expressions (118) and (120), respectively, then the multispecies BGK collision operators

Qi ,j [fi , fj] = λi ,j(Mi ,j − fi) (121)

satisfy the following conservation properties, which correspond to the conservation of mass,

total momentum, and total energy: for any i , j ∈ {1, . . . , Ns},
ˆ
Rd
λi ,j(Mi ,j − fi) dv = 0, (122)

ˆ
Rd
λi ,j(Mi ,j − fi)miv dv +

ˆ
Rd
λj,i(Mj,i − fj)mjv dv = 0, (123)

ˆ
Rd
λi ,j(Mi ,j − fi)mi |v |2 dv +

ˆ
Rd
λj,i(Mj,i − fj)mj |v |2 dv = 0. (124)

Proof. Recall that the Maxwellians are expressed as

Mi ,j = Mi ,j [fi , fj] = ni

(
mi
2πTi ,j

) d
2

exp

(
−
mi |v − u i ,j |2

2Ti ,j

)
,

where u i ,j and Ti ,j are functions of (ni , u i , Ti , mi), and (nj , u j , Tj , mj). We will make use of

the following facts:

ˆ
Rd
exp(−|s|2) ds = π

d
2 , (125a)

ˆ
Rd
s exp(−|s|2)d s = 0, (125b)

45

July 8, 2022 E. Habbershaw and S.M. Wise

ˆ
Rd
|s|2 exp(−|s|2) ds =

d

2
π
d
2 . (125c)

For what follows, the following substitution is used multiple times:

s =
v − u i ,j(
2Ti ,j
mi

) 1
2

=⇒ v − u i ,j = s
(
2Ti ,j
mi

) 1
2

=⇒ v = s

(
2Ti ,j
mi

) 1
2

+ u i ,j (126a)

ds =

(
mi
2Ti ,j

) d
2

dv =⇒ dv =

(
2Ti ,j
mi

) d
2

ds. (126b)

1. First, consider

I1 :=

ˆ
λi ,j(Mi ,j − fi)dv

= λi ,j

ˆ (
ni

(
mi
2πTi ,j

) d
2

exp

(
−
mi |v − u i ,j |2

2Ti ,j

)
− fi

)
dv

= λi ,jni

(
mi
2πTi ,j

) d
2
ˆ
exp

−
∣∣∣∣∣∣∣
v − u i ,j(
2Ti ,j
mi

) 1
2

∣∣∣∣∣∣∣
2 dv − λi ,j ˆ fi dv . (127)

Using the substitution given in (126) and Equation (125a), we have

I1 = λi ,jni

(
mi
2πTi ,j

) d
2
ˆ
e−|s|

2

(
2Ti ,j
mi

) d
2

ds − λi ,jni

= λi ,jniπ
− d
2π

d
2 − λi ,jni

= λi ,jni − λi ,jni
= 0. (128)

2. Next, consider

I2 :=

ˆ
QBGKi,j mivdv +

ˆ
QBGKj,i mjvdv

=

ˆ
λi ,j(Mi ,j − fi)mivdv +

ˆ
λj,i(Mj,i − fj)mjvdv

= λi ,jmi

ˆ
(Mi ,jv − fiv)dv + λj,imj

ˆ
(Mj,iv − fjv)dv

46

July 8, 2022 E. Habbershaw and S.M. Wise

= λi ,jmi

ˆ (
ni

(
mi
2πTi ,j

) d
2

exp

(
−
mi |v − u i ,j |2

2Ti ,j

)
v − fiv

)
dv

+ λj,imj

ˆ (
nj,i

(
mj
2πTj,i

) d
2

exp

(
−
mj |v − u i ,j |2

2Tj,i

)
v − fjv

)
dv

= λi ,jmini

(
mi
2πTi ,j

) d
2
ˆ
exp

(
−
mi |v − u i ,j |2

2Ti ,j

)
vdv − λi ,jmi

ˆ
fivdv

+ λj,imjnj

(
mj
2πTj,i

) d
2
ˆ
exp

(
−
mj |v − u i ,j |2

2Tj,i

)
vdv − λj,imj

ˆ
fjvdv . (129)

Using Equation (125b) and the same substitution as before (Equation (126)), we have

I2 = λi ,jmini

(
mi
2πTi ,j

) d
2
(
2Ti ,j
mi

) d
2

[ˆ (
2Ti ,j
mi

) 1
2

se−|s|
2

ds + u i ,j

ˆ
e−|s|

2

ds

]
− λi ,jρiu i

+ λj,imjnj

(
mj
2πTj,i

) d
2
(
2Tj,i
mj

) d
2

[ˆ (
2Tj,i
mj

) 1
2

se−|s|
2

ds + u j,i

ˆ
e−|s|

2

ds

]
− λj,iρju j

= λi ,jminiπ
− d
2

[
0 + u i ,jπ

d
2

]
− λi ,jρiu i + λj,imjnjπ−

d
2

[
0 + u j,iπ

d
2

]
− λj,iρju j

= λi ,jminiu i ,j − λi ,jρiu i + λj,imjnju j,i − λj,iρju j . (130)

Since, u i ,j = u j,i we have

u i ,j =
λi ,jρiu i + λj,iρju j
λi ,jρi + λj,iρj

(131)

⇐⇒ u i ,j (λi ,jmini + λj,imjnj) = λi ,jρiu i + λj,iρju j (132)

⇐⇒ I2 = 0. (133)

3. Finally, consider

I3 :=

ˆ
QBGKi,j mi

|v |2

2
dv +

ˆ
QBGKj,i mj

|v |2

2
dv

=

ˆ
λi ,j(Mi ,j − fi)mi

|v |2

2
dv +

ˆ
λj,i(Mj,i − fj)mj

|v |2

2
dv

= λi ,jmi

ˆ
ni

(
mi
2πTi ,j

) d
2

exp

(
−
mi |v − u i ,j |2

2Ti ,j

)
|v |2

2
dv − λi ,jmi

ˆ
fi
|v |2

2
dv

+ λj,imj

ˆ
nj

(
mj
2πTj,i

) d
2

exp

(
−
mj |v − u i ,j |2

2Tj,i

)
|v |2

2
dv − λj,imj

ˆ
fj
|v |2

2
dv

47

July 8, 2022 E. Habbershaw and S.M. Wise

= λi ,jmini

(
mi
2πTi ,j

) d
2
ˆ
exp

(
−
mi |v − u i ,j |2

2Ti ,j

)
|v |2

2
dv − λi ,jmi

ˆ
fi
|v |2

2
dv

+ λj,imjnj

(
mj
2πTj,i

) d
2
ˆ
exp

(
−
mj |v − u i ,j |2

2Tj,i

)
|v |2

2
dv − λj,imj

ˆ
fj
|v |2

2
dv .

(134)

For simplicity, we examine the first two terms of this equation separately, and infer the

final forms of the other two terms by switching the indices i ↔ j .

First consider the integral

I3,1 :=
1

2
λi ,jmini

(
mi
2πTi ,j

) d
2
ˆ
exp

(
−
mi |v − u i ,j |2

2Ti ,j

)
|v |2dv . (135)

Using |v | = |u i ,j + (v − u i ,j)|, note that

|v |2 = |u i ,j + (v − u i ,j)|2

= (u i ,j + (v − u i ,j))T (u i ,j + (v − u i ,j))

= uTi,ju i ,j + (v − u i ,j)Tu i ,j + uTi,j(v − u i ,j) + (v − u i ,j)T (v − u i ,j)

= |u i ,j |2 + vTu i ,j − uTi,ju i ,j + uTi,jv − uTi,ju i ,j + |v − u i ,j |2

= −|u i ,j |2 + 2uTi,jv + |v − u i ,j |2. (136)

Next, using the substitution given in (126), the integral becomes

I3,1 =
1

2
λi ,jmini

(
mi
2πTi ,j

) d
2
ˆ
exp

(
−
mi |v − u i ,j |2

2Ti ,j

)
|v |2dv

=
1

2
λi ,jmini

(
mi
2πTi ,j

) d
2

[(
−|u i ,j |2

) ˆ
e−|s|

2

(
2Ti ,j
mi

) d
2

ds

+ 2uTi,j

ˆ (
s

(
2Ti ,j
mi

) 1
2

+ u i ,j

)
e−|s|

2

(
2Ti ,j
mi

) d
2

ds

+

ˆ ∣∣∣∣∣s
(
2Ti ,j
mi

) 1
2

∣∣∣∣∣
2

e−|s|
2

(
2Ti ,j
mi

) d
2

ds

=
1

2
λi ,jmini

(
mi
2πTi ,j

) d
2
[
− |u i ,j |2

(
2Ti ,j
mi

) d
2

π
d
2

48

July 8, 2022 E. Habbershaw and S.M. Wise

+ 2

(
2Ti ,j
mi

) 1
2
(
2Ti ,j
mi

) d
2

uTi,j

ˆ
se−|s|

2

ds

+ 2

(
2Ti ,j
mi

) d
2

uTi,ju i ,j

ˆ
e−|s|

2

ds +

(
2Ti ,j
mi

)(
2Ti ,j
mi

) d
2
ˆ
|s|2e−|s|2ds

]
=
1

2
λi ,jmini

(
mi
2Ti ,j

) d
2

π−
d
2

[
−|u i ,j |2

(
2Ti ,j
mi

) d
2

π
d
2 + 0

+2|u i ,j |2
(
2Ti ,j
mi

) d
2

π
d
2 +

(
2Ti ,j
mi

)(
2Ti ,j
mi

) d
2 d

2
π
d
2

]
, (137)

where we have used the facts in Equations (125a), (125b), and (125c). Thus,

I3,1 =
1

2
λi ,jmini

(
mi
2πTi ,j

) d
2
ˆ
exp

(
−
mi |v − u i ,j |2

2Ti ,j

)
|v |2dv

=
1

2
λi ,jmini

(
mi
2Ti ,j

) d
2

π−
d
2π

d
2

(
2Ti ,j
mi

) d
2
[
|u i ,j |2 +

d

2

(
2Ti ,j
mi

)]
=
1

2
λi ,jmini |u i ,j |2 +

d

2
λi ,jmini

(
Ti ,j
mi

)
=
1

2
λi ,jρi |u i ,j |2 +

d

2
λi ,jniTi ,j . (138)

Next, using the expansion |v |2 = |u i + (v − u i)|2, as in Equation (136), we have

I3,2 :=
1

2
λi ,jmi

ˆ
fi |v |2dv

=
1

2
λi ,jmi

ˆ
fi
(
−|u i |2 + 2uTi v + |v − u i |2

)
dv

=
1

2
λi ,jmi(−|u i |2)

ˆ
fidv +

1

2
λi ,j2u

T
i

ˆ
fivdv + λi ,j

ˆ
mi
2
fi |v − u i |2dv

= −
1

2
λi ,j |u i |2mini + λi ,jρiuTi u i + λi ,j

(
d

2

)
niTi

= −
1

2
λi ,j |u i |2ρi + λi ,jρi |u i |2 +

d

2
λi ,jniTi

=
1

2
λi ,jρi |u i |2 +

d

2
λi ,jniTi . (139)

Therefore, using Equations (138), (139), and their corresponding equations (found by

49

July 8, 2022 E. Habbershaw and S.M. Wise

switching the indices i ↔ j), we get

I3 =
1

2
λi ,jρi |u i ,j |2 +

d

2
λi ,jniTi ,j −

1

2
λi ,jρi |u i |2 −

d

2
λi ,jniTi

+
1

2
λj,iρj |u j,i |2 +

d

2
λj,injTj,i −

1

2
λj,iρj |u j |2 −

d

2
λj,injTj

= 0, (140)

where we have used the definition of Ti ,j and fact that Ti ,j = Tj,i .

■

The converse of the last result is also true, as is easy to show. We omit the proof for the

sake of brevity.

Lemma 3.2. Suppose that, for any i , j ∈ {1, . . . , Ns}, the following collision invariances hold:
ˆ
Rd
λi ,j(Mi ,j − fi) dv = 0, (141)

ˆ
Rd
λi ,j(Mi ,j − fi)miv dv +

ˆ
Rd
λj,i(Mj,i − fj)mjv dv = 0, (142)

ˆ
Rd
λi ,j(Mi ,j − fi)mi |v |2 dv +

ˆ
Rd
λj,i(Mj,i − fj)mj |v |2 dv = 0. (143)

Then it must be that the mixture velocities and temperatures satisfy

u i ,j =
λi ,jρiu i + λj,iρju j
λi ,jρi + λj,iρj

(144)

Ti ,j =
λi ,jniTi + λj,injTj
λi ,jni + λj,inj

+
λi ,jρi (|u i |2 − |u i ,j |2) + λj,iρj (|u j |2 − |u j,i |2)

d(λi ,jni + λj,inj)
. (145)

50

July 8, 2022 E. Habbershaw and S.M. Wise

3.2 Numerics

To see what difficulties lie ahead for the numerical analysis of the multi-species case, let us

consider the space homogeneous problem.

As before, the space homogeneous problem is as follows:

∂fi
∂t
=

Ns∑
j=1

λi ,j(Mi ,j − fi), for i ∈ {1, · · · , Ns}. (146)

We discretize using the Backward Euler method:

f n+1i − f ni
∆t

=

Ns∑
j=1

λi ,j(M
n+1
i ,j − f

n+1
i) (147)

⇐⇒ f n+1i = f ni + ∆t

Ns∑
j=1

λi ,jM
n+1
i ,j − ∆tf

n+1
i

Ns∑
j=1

λi ,j (148)

⇐⇒ f n+1i

(
1 + ∆t

Ns∑
j=1

λi ,j

)
= f ni + ∆t

Ns∑
j=1

λi ,jM
n+1
i ,j (149)

⇐⇒ f n+1i =
f ni + ∆t

∑Ns
j=1 λi ,jM

n+1
i ,j

1 + ∆t
∑Ns
j=1 λi ,j

. (150)

Note that Equation (150) has the terms Mn+1i ,j . Recall that in the single species case,

the moments are constant with respect to time. Thus, the Maxwellian is also constant with

respect to time, so that Mn = Mn+1. This is not the case in the multispecies case, since

the moments are nonzero, in general, and it represents a significant numerical challenge.

Care must be taken to give a proper implicit update for the collision operator, and this is the

subject of current work in the project.

As with fluid equations, spatially adaptive meshes are a requirement for highly efficient

simulations of flows with fine-scale structures in phase space. However, kinetic equations also

require adaptivity, not only for the resolution of fine scale structures, but also to address the

fact that the effective support of the kinetic distribution may vary dramatically in phase space.

Typically the size of the domain is based on the temperature of the distribution; for multi-

species problems, each species may have its own temperature, which adds a complication

not found in the single species setting. In other words, the Maxwellians may require different

phase space resolutions. One way that this can be addressed is by defining the Maxwellians

on different compatible grids that adequately resolve their individual supports.

51

July 8, 2022 E. Habbershaw and S.M. Wise

4 Summary and Next Steps

This report presents a review of basic background on the theory and numerical solution

of BGK approximations for Boltzmann-type kinetic equations. The BGK equations, which

simplify their Boltzmann equation counterparts, are highly nonlinear, nonlocal, and high-

dimensional models of particle kinetics in rarified gases and plasmas. We discuss both single

species models and self-consistent extensions to multi-species BGK models. Preliminary

work toward the efficient numerical simulation of BGK-type kinetic equations is presented via

several benchmark problems.

Theoretical aspects of single species BGK kinetic models have been presented in order

to motivate and describe the numerical methods used. In particular, conservation and en-

tropy dissipation properties were presented, along with an analysis of the space homogeneous

(no advection) problem. Numerical methods must be sophisticated enough to respect these

conservation and dissipation properties at the fully discrete level. A stable finite volume nu-

merical approximation framework has been outlined to capture potential discontinuities in

the approximate solutions. Since the problem can be numerically stiff for some parameter

regimes, implicit and semi-implicit time integration schemes are of particular importance for

stability. Particular focus is given to an implicit-explicit Runge-Kutta (IMEX-RK) time step-

ping, as they give a reasonable balance between accuracy, efficiency, and stability. However,

in some cases, fully implicit integration strategies are demanded, and the work here is a

stepping stone toward developing such algorithms and codes.

Several numerical benchmark problems and tests of the prototype MATLAB codes are

presented, including the Sod shock tube and two-stream instability test cases. The tests are

presented for 1x1v phase spaces, but code is currently under development for more realistic

higher-dimensional cases. In particular, 1x3v and 2x3v codes for “slab geometries” will be

designed and benchmarked in the near future. The numerical methods that are presented

are inherently scalable, and, thus, the only impediment for efficient and stable numerical

simulation is the increased number of degrees of freedom. An example 1x1v code, used for

numerical solutions of the Sod shock tube problem, is given in Appendix B. This work is done

to address the goal of developing practical stable and efficient semi-implicit and fully implicit

time integrator strategies for the problem.

A very brief introduction to a particular self-consistent BGK-type model for multi-species

particle kinetics is given. The combinatorial complexity of the model grows with the addition

of distinct chemical constituents, making such multi-species models even more challenging

52

July 8, 2022 E. Habbershaw and S.M. Wise

for numerical solution. There are several outstanding issues that this work will address in

the future. In particular, as in the single species case, an implicit (or, at least, semi-implicit)

approach is desired for the computation of the stiff collision operators for stability. However,

the procedures used in the single species case do not work directly in the multi-species case.

A sophisticated fixed point iterative scheme is currently in development to address this issue

in computing the implicit update. The scheme is designed to relax the implicit updates of

the velocity and temperature to appropriate values, depending on collisional frequencies that

themselves depend on the implicit moments. This allows for the desired implicit update of

the BGK collision operators. In the longer term, in addition to semi- and fully-implicit solvers,

this work will focus on the design of fast adaptive phase-space methods and block-structured

adaptive mesh refinement (AMR) that will efficiently accommodate disparate scales that

are inherent in multi-species problems, owing, for example, to disparate particle sizes and

temperatures. Incorporating implicit solver technology with AMR, especially in the context

of such highly nonlinear and nonlocal models is expected to be challenging. But, the pay-

off for efficient, stable simulation of high phase-space problems is vital to accommodate

real-world time and space scales.

53

July 8, 2022 E. Habbershaw and S.M. Wise

5 Acknowledgements

This work is supported by a contract from Oak Ridge National Laboratory under subcontract

UTB-CW24420, “BGK Kinetic Equations.” The authors wish to thank Cory Hauck (ORNL)

for several useful discussions regarding numerical methods for BGK-type equations.

54

July 8, 2022 E. Habbershaw and S.M. Wise

6 References

[1] P.L. Bhatnagar, E.P. Gross, and M. Krook. Model for collision processes in gases I:

Small amplitude processes in charged and neutral one-component systems. Phys. Rev.,

94:511, 1954.

[2] F. Coron and B. Perthame. Numerical passage from kinetic to fluid equations. SIAM J.

Numer. Anal., 28:26–42, 1991.

[3] C. Kristopher Garrett and Cory D. Hauck. A fast solver for implicit integration of the

vlasov-poisson system in the eulerian framework. SIAM J. Sci. Comput., 40, 2018.

[4] J.R. Haack, C.D. Hauck, and M.S. Murillo. A conservative, entropic multispecies bgk

model. J. Stat Phys, 168:826–856, 2017.

[5] B.B. Hamel. Kinetic model for binary gas mixtures. Physics of Fluids, 8:418–425, 1965.

[6] H. Holway. New statistical models for kinetic theory: Methods of construction. Phys.

Fluids, 9:1658, 1966.

[7] Christian Klingenberg and Marlies Pirner. Existence, uniqueness and positivity of solu-

tions for bgk models for mixtures. Journal of Differential Equations, 264, 09 2017.

[8] Christian Klingenberg, Marlies Pirner, and Gabriella Puppo. A consistent kinetic model

for a two-component mixture with an application to plasma. Kinetic and Related Models,

10(2):445–465, 2017.

[9] L. Mieussens. Discrete velocity model and implicit scheme for the bgk equation of

rarefied gas dynamics. Math. Models and Methods Appl. Sci., 10:1121–1149, 2000.

[10] L. Mieussens. Schemes for boltzmann-bgk equation in plane and axisymmetric geome-

tries. J. Comput. Phys., 162:429–466, 2000.

[11] L. Mieussens and H. Struchtrup. Numerical comparison of Bhatnagar-Gross-Krook mod-

els with proper Prandtl number. Phys. Fluids, 16:2797–2813, 2004.

[12] Stéphane Mischler. Uniqueness for the BGK-Equation in RN and Rate of Convergence
for a Semi-Discrete Scheme. Differential and Integral Equations, 9(5):1119 – 1138,

1996.

55

July 8, 2022 E. Habbershaw and S.M. Wise

[13] B. Perthame and M. Pulvirenti. Weighted L∞ bounds and uniqueness for the Boltzmann

BGK model. Archive Rat. Mech. Anal., 125(3):289–295, 1993.

[14] Benôıt Perthame. Global existence to the bgk model of boltzmann equation. J. Diff.

Eq., 82:191–205, 1989.

[15] Sandra Pieraccini and Gabriella Puppo. Implicit-explicit schemes for bgk kinetic equa-

tions. J. Sci. Comput., 32:1–28, 2007.

[16] E. Ringeissen. Thesis. PhD thesis, University of Paris VII, 1991.

[17] L. Saint-Raymond. From the BGK model to the Navier-Stokes equations. Ann. Sci.

Ecole Norm. Sup., 36:271–317, 2003.

[18] E.M. Shakhov. On the generalization of the Krook kinetic equation. Izv. Russ. Acad.

Sci. Fluid Dyn., 5:142–145, 1968.

[19] H. Struchtrup. Macroscopic Transport Equations for Rarefied Gas Flows: Approximation

Methods in Kinetic Theory. Springer Verlag, Berlin, Germany, 2005.

[20] Eleuterio Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical

Introduction. Springer, Germany, 2nd edition, 1999.

[21] W.G. Vincenti and C.H. Kruger. Introduction to Physical Gas Dynamics. Krieger,

Malabar, Florida, 1986.

[22] K. Xu. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection

with artificial dissipation and Godunov methods. J. Comput. Phys., 171:289–335, 2001.

56

July 8, 2022 E. Habbershaw and S.M. Wise

A A Technical Lemma

Lemma A.1. ˆ
Rd
|s|2e−|s|2ds =

d

2
π
d
2 . (151)

Proof.

ˆ
Rd
|s|2e−|s|2ds =

ˆ
Rd
(s21 + · · ·+ s2d)e−(s

2
1+···+s2d)ds

=

ˆ
Rd

(
d∑
j=1

s2j

)
d∏
k=1

e−s
2
k ds

=

ˆ
Rd
s21

d∏
k=1

e−s
2
k ds + · · ·+

ˆ
Rd
s2d

d∏
k=1

e−s
2
k ds

=

 d∏
k=1
k ̸=1

ˆ
R
e−s

2
k dsk

 ˆ
R
s21e

−s21ds1 + · · ·+

 d∏
k=1
k ̸=d

ˆ
R
e−s

2
k dsk

ˆ
R
s2de

−s2ddsd

=
(
π
1
2

)d−1 ˆ
R
s21e

−s21ds1 + · · ·+
(
π
1
2

)d−1 ˆ
R
s2de

−s2ddsd

= π
d−1
2

d∑
i=1

ˆ
R
s2i e

−s2i dsi , (152)

where we have used many elementary integration techniques, and the fact that
´
R e
−x2dx =

π
1
2 . It remains to determine the value of the terms of the form

´
R s
2e−s

2
ds. To that end,

utilizing integration by parts, with

u = si =⇒ du = dsi (153)

dv = 2sie
−s2i dsi =⇒ v = −e−s

2
i , (154)

we have

1

2

ˆ
R
2s2i e

−s2i dsi =
1

2

[[
−sie−s

2
i

]∞
−∞
−
ˆ
R
−e−s2i dsi

]
=
1

2

ˆ
R
e−s

2
i dsi

=
1

2
π
1
2 . (155)

57

July 8, 2022 E. Habbershaw and S.M. Wise

Thus, Equation (152) gives us

ˆ
Rd
|s|2e−|s|2ds = π

d−1
2

d∑
i=1

1

2
π
1
2 = π

d−1
2

(
d

2
π
1
2

)
=
d

2
π
d
2 , (156)

as desired. ■

58

July 8, 2022 E. Habbershaw and S.M. Wise

B Code

The MATLAB code listed in this appendix is that used to generate the results of Section 2.5.2

for the Sod shock tube benchmark problem. This code is developed for prototyping and

demonstration purposes only and is not meant to represent production-quality software.

B.1 Main Driver: vlasovPoissonBGKMain.m

% Script to solve Vlasov-Poisson-BGK Equation:

%

% 1X1V

%

% f t + v * f x + a * f v = 1/tau * (M-f)

%

% This set of code is designed to solve the Sod Shock tube problem.

% In the limit as (\tau -> 0) or (\lambda -> \infty), BGK -> Euler.

% So, for the current test, set tau=10ˆ{-N}, set a = 0.

%

% Scheme:

% IMEX RK: Explicit Advection, Implicit Collision.

%

clear;

clc;

tic

%

% Number of ghost cells:

del = 1;

%

% Collision time:

tau = 10ˆ(-4);

%

% Theta values for minmod:

thetaX = 2;

thetaV = 2;

%

% Spatial domain:

xL = -0.5;

xR = 0.5;

59

July 8, 2022 E. Habbershaw and S.M. Wise

%

% Number of cells:

Nx = 256;

%

% Cell edge points:

x = linspace(xL,xR,Nx+1);

%

% Cell center points:

xC = x(1:end-1) + 0.5 * (x(2:end) - x(1:end-1));

xCenter = [xC(1:del) , xC , xC(end-del+1:end)];

hX = xC(2) - xC(1);

%

% Velocity domain:

vMin = -10;

vMax = 10;

%

% Number of cells:

Nv = 258;

%

% Cell edge points:

v = linspace(vMin,vMax,Nv+1);

%

% Cell center points:

vC = v(1:end-1) + 0.5 * (v(2:end) - v(1:end-1));

vCenter = [vC(1:del) , vC , vC(end-del+1:end)];

hV = vC(2) - vC(1);

%

% Define time levels:

tInit = 0;

tFin = 0.2;

%

% Vectors for ghost cells

gVx = [1,length(xC)]+del;

gVv = [1,length(vC)]+del;

%

tableNum = 8;

[Ae,be,ce,Ai,bi,ci] = butcherTable(tableNum);

butcher.Ae = Ae; butcher.Ai = Ai;

butcher.be = be; butcher.bi = bi;

butcher.ce = ce; butcher.ci = ci;

60

July 8, 2022 E. Habbershaw and S.M. Wise

%

% Stiffness matrix for the Poisson solve...zero Dirichlet BC

% (as per the test problems). This is not needed for the Sod problem,

% but I kept it so I didn't have to change all my function

% dependencies.

%

temp = zeros(1,Nx);

temp(1)=2; temp(2)=-1;

A = toeplitz(temp);

A(1,1) = 3; A(end,end) = 3;

%

grid.del = del;

grid.gVx = gVx; grid.Nx = Nx; grid.xC = xC; grid.xCenter = xCenter;

grid.gVv = gVv; grid.Nv = Nv; grid.vC = vC; grid.vCenter = vCenter;

grid.hX = hX;

grid.hV = hV;

grid.xL = xL ; grid.xR = xR ;

grid.vMin = vMin; grid.vMax = vMax;

grid.tInit = tInit; grid.tFin = tFin;

grid.thetaX = thetaX;

grid.thetaV = thetaV;

%

testNum = 1;

[f] = initialCondition(testNum,grid);

%

[tVec,y,MAX] = vlasovPoissonBGKSolver(f,butcher,grid,tau,A,f);

%

figure(107)

pcolor(xC,vC,y);

title(['Contour plot of computed f, in the Velocity/Space', ...

' Domain, for Time t = ', num2str(tFin), ' '])

xlabel('x')

ylabel('v')

shading interp;

colormap(jet);

colorbar;

%

toc

%

%%

61

July 8, 2022 E. Habbershaw and S.M. Wise

%

% Embedded functions below:

%

%%

%

function [f] = initialCondition(testNum,grid)

%

xC = grid.xC; xCenter = grid.xCenter;

vC = grid.vC; vCenter = grid.vCenter;

%

% Initialize solution array:

f = zeros(length(vC),length(xC),1);

%

switch testNum

case 1 % tFin = 0.250

nL = 1.00000; uL = 0.00000; thetaL = 0001.000;

nR = 0.12500; uR = 0.00000; thetaR = 0000.800;

case 2 % tFin = 0.150

nL = 1.00000; uL = -2.00000; thetaL = 0000.400;

nR = 1.00000; uR = 2.00000; thetaR = 0000.400;

case 3 % tFin = 0.012

nL = 1.00000; uL = 0.00000; thetaL = 1000.000;

nR = 1.00000; uR = 0.00000; thetaR = 0000.010;

case 4 % tFin = 0.035

nL = 1.00000; uL = 0.00000; thetaL = 0000.010;

nR = 1.00000; uR = 0.00000; thetaR = 0100.000;

case 5 % tFin = 0.035

nL = 5.99924; uL = 19.59750; thetaL = 0460.894;

nR = 5.99242; uR = -6.19633; thetaR = 046.0950;

end

%

% Initial condition (make a separate function?):

%

for j = 1:length(vC)

for i = 1:length(xC)

if xCenter(i) <= 0.0

f(j,i) = nL / sqrt(2*pi*thetaL) * exp(-(vC(j)-uL)ˆ2 ...

/ (2*thetaL));

else

f(j,i) = nR / sqrt(2*pi*thetaR) * exp(-(vC(j)-uR)ˆ2 ...

62

July 8, 2022 E. Habbershaw and S.M. Wise

/ (2*thetaR));

end

end

end

%

% %Plot the initial conditions....

% figure(110)

% % pcolor(x c,v c,f);

% surf(x c,v c,f); view(-30,50); zlim([0,2.1]);

% % title(['Contour plot of f, in the Velocity/Space Domain,' ...

% ' for Time t = ',num2str(0),' '])

% xlabel('x')

% ylabel('v')

% shading interp;

% colormap(jet);

% colorbar;

%

end

%

%%

%

function [Ae,be,ce,Ai,bi,ci] = butcherTable(table)

%

% Butcher Tableaux for the IMEX-RK scheme. Tables 2-6 come from

% the Pareschi & Russo paper. Table 7 is Backward Euler. Table 8

% (needs reference, from Cory).

%

switch table

case 2

Ae = [0,0 ; 1,0];

be = [0.5 ; 0.5];

ce = [0 ; 1];

%

gam = 1-1/sqrt(2);

Ai = [gam,0 ; 1-2*gam,gam];

bi = [0.5 ; 0.5];

ci = [gam ; 1-gam];

%

case 3

Ae = [0,0,0 ; 0,0,0 ; 0,1,0];

63

July 8, 2022 E. Habbershaw and S.M. Wise

be = [0 ; 0.5 ; 0.5];

ce = [0 ; 0 ; 1];

%

Ai = [0.5,0,0 ; -0.5,0.5,0 ; 0,0.5,0.5];

bi = [0 ; 0.5 ; 0.5];

ci = [0.5 ; 0 ; 1];

%

case 4

Ae = [0,0,0 ; 0.5,0,0 ; 0.5,0.5,0];

be = [1/3 ; 1/3 ; 1/3];

ce = [0 ; 0.5 ; 1];

%

Ai = [0.25,0,0 ; 0,0.25,0 ; 1/3,1/3,1/3];

bi = [1/3 ; 1/3 ; 1/3];

ci = [0.25 ; 0.25 ; 1];

%

case 5

Ae = [0,0,0 ; 1,0,0 ; 0.25,0.25,0];

be = [1/6 ; 1/6 ; 2/3];

ce = [0 ; 1 ; 0.5];

%

gam = 1-1/sqrt(2);

Ai = [gam,0,0 ; 1-2*gam,gam,0 ; 0.5-gam,0,gam];

bi = [1/6 ; 1/6 ; 2/3];

ci = [gam ; 1-gam ; 0.5];

%

case 6

Ae = [0,0,0,0 ; 0,0,0,0 ; 0,1,0,0 ; 0,0.25,0.25,0];

be = [0 ; 1/6 ; 1/6 ; 2/3];

ce = [0 ; 0 ; 1 ; 0.5];

%

alpha = 0.24169426078821;

beta = 0.06042356519705;

eta = 0.12915286960590;

Ai = [alpha,0,0,0; -alpha,alpha,0,0; 0,1-alpha,alpha,0; ...

beta,eta,0.5-beta-eta-alpha,alpha];

bi = [0 ; 1/6 ; 1/6 ; 2/3];

ci = [alpha ; 0 ; 1 ; 0.5];

%

case 7

64

July 8, 2022 E. Habbershaw and S.M. Wise

%

% Forward Euler:

Ae = 0;

be = 1;

ce = 0;

%

% Backward Euler

Ai = 1;

bi = 1;

ci = 1;

%

case 8

gam = 1 - 1/sqrt(2);

delt = 1 - 1/(2*gam);

%

Ae = [0,0,0 ; gam,0,0 ; delt,1-delt,0];

be = [delt;1-delt;0];

ce = [0;gam;1];

%

Ai = [0,0,0 ; 0,gam,0 ; 0,1-gam,gam];

bi = [0;1-gam;gam];

ci = [0;gam;1];

end

end

Listing 1: Main driver: vlasovPoissonBGKMain.m.

65

July 8, 2022 E. Habbershaw and S.M. Wise

B.2 vlasovPoissonBGKSolver.m

function [t,Z,M] = vlasovPoissonBGKSolver(y0,butcher,grid,tau,A,f)

%

% y0 = IC grid function (j,i) = (velocity,space)

% Ae, be, ce: Butcher Tableau for explicit solve

% Ai, bi, ci: Butcher tableau for implicit solve

%

Ai = butcher.Ai;

bi = butcher.bi;

ci = butcher.ci;

Ae = butcher.Ae;

be = butcher.be;

ce = butcher.ce;

%

gVx = grid.gVx; Nx = grid.Nx; hX = grid.hX;

gVv = grid.gVv; Nv = grid.Nv; hV = grid.hV;

%

% A is the stiffness matrix for the Poisson solve.

%

% Number of ghost cells

del = grid.del;

%

% Spatial domain:

xL = grid.xL; xR = grid.xR;

%

% Velocity domain:

vMin = grid.vMin; vMax = grid.vMax;

%

% Define CFL(s)

CFLMaxX = min(hX) / max(abs(vMax),abs(vMin));

CFLMaxV = min(hV) / max(abs(xL) , abs(xR));

%

% Define initial/final time levels:

tCurrent = grid.tInit;

tFinal = grid.tFin ;

%

% size of grid function array y including ghost cells:

d = size(y0)+2*del;

66

July 8, 2022 E. Habbershaw and S.M. Wise

%

% Initialize array of solutions:

y = zeros([d,2]);

%

% Input initial conditions into solution vector

y(gVv(1):gVv(2),gVx(1):gVx(2),1) = f;

%

% Store appropriate initial values in ghost cells

for i = 1:del

y(:,gVx(1)-i,1) = y(:,gVx(1),1);

y(:,gVx(2)+i,1) = y(:,gVx(2),1);

end

for j = 1:del

y(gVv(1)-j,:,1) = y(gVv(1),:,1);

y(gVv(2)+j,:,1) = y(gVv(2),:,1);

end

%

% Number of stages of RK scheme:

s = length(ce);

%

% Initial vectors for RK scheme:

uo = zeros([d,s]);

fI = zeros([d,s]);

fE = zeros([d,s]);

M = zeros([d,s]);

%

redo = 0;

EMax = 1;

t = 1;

%

while tCurrent < tFinal

%

dt = min(0.24 * min(CFLMaxX,CFLMaxV),tFinal-tCurrent) ...

/ (1 + (redo > 0));

%

% This flag indicates that the electric field gets bigger than E max.

% If so, the step needs to recalculate.

redo = 0;

%

uo(:,:,:) = 0;

67

July 8, 2022 E. Habbershaw and S.M. Wise

uo(:,:,1) = y(:,:,1);

[~,M(:,:,1)] = BGKCollision(tCurrent,y(:,:,1),grid,tau,tCurrent);

u(:,:,1) = (tau*uo(:,:,1) + dt*Ai(1,1)*M(:,:,1)) ...

/ (tau + dt*Ai(1,1));

fI(:,:,1) = BGKCollision(tCurrent+ci(1)*dt,u(:,:,1),grid, ...

tau,tCurrent);

%

[fE(:,:,1),re] = divFlux(tCurrent+ce(1)*dt,u(:,:,1),grid,EMax,A);

redo = redo+re;

for r = 2:s

uo(:,:,r) = y(:,:,1) ...

+ dt * reshape(Ae(r,:) * reshape(permute(fE,[3,1,2]),s, ...

(Nv+2*del)*(Nx+2*del)), Nv+2*del, Nx+2*del) ...

+ dt * reshape(Ai(r,:) * reshape(permute(fI,[3,1,2]),s, ...

(Nv+2*del)*(Nx+2*del)), Nv+2*del, Nx+2*del);

%

[~,M(:,:,r)] = BGKCollision(tCurrent+ci(r)*dt,uo(:,:,r), ...

grid,tau,tCurrent);

%

u(:,:,r) = (tau*uo(:,:,r) + dt*Ai(r,r)*M(:,:,r)) ...

/ (tau + dt*Ai(r,r));

[fE(:,:,r),re] = divFlux(tCurrent+ce(r)*dt,u(:,:,r),grid,EMax,A);

redo = redo+re;

fI(:,:,r) = BGKCollision(tCurrent+ci(r)*dt,u(:,:,r), ...

grid,tau,tCurrent);

end

%

y(:,:,2) = y(:,:,1) ...

+ (dt * reshape(be' * reshape(permute(fE,[3,1,2]),s, ...

(Nv+2*del)*(Nx+2*del)), Nv+2*del,Nx+2*del) ...

+ dt * reshape(bi' * reshape(permute(fI,[3,1,2]),s, ...

(Nv+2*del)*(Nx+2*del)), Nv+2*del,Nx+2*del) ...

) * (1 - (redo > 0));

%

y(:,:,1) = y(:,:,2);

tCurrent = tCurrent + dt*(1 - (redo>0));

%

68

July 8, 2022 E. Habbershaw and S.M. Wise

% This computes the moments and Maxwellian at the final time step.

if tCurrent == tFinal

BGKCollision(tCurrent+ci(r)*dt,y(:,:,1),grid,tau,tCurrent);

end

end

%

% Return solution at final time

Z = y(gVv(1):gVv(2),gVx(1):gVx(2),1);

%

end

Listing 2: vlasovPoissonBGKSolver.m.

69

July 8, 2022 E. Habbershaw and S.M. Wise

B.3 BGKCollision.m

function [z,M] = BGKCollision(t,y,grid,tau,tCurrent)

%

del = grid.del;

hx = grid.hX; gVx = grid.gVx; x = grid.xC;

hv = grid.hV; gVv = grid.gVv; v = grid.vC;

%

% Grid function array must have ghost cells already.

M = zeros(length(x)+2*del,length(v)+2*del);

nDens = zeros(1,length(x));

mDens = zeros(1,length(x));

EDens = zeros(1,length(x));

uDens = zeros(1,length(x));

theta = zeros(1,length(x));

%

% Moment integrals: n, n*u, and E.

nDens(1:length(x)) = hv * sum(y(gVv(1):gVv(2),1+del:length(x)+del));

mDens(1:length(x)) = hv * sum(v(:).*y(gVv(1):gVv(2), ...

1+del:length(x)+del));

EDens(1:length(x)) = 0.5 * hv * sum(v(:).ˆ2 .* y(gVv(1):gVv(2), ...

1+del:length(x)+del));

uDens(:) = mDens(:)./nDens(:);

theta(:) = 2*EDens(:)./nDens(:)-uDens(:).ˆ2;

M(gVx(1):gVx(2),gVv(1):gVv(2)) = nDens(:) ./ sqrt(2*pi*theta(:)) ...

.* exp(-0.5 * abs(v - uDens(:)).ˆ2 ./ theta(:));

%

% Ghost cells: zero flow boundaries.

for i = 1:del

M(:,gVv(1)-i) = M(:,gVv(1));

M(:,gVv(2)+i) = M(:,gVv(2));

end

for j = 1:del

M(gVx(1)-j,:) = M(gVx(1),:);

M(gVx(2)+j,:) = M(gVx(2),:);

70

July 8, 2022 E. Habbershaw and S.M. Wise

end

%

if tCurrent == 0.2

%

% initial shock happens here.

x0 = 0;

gam = 3;

uL = [1,0,1]; uR = [0.125,0,0.1];

%

pDens = nDens .* theta;

%

[nSod,uSod,pSod,eSod] = sodSoln(x,tCurrent,uL,uR,gam,x0);

%

figure(1)

plot(x,nDens,'b','LineWidth',3)

hold on

plot(x,nSod,'LineWidth',3)

xlim([-0.5,0.5])

ylim([0,1])

set(gca,'fontsize',24)

legend('BGK','Euler')

hold off

%

figure(2)

plot(x,uDens,'b','LineWidth',3)

hold on

plot(x,uSod,'LineWidth',3)

xlim([-0.5,0.5])

ylim([0,1])

set(gca,'fontsize',24)

legend('BGK','Euler')

hold off

%

figure(3)

plot(x,theta,'b','LineWidth',3)

hold on

plot(x,2*eSod,'LineWidth',3)

xlim([-0.5,0.5])

ylim([0,2]) % may need to shift this

set(gca,'fontsize',24)

71

July 8, 2022 E. Habbershaw and S.M. Wise

legend('BGK','Euler')

hold off

end

%

z = (M'-y)/tau;

%

% M is a [Nv]X[Nx] array after transpose

M = M';

%

end

Listing 3: BGKCollision.m

72

July 8, 2022 E. Habbershaw and S.M. Wise

B.4 divFlux.m

function [z,redo] = divFlux(t,y,grid,EMax,A)

%

% y = grid function of f {ij}ˆk values for fixed k

%

del = grid.del;

hx = grid.hX; gVx = grid.gVx; x = grid.xCenter; thetaX = grid.thetaX;

hv = grid.hV; gVv = grid.gVv; v = grid.vCenter; thetaV = grid.thetaV;

%

fP = zeros(size(y));

fM = zeros(size(y));

gP = zeros(size(y));

gM = zeros(size(y));

%

% construct slopes

[sX(:,:),sV(:,:)] = slopeReconstruction(y,grid);

%

% % Spatial fluxes

fP(:,gVx(1):gVx(2)) = (y(:,gVx(1):gVx(2)) ...

+ 0.5*hx*sX(:,gVx(1):gVx(2))) .* v(:).*(v>0)' ...

+(y(:,gVx(1)+1:gVx(2)+1) - 0.5*hx*sX(:,gVx(1)+1:gVx(2)+1)) ...

.* v(:).*(v<=0)' ;

fM(:,gVx(1):gVx(2)) = (y(:,gVx(1)-1:gVx(2)-1) ...

+ 0.5*hx*sX(:,gVx(1)-1:gVx(2)-1)) .* v(:).*(v>0)' ...

+(y(:,gVx(1):gVx(2)) - 0.5*hx*sX(:,gVx(1):gVx(2))) ...

.* v(:).*(v<=0)' ;

%

% The electric field is unnecessary for this test, so we set it to

% zero here.

E = zeros(1,length(x));

redo = 0;

% % Velocity fluxes

gP(gVv(1):gVv(2),:) = (y(gVv(1):gVv(2),:) ...

+ 0.5*hv*sV(gVv(1):gVv(2),:)) .* E.*(E>0) ...

+ (y(gVv(1)+1:gVv(2)+1,:) - 0.5*hv*sV(gVv(1)+1:gVv(2)+1,:)) ...

.* E.*(E<=0) ;

gM(gVv(1):gVv(2),:) = (y(gVv(1)-1:gVv(2)-1,:) ...

73

July 8, 2022 E. Habbershaw and S.M. Wise

+ 0.5*hv*sV(gVv(1)-1:gVv(2)-1,:)) .* E.*(E>0) ...

+ (y(gVv(1):gVv(2),:) - 0.5*hv*sV(gVv(1):gVv(2),:)) ...

.* E.*(E<=0) ;

z = - (fP - fM)/hx - (gP - gM)/hv;

end

Listing 4: divFlux.m

74

July 8, 2022 E. Habbershaw and S.M. Wise

B.5 slopeReconstruction.m

function [sX,sV] = slopeReconstruction(y,grid)

%

sX = zeros(size(y));

sV = zeros(size(y));

%

del = grid.del;

hx = grid.hX; gVx = grid.gVx; thetaX = grid.thetaX;

hv = grid.hV; gVv = grid.gVv; thetaV = grid.thetaV;

%

SV(:,:,1) = (y(gVv(1)+1:gVv(2)+1,gVx(1):gVx(2)) ...

- y(gVv(1)-1:gVv(2)-1,gVx(1):gVx(2))) / 2 ;

SV(:,:,2) = thetaV * (y(gVx(1):gVv(2),gVx(1):gVx(2)) ...

- y(gVv(1)-1:gVv(2)-1,gVx(1):gVx(2))) ;

SV(:,:,3) = thetaV * (y(gVx(1)+1:gVv(2)+1,gVx(1):gVx(2)) ...

- y(gVv(1):gVv(2),gVx(1):gVx(2))) ;

%

sV(gVv(1):gVv(2),gVx(1):gVx(2)) = minMod(SV)/hv;

%

SX(:,:,1) = (y(gVv(1):gVv(2),gVx(1)+1:gVx(2)+1) ...

- y(gVv(1):gVv(2),gVx(1)-1:gVx(2)-1)) / 2 ;

SX(:,:,2) = thetaX * (y(gVx(1):gVv(2),gVx(1):gVx(2)) ...

- y(gVv(1):gVv(2),gVx(1)-1:gVx(2)-1)) ;

SX(:,:,3) = thetaX * (y(gVx(1):gVv(2),gVx(1)+1:gVx(2)+1) ...

- y(gVv(1):gVv(2),gVx(1):gVx(2))) ;

%

sX(gVv(1):gVv(2),gVx(1):gVx(2)) = minMod(SX)/hx;

%

for i = 1:del

sX(:,gVx(1)-i) = sX(:,gVx(1));

sX(:,gVx(2)+i) = sX(:,gVx(2));

end

for j = 1:del

sV(gVv(1)-j,:) = sV(gVv(2),:);

sV(gVv(2)+j,:) = sV(gVv(1),:);

end

%

75

July 8, 2022 E. Habbershaw and S.M. Wise

end

Listing 5: slopeReconstruction.m

76

July 8, 2022 E. Habbershaw and S.M. Wise

B.6 minMod.m

function M = minMod(x)

%

M(:,:) = 0.25*abs(sign(x(:,:,1))+sign(x(:,:,2))) ...

.*(sign(x(:,:,1))+sign(x(:,:,3))).* min(abs(x),[],3);

%

end

Listing 6: minMod.m

77

July 8, 2022 E. Habbershaw and S.M. Wise

B.7 sodSoln.m

function [n,u,p,e] = sodSoln(x,tCurrent,phiL,phiR,gam,x0)

%

% Script to compute theoretical sod solution at given time with

% given gamma.

%

%

% phiL and phiR are ordered as (n,u,p)

nL = phiL(1); uL = phiL(2); pL = phiL(3);

nR = phiR(1); uR = phiR(2); pR = phiR(3);

%

% This function does an iterative solve to compute the value of

% pStar.

pStar = pStarSolve(10ˆ(-8));

thL = pL / nL;

thR = pR / nR;

aL = sqrt(3*thL);

aStarL = aL * (pStar/pL)ˆ((gam-1)/(2*gam));

aR = sqrt(3*thR);

nFan = nL * (2/(gam+1) + (gam-1)*(uL-x/tCurrent) ...

/(gam+1)/aL).ˆ(2/(gam-1));

nStarL = nL * (pStar/pL)ˆ(1/gam);

nStarR = nR * ((pStar/pR + (gam-1)/(gam+1)) ...

/ ((gam-1)*pStar/(gam+1)/pR + 1));

uFan = 2/(gam+1) * (aL + (gam-1)*uL/2 + x/tCurrent);

uStar = uL - 2*aL / (gam-1) * ((pStar/pL)ˆ((gam-1)/(2*gam)) - 1);

pFan = pL * (2/(gam+1) + (gam-1)*(uL-x/tCurrent) ...

/ (gam+1) / aL).ˆ(2*gam/(gam-1));

eL = 0.5*pL/nL;

eStarL = 0.5*pStar/nStarL;

eStarR = 0.5*pStar/nStarR;

78

July 8, 2022 E. Habbershaw and S.M. Wise

eR = 0.5*pR/nR;

sHL = uL - aL;

sTL = uStar - aStarL;

%

% speed of the contact wave.

% lambda 2(U star L) = S 2 = lambda 2(U star R)

% Toro book: Equation 2.134, and page 96

sC = uStar;sR = uR + aR*((gam+1)*pStar / (2*gam*pR) ...

+ 0.5*(gam-1)/gam)ˆ(0.5);

nFunc = @(x) nL .* ((x<x0 + sHL*tCurrent)) ...

+ nFan .* ((x0 + sHL*tCurrent <= x) & (x < x0 + sTL*tCurrent)) ...

+ nStarL .* ((x0 + sTL*tCurrent <= x) & (x < x0 + sC*tCurrent)) ...

+ nStarR .* ((x0 + sC*tCurrent <= x) & (x < x0 + sR*tCurrent)) ...

+ nR .* ((x0 + sR*tCurrent <= x));

uFunc = @(x) uL .* ((x<x0 + sHL*tCurrent)) ...

+ uFan .* ((x0 + sHL*tCurrent <= x) & (x < x0 + sTL*tCurrent)) ...

+ uStar .* ((x0 + sTL*tCurrent <= x) & (x < x0 + sR*tCurrent)) ...

+ uR .* ((x0 + sR*tCurrent <= x));

pFunc = @(x) pL .* ((x<x0 + sHL*tCurrent)) ...

+ pFan .* ((x0 + sHL*tCurrent <= x) & (x < x0 + sTL*tCurrent)) ...

+ pStar .* ((x0 + sTL*tCurrent <= x) & (x < x0 + sR*tCurrent)) ...

+ pR .* ((x0 + sR*tCurrent <= x));

eFunc = @(x) eL .* ((x<x0 + sHL*tCurrent)) ...

+ (0.5*pFan./nFan) .* ((x0 + sHL*tCurrent <= x) ...

& (x < x0 + sTL*tCurrent)) ...

+ eStarL .* ((x0 + sTL*tCurrent <= x) & (x < x0 + sC*tCurrent)) ...

+ eStarR .* ((x0 + sC*tCurrent <= x) & (x < x0 + sR*tCurrent)) ...

+ eR .* ((x0 + sR*tCurrent <= x));

n = nFunc(x);

u = uFunc(x);

p = pFunc(x);

e = eFunc(x);

79

July 8, 2022 E. Habbershaw and S.M. Wise

end

Listing 7: sodSoln.m

80

July 8, 2022 E. Habbershaw and S.M. Wise

B.8 pStarSolve.m

function pStar = pStarSolve(TOL)

%

% Newton Raphson to compute the pressure in Sod problem.

%

ERR = 1;

%

% Initial guess.

pOld = 0.9;

k = 0;

%

while ERR > TOL

pNew = pOld - (sqrt(3)*pOldˆ(1/3) - sqrt(3) + ...

2*(pOld-0.1)/sqrt(pOld+0.05)) / (sqrt(3)*pOldˆ(-2/3)/3 ...

+ 2*(pOld+0.05)ˆ(-0.5) - (pOld-0.1)*(pOld+0.05)ˆ(-1.5));

ERR = abs(pOld-pNew) / (0.5*(pOld+pNew));

pOld = pNew;

k = k+1;

end

%

pStar = pNew;

%

end

Listing 8: pStarSolve.m

81

	A Progress Report on Numerical Methods for BGK-Type Kinetic Equations
	Recommended Citation

	Introduction
	Single Species BGK Kinetic Models
	Collision Invariants
	Space-Homogeneous Problem
	The H-Theorem
	Numerical Approximation
	Finite Volume Space and Velocity Discretization
	Implicit-Explicit Runge Kutta Time Stepping
	Fully Discrete Scheme
	Poisson Solver for Vlasov-Poisson-BGK Equation

	Sample Computations and Accuracy Tests
	Relaxation Test
	Sod Shock Tube (Euler Equation Limit of BGK)
	Square Pulse Rotation
	Two Stream Instability (Vlasov-Poisson)
	Landau Damping (Vlasov-Poisson)

	Multispecies BGK Equations
	Theory
	Numerics

	Summary and Next Steps
	Acknowledgements
	References
	A Technical Lemma
	Code
	Main Driver: vlasovPoissonBGKMain.m
	vlasovPoissonBGKSolver.m
	BGKCollision.m
	divFlux.m
	slopeReconstruction.m
	minMod.m
	sodSoln.m
	pStarSolve.m

