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Abstract: Hemlock woolly adelgid (Adelges tsugae Annand, HWA) remains the single greatest threat to
the health and sustainability of hemlock in the eastern USA. The loss of hemlock trees leads to further
negative impacts on the diversity and stability of ecosystems in the eastern part of North America.
It is, therefore, urgent to develop effective control measures to reduce HWA populations and promote
overall hemlock health. Currently available individual and integrated approaches should continue
to be evaluated in the laboratory and in the field along with the development of other new and
innovative methods.
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1. Background

1.1. Hemlock Trees

Hemlock trees are critical ecological components in the eastern USA that provide habitat for
aquatic and terrestrial species [1,2]. Hemlocks are coniferous trees with seed cones that are members
of the Tsuga genus in the Pinaceae family. The Tsuga genus contains nine species [3]. Five species
(T. chinensis, T. diversifolia, T. dumosa, T. forrestii, and T. sieboldii) are found in Asia and two further
species (T. heterophylla, and T. mertensiana) occur in western North America. The remaining two
species T. canadensis (Eastern hemlock) and T. caroliniana (Carolina hemlock) are native to eastern
North America.

Eastern hemlock trees are quite impressive, reaching up to 50 meters (m) in height with trunks of
more than 2 m in diameter and a lifespan over 500 years [4]. Carolina hemlocks are approximately
20 m tall, with trunks ranging from 0.5 to 1.0 m in diameter, and populate only a small area of the
eastern United States [5]. The density of hemlocks in the forests and national parks not only provides
aesthetic appeal, but offers shade to help regulate stream temperatures, habitats, and wood for framing,
sheathing, subflooring and pulpwood [1,6].

Hemlocks are slow-growing and long-lived trees. A hemlock stand tends to create an environment
that is suitable for its expansion [1]. The soil surface of the stand is kept from drying out under the
hemlock canopies. Hemlocks are extremely shade tolerant and eventually outcompete other tree
species due to lack of sunlight [1,7]. Given adequate moisture, hemlock trees could easily become
dominant or codominant in coniferous and mixed-hardwood forests [1,8–10].
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1.2. Hemlock Woolly Adelgid

The hemlock woolly adelgid (Adelges tsugae Annand, HWA), is a small invasive insect of the order
Hemiptera that is primarily responsible for the decline of hemlock trees (Tsuga spp.) in the eastern
USA [2,11,12]. A typical adult HWA individual is less than 1.5 millimeters (mm) long, so attacks
can go unnoticed until the HWA fully infests a hemlock tree [5]. HWA uses its mouthparts (known
as stylets), to pierce the base of needles on hemlock twigs, penetrating and feeding on xylem ray
parenchyma cells to deplete its nutrient reserves. This process either renders the infested hemlock trees
more susceptible to other pests or alters their response to environmental stresses [13], although the
physiological mechanisms leading to the mortality are still elusive [14–16]. Eastern North American
hemlocks have evolved chemical defences to protect against chewing insects, but they are highly
vulnerable to sap-sucking insect such as HWA infestations [17,18].

2. The Introduction of HWA to Eastern North America

HWA was first recorded along the east coast of the USA in Maymont Park, Virginia in 1951 [5].
However, Havill’s group [19] postulated that the introduction of the HWA into Virginia could be
traced back to 1911 when a Japanese gardener was hired to create a traditional style Japanese garden
with imported exotic ornamental hemlocks for local landowners. To determine the geographic origin
of HWA in North America, Havill and associates conducted phylogenetic analysis by comparing
the mitochondrial DNA sequences of HWA samples collected from Asia and North America. Eight
distinguishable HWA linages that vary in life cycle, historical biogeography, and host specialization
are identified. The lineage of western North America demonstrated higher genetic variation than
those in eastern North American, Japan, and Mainland China [20,21]. This suggests the colonization
of western North America might have occurred prior to the last glacial period by adelgids directly
ancestral to those in southern Japan (perhaps carried by birds, rather than through active dispersal of
winged adelgid adults, which are not strong enough to travel across long distances like the Bering land
bridge in order to colonize western North America). In contrast, only one haplotype was identified in
all HWA samples in eastern North America (from Massachusetts to West Virginia) and the haplotype
was the same as those collected from hemlock (T. sieboldii) of Honshu, Japan, indicating that modern
invasion of HWA in eastern North America originates in southern Japan [20,21]. This lack of genetic
diversity of HWA in eastern North America, and its ability to reproduce asexually may be beneficial
for its colonization because HWA will be more likely to establish without the constraint of finding
mates in low population density locations [22].

The extensive spread of HWA since its introduction has caused the significant decline of hemlocks
from New England to the southern Appalachians [5]. Since the mid-1990s, Evans and colleagues
have monitored HWA infestation levels annually and also the growth of new twigs on 78 permanent
hemlock plots in the Delaware Water Gap National Recreation Area. By 2008, approximately 30% of
the hemlock trees had died, and it was projected that without effective intervention 80% of hemlocks
will die by 2022 [23].

3. Life and Reproductive Cycle of HWA

The inoculation of even just a single ovisac could establish and subsequently initiate the next
HWA generation (sistens) in approximately 39% of host hemlock trees [22]. The ability of HWA to
reproduce at this incredibly rapid rate has put intense stress on the hemlock tree population [24,25].
In eastern North America, HWA is parthenogenetic [24]. Two generations of HWA are produced each
year in eastern North America: progrediens (the spring generation that remain on hemlock), and
sistens (an overwintering generation) [26]. The progrediens have two forms: a wingless form that
remains on the hemlock and a winged form called sexuparae that flies in search of a suitable host
spruce tree [27]. Newly hatched nymphs (also known as crawlers) can be dispersed (i.e., via wind
or animals), crawl to new growth on the hemlock trees or settle on foliage [5]. In contrast, sexupara,



Int. J. Environ. Res. Public Health 2017, 14, 438 3 of 17

which are rare except where HWA populations are extremely dense, will fly from the originating
hemlock trees in search of their primary host, the tigertail spruce (Picea torano (Siebold ex K.Koch)
Koehne), for sexual reproduction and on which to deposit eggs. This species of spruce is not present in
North America, so this portion of the population dies before sexual reproduction occurs [28]. Crawlers
will mature by late May and produce woolly ovisacs containing eggs of the sistens generation in the
beginning of June. The sistens generation is wingless, hatches in late spring, overwinters, and survives
for about nine months. Shortly after the sistens eggs hatch, the first instar nymphs relocate to the base
of needles and become dormant (aestivation) in a few days until the fall when the sistens nymphs
break dormancy and begin to feed and develop throughout the winter [27,29,30]. The development
of sistens takes advantage of the situation in late fall and early spring when few natural enemies are
active and hemlocks produce abundant quantities of nutrients [27,29–31]. Adult sistens begin to lay
approximately 50–300 eggs in late winter or early spring. Adult progrediens typically lay few eggs,
but their offspring mature rapidly after hatching.

In Japan, HWA can switch hosts between hemlocks and the spruce during their life cycle.
In contrast, the lack of suitable spruce trees in the eastern part of the USA provides a natural defence
against the spread of sexuparae. In the northeastern region of the USA, natural causes (the weather,
birds and animals) are considered to be the main drivers that keeps the spread of HWA very active and
ongoing [27]. Birds and deer not only depend on hemlock trees for shelter and nests but also provide
modes of transportation for HWA migration [32].

4. Ecological Impacts of HWA in Southern Appalachian Mountains

Hemlock woolly adelgids attack hemlock trees of all ages and sizes, and infested trees seldom
recover [33,34]. Environments where leaf litter is found naturally provide functionality for the entire
ecosystem to help protect and nourish the soil and enable animals to reproduce and survive. Nutrient
inputs, particularly leaf litter nitrogen, can influence soil nitrogen availability [35–38]. In southern
New England, HWA-induced ecological disturbance were associated with the increased N cycling and
N turnover rates [39]. In addition, annual nitrification rates were 29 times higher in HWA infested
areas than that under healthy forests, implying if nitrate leaching occurs in affected regions, it could
lead to freshwater pollution in streambeds and in ravines [39,40].

The impact of HWA infestation on hemlock mortality in particular and on the forest ecological
system in general could vary at different geological locations in the eastern USA. Eschtruth et al. [41]
reported that HWA infestation in the Delaware Water Gap National Recreation Area (at the northern
end of the hemlock range) resulted in a more gradual decline of hemlocks partially due to the severe
winter extremes in the northern region. In contrast, the southern region of the USA (including the
Shenandoah National Park in Virginia) has experienced a more rapid decline of hemlocks due to HWA
infestation [42]. The Great Smoky Mountains National Park (GSMNP), which straddles the border
between North Carolina and Tennessee, has more hemlock trees than any other park within the USA
and has been greatly affected by infestation of the HWA.

Young hemlock trees between the ages of 75 and 100 years old span across 364,000,000 square
meters in the Smoky Mountain Range. Old-growth hemlock trees that are over 100 years old spread
across an additional 3,200,000 square meters of land. Since its first report in 2002, HWA in the Great
Smoky Mountains has spread throughout the mountain range and infested many hemlock trees of all
ages [43]. Nuckolls and colleagues [33] conducted one of the first studies examining the short-term
impact of HWA infestations on the hemlock trees in Nantahala Mountain Range of North Carolina.
In 2004, the investigators created two sets of plots: the girdled plots in which hemlock tress were
girdled by handsaw or chainsaw to sever the cambium, phloem and sapwood, and the infestation plots
which comprised of HWA-infested hemlock tress. It was anticipated that a rapid decline of hemlock
trees (as indicated by reduced basal area growth and enhanced leaf litter fall) would occur in girdled
plots compared to a slower progression of decline in HWA-infested plots. Girdled hemlock trees did
decline more rapidly compared to trees in the HWA-infested plots during the first few months [33] but
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unexpectedly HWA-infested hemlocks then experienced an accelerated decline, and by the third year
of infestation, there was no difference in basal area increment between the two sets of plots [33].

Similarly, in the first year of the girdled plot, the leaf litter was 1.5 times greater than that in
the HWA infested plots; however, by the second year, the leaf litter became only a third of that
in the HWA infested plots. This observation suggests that the hemlock tree decline is progressing
more quickly in the southern Appalachians, which will significantly impact carbon and nutrition
cycling, and subsequently alter the landscape and function of the forests [33,34]. If hemlocks in the
southern Appalachians are replaced by Rhododendron maximum L., an evergreen ericaceous shrub that
favours soils of high organic content and low nutrient availability, it will restrict the recruitment of
other, more productive species into the canopy and dictate future patterns of species regenerations in
HWA-infested areas [33,34].

The thinning of the hemlock canopy and subsequent increase of light transmission to understory
enables seedling regeneration [39]. Northern red oak (Quercus rubra L.) is a common replacement
species in the eastern USA for declining hemlock stands. However, oaks may grow more slowly in
such situations than in typical oak stands due the reduced mycorrhizal inoculum potential in infested
hemlock stands [44]. While the increased eastern hemlock mortality due to HWA infestation would
immediately decrease forest water use, the red oak, once established, could consume twice the amount
of water [45] and increase summertime water use, reduce aquatic habitat, and decrease stream flow
and rates of water input to lakes and reservoirs [45].

Fungi are incredibly important to the forest soil. They decompose lignin in logs and fallen branches
and serve as food for creatures that inhabit in the soil [46,47]. It is reported that aboveground infestation
by HWA significantly affected rhizosphere processes. Specifically, the reductions in photosynthesis
and carbohydrate depletion due to HWA infestation resulted in less fungi colonisation and lower
bacterial abundance surrounding fine roots of infested trees [48]. Hemlock woolly adelgid infestations
also alter the belowground communities that function to facilitate hemlock tree growth. The significant
decline in bacteria load decreases mineral nutrient availability and proves greater difficulty to replant
hemlocks in formerly-suitable stands [48].

Shade-tolerance advantages of hemlocks outlast other tree species. Hemlock trees also create
understory microclimates for nearly 90 bird species and provide protection for a variety of vertebrate
species [5,49]. The black-throated green warbler (Dendroica virens) and the blue-headed vireo
(Vireo solitarius) are hemlock obligates and are only present in forests with hemlocks [5]. Studies
further report that HWA infestation could induce hemlock decline resulting in reduced breeding
population densities and/or lead to the local extirpation of two hemlock obligates, black-throated
green warbler and Empidonax virescens Vieillot (Acadia flycatcher) [50].

Salamanders are the most abundant forest-floor vertebrates in the Southern Appalachian
Mountains [51,52]. Salamanders are restricted to moist soils and areas for cutaneous respiration [53,54]
and for deposition and development of eggs [55]. The hemlock trees and the leaf litter provide such
natural microhabitat for salamanders [56,57]. The reduction of litter depth and moisture following
timber harvesting results in either the elimination of Appalachian salamander populations or forcing
adults to emigrate to adjacent, less suitable forest stands [58], and the population would not fully
recover until decades later [51,56,59]. It is possible that smaller canopy gaps and subsequent subtle
microclimates alterations due to HWA infestation initially may have minimal impact on the abundance
of the salamander population unless significant canopy loss continued. In this case, large canopy gaps
would permit increased wind effects and a greater penetration of solar radiation causing the drying of
the leaf litter and reduction of moisture content [60], which would be detrimental to the survival of
salamanders [61,62].

Even when HWA reach high densities in a hemlock stand, it might take up to several decades for
vegetation structure to shift [63,64]. Limited information is available on the dynamics of arthropod
communities in response to this change in vegetative structure [65]. Ingwell and colleagues evaluated
the impact of eastern hemlock mortality on vegetation and invertebrate diversity and community
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structure by comparing low-impact (low HWA infestation) and high-impact (high HWA infestation)
stands in Connecticut [66]. The high-impact hemlock stands comprised a more diverse suite of
understory vegetation including species such as black birch (Betula lenta L.), red maple (Acer rubrum L.),
Canada may flower (Maianthemum canadense Desf.), witch-hazel (Hamamelis virginiana L.), red oak
(Quercus rubra L.), and chestnut oak (Quercus prinus L.) [66,67]. Correspondingly, arthropod community
composition of high-impact hemlock stands was shifted in favour of communities dominated by the
orders Orthoptera and Coleoptera (class Insecta) and Collembolans (class Entognatha).

Indicator species analysis demonstrated that ground-running spiders (Family Corinnidae) and
sheet-web-building spiders (Family Hahniidae) are significantly associated with low-impact hemlock
stands, suggesting that their prey species are less abundant in stands heavily infested with HWA [10,66].
In contrast, no changes of ground-level arthropod diversity were observed between the two stands,
indicating species in the studied habitats are either less reliant on specific plant species, or that they
exhibit a delayed response to changes in vegetation structure.

5. Potential HWA Control and Management Options

The complex life cycle of the HWA, the presence of susceptible hosts, and the lack of natural
enemies [68] all contribute to the continuing spread of the HWA in eastern North America. Research
studies have been conducted to understand the biology, evolution, ecological impacts of this pest
in order to identify an effective management plan [17,69]. Current HWA control measures focus on:
cultural control; manipulating hemlock resistance to HWA; chemical treatment and biological control.

5.1. Cultural Controls

Cultural controls target the reduction of pest establishment, reproduction, dispersal, and survival.
However, few if any, have achieved satisfactory success in containing HWA spread. To reduce invasion
of HWA, appropriate barriers should be established to minimize animals from visiting hemlock
sites [70]. Public signage systems should be established to provide educational information on HWA
in national parks where hemlocks are dominant or co-dominant. Policies to discourage moving plants
including global trade in live plants for horticultural use, logs, or firewood from HWA infested areas
into non-infested areas should be enforced, specifically between March and June when adelgid eggs
and crawlers are abundant [70,71]. For instance, new infestations in isolated areas, such as in the
Midwest, usually occur through movement of infested nursery stock. Quarantines have been imposed
to reduce or prevent further spread in such areas [72,73].

Increasing tree health is another way of culture control for HWA. Healthy hemlock trees can
withstand higher densities of the pest than hemlock trees with low vigour [70]. Removing dead or
dying branches from hemlocks can improve overall tree health by promoting new growth, as can
applying fertiliser to stimulate the growth and vigour of non-infested trees. Nitrogen fertilisers
should not be applied to infested trees however, as nitrogen stimulates the population growth of
HWA [74,75]. Increased light has been reported to reduce HWA numbers and the pest’s effects on
hemlocks. Studies using artificially infested potted seedlings found that reduced light levels increased
HWA densities [76,77]. Moderate light levels appeared to provide the best conditions, however, as
they reduced HWA numbers and improved photosynthesis. Canopy density providing moderate light
levels also protected seedlings from freeze damage [78]. Researchers suggested that selective thinning
of natural hemlock stands may have other benefits such as reduced transpiration resulting in increased
soil moisture, and hindrance of HWA movement through the forest canopy [78].

It is generally agreed that water resource availability affects herbivore selectivity and damage [77].
Maintaining soil moisture could ensure optimal growing conditions for hemlock trees to combat HWA
infestation [5]. It has been shown that infested hemlock trees survived better in mesic sites versus in
xeric site [5,14,79,80]. The impact of water availability (well-watered pots vs. water-stressed pots) on
the physiology of hemlocks in the presence and absence of HWA infestation was investigated under
a controlled greenhouse environment [77]. Because adelgids are known to cause water stress, it was
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expected that HWA infestation would exacerbate the decrease in water potential for hemlock trees
growing in water-stressed pots. Surprisingly and contradictory to previous reports [14,81], adelgid
infestation only decreased water potential of hemlock trees growing in well-watered pots; no similar
effect was observed in the water-stressed pots [77]. It is possible that water-stressed trees are already
physiologically suitable for the insects. Adelgids, however, need to induce water stress in well-watered
trees to improve their suitability [77]. Future long-term investigations are warranted to gain a better
understanding of how different abiotic factors could impact the dynamics of HWA population and
overall hemlock health [77].

Since HWA are dependent on hemlocks for nutrients, feeding on trees in poor health would
affect the ability of the insect to obtain necessary nutrients and subsequently adversely impact their
physiological health, reducing the population. This perception is challenged in a naturally infested
forest setting without fertiliser or insecticide treatment [82]. In this study, population health of
HWA on either lightly (analogous to trees within the Crown Condition Rating Guide Class 1) or
moderately (analogous to those within Class 2) affected hemlock trees were evaluated. Compared with
moderately impacted trees, HWA collected from lightly impacted hemlocks contained higher levels of
carbohydrates, total nitrogen, and amino nitrogen. However, HWA from moderately impacted trees
exhibited greater fecundity than those from lightly impacted trees [82]. The results of the study call for
caution that simply relying on the HWA physiological indicators (such as levels of carbohydrates, total
nitrogen, and amino nitrogen) may not necessarily reflect the overall population health of the HWA
population [82].

5.2. Manipulating Hemlock Resistance

Manipulating hemlock resistance to HWA is another potential control approach. Searching
for naturally resistant trees and developing resistant crosses are considered as promising long-term
measures for HWA management [11,83–85]. Resistance to HWA has been identified in rare individuals
in otherwise adelgid-devastated eastern hemlock stands [11,67,86].

The HWA resistance trait is linked to: lower levels of the lipid hexacosanol and the terpene
isobornyl acetate [18]; higher levels of the terpenes α-pinene, α-humulene, β-caryophyllene, and
germacrene D in resistant hemlocks; and to trees with thicker epicuticular wax at the point of HWA
stylet insertion [87,88]. A small amount of evidence exists that suggest terpenoids in the complex
oleoresin may serve as the primary defence of conifers against herbivory due to their ability to inhibit
acetylcholinesterase in the neuromuscular junction [87].

Terpenoid content of eastern hemlock foliage from a hemlock stand located at Lake Scranton
in Scranton (PA, USA) was monitored to investigate whether variation in terpenoid composition
could influence the spatial and temporal feeding preferences of HWA [87]. The special features of
this study were that: (1) the sample collection covered two complete generations of HWA life cycle
since it spanned a complete annual cycle of eastern hemlock development from bud opening, shoot
elongation, shoot maturation, to bud-break at the start of the next growing season; and (2) that samples
were collected from “healthy” and “HWA resistant” hemlocks. No significant seasonal variations of
myrcene levels were observed in the needles. In contrast, shortly after shoot extension, myrcene and
germacrene D were elevated in the immature foliage in spring and became a dominant terpenoid in
the leaf cushion over the summer months. In autumn after leaf fall, the levels then decreased to the
background levels present in previous year’s growth tissues.

Furthermore, sistens crawlers that settled on new growth estivated whereas progrediens crawlers
that settled on new growth immediately began feeding on the immature leaf cushion. Therefore,
elevated levels of myrcene and germacrene D in new growth of eastern hemlock leaf cushion
tissue might promote mortality in the progrediens generation of HWA [87], in other words render
hemlocks “resistant”. On the other hand, seasonal changes in the level of myrcene and germacrene
D might have an opposite effect on sistens as the levels of these two compounds are low by the
time sistens start feeding in mid-October. Therefore, there would be no adventitious possible toxic
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effects on sistens [87]. Future investigations are required to understand the link of specific chemical
concentrations with resistance status in the context of geographical locations and climatic factors to
assist in the development of cultivars with HWA resistance.

Another signature chemical profile found in naturally HWA resistant trees relates to foliar
chemistry. Leaves with high levels of nitrogen and potassium tend to have higher HWA densities
than other leaves, while high foliar levels of calcium and phosphorous concentrations tend to result in
lower HWA densities [89]. This finding reinforces the importance of avoiding applications of nitrogen
fertilisers to hemlock trees [74,75]. Both Eastern and Carolina hemlocks are susceptible to HWA yet
the Chinese hemlock (Tsuga chinensis (Franch.) E. Pritz) is highly resistant to the pest. Therefore,
developing resistant crosses between North American and Asian hemlocks may reduce HWA densities
in the native range [84,85]. However, the effects of the manipulating hemlock resistance are likely to
take many decades to be demonstrated and there are no guarantees that selective breeding would
work on a large scale in the field [83,90].

5.3. Chemical Controls

Current HWA control is largely focused on using either chemical or biological methods [30,83].
Presently, chemical control is considered the most effective and immediate approach, and is used
widely in ornamental and landscape settings. A variety of insecticides are capable of controlling
HWA through foliar sprays and systemic treatments [91]. Foliar sprays, such as insecticidal soaps
and horticultural oils, have been found effective in controlling HWAs on individual or accessible
trees [92]. However, foliar sprays are not a permanent solution; impractical for tall trees and large
areas; need to be reapplied every few years; and must cover the entire foliage [5]. Imidacloprid
(N-{1-[(6-chloro-3-pyridyl)methyl]-4,5-dihydroimidazol-2-yl} nitramide), a chloronicotinyl insecticide,
is used for controlling sucking insects, soil insects, termites, and some chewing insects. It is one of the
essential insecticides for HWA control in eastern hemlocks in the southern Appalachians [2,93–95].
Insecticides containing imidacloprid as the active ingredient can be applied through soil drenching, soil
injection, or trunk injection [96]. As a member of neonicotinoid family, imidacloprid blocks nicotinic
acetylcholine receptors, leading to the accumulation of acetylcholine, the paralysis of the insects, and
ultimate termination of nerve impulses [97,98]. Imidacloprid is delivered to the target pests through
ingestion or direct contact [94,98–105]. Imidacloprid is also an effective systemic insecticide. Once
incorporated into the soil, imidacloprid has a photolysis half-life between 26.5–229 days [106], which
allows its continual availability for uptake by roots [102]. Research has shown after soil application
imidacloprid can translocate from the roots to the hemlock foliage and be effective in less than
90 days [95,100,103,107]. Olefin, the metabolite of imidacloprid has higher insecticidal propensity than
the parent compound. Concentrations of olefin can persist at relative high level for up to 3 years, and
could provide extended HWA suppression post treatment [107].

Benton et al. analysed the levels of imidacloprid and its metabolites in the foliage of hemlocks
growing in the GSMNP to understand the longevity of imidacloprid treatments. Four to seven
years post basal drench treatment, imidacloprid and olefin were still detectable in more than
65% of branchlets, although the levels were below the LC50 for HWA [93]. While these data
demonstrated long-term insecticidal effect of imidacloprid treatment [108], it raises public concern
of the potential environmental impact due to its persistence post application [106]. Depending on
the application methods used, imidacloprid can be present in detectable concentrations in leaves,
vascular fluids, pollen and soils, which could unintentionally target beneficial arthropods in the
forest; accelerate declines in populations of honey bees and other pollinators which are a vital part to
our food security [109]; decrease the abundance and richness of soil-dwelling organisms; and cause
unintentional stress of local microclimates [2,99,108,110–112].

In 2013, the European Commission adopted a proposal to restrict the use of three insecticides,
including imidacloprid, for two years due to the uncertainty about their chronic risk to ecological
system [113]. Imidacloprid could negatively impact insectivorous bird populations. In the Netherlands,
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population of birds significantly declined in areas with higher surface-water concentrations of
imidacloprid [114]. Direct evidence of the disturbance of microenvironment due to imidacloprid
application in the eastern region of the national parks is still unclear, however.

Chemical control as a stand-alone treatment is not a feasible option in a forest setting due to
geographical constraints, or the height of the trees when bringing in equipment is inconvenient [96].
In addition, trees must be treated individually, which can be very costly and time consuming [5].
The water-solubility of systemic insecticides such as imidacloprid allows for rapid uptake of the
chemical throughout the trees. However, considering the close association of hemlock trees with
bodies of water, there is a possibility for them to leach out and contaminate aquatic sources and
organisms over time [12,115,116].

5.4. Biological Controls

The discovery and utilization of effective biological control agents is critical to help restore
hemlock forests [5,93]. A. tsugae has no known parasitoids and no specific pathogens, so the search
for natural enemies is limited to predators [17]. The few predators native to eastern North America
reported feeding on HWA do not keep its numbers in check, which has contributed to its rapid
spread [12]. Evidence has shown that larvae of Laricobius rubidus (LeConte), fed a diet of HWA
completed development to the adult stage on A. tsugae as well as it did on its primary host Pineus strobi
Hartig [117]. Therefore, L. rubidus has the potential to contribute to the biological control of A. tsugae
in the eastern United States. Scymnus suturalis Thunberg moves among eastern white pine, Scotch pine
(Pinus sylvestris L.) and eastern hemlock depending on the presence of adelgid prey; however, this
predator is not found on eastern hemlock after July [90]. The apparent need by adult S. suturalis for a
source of adelgid eggs throughout the summer may limit its effectiveness as a predator of A. tsugae [90].
Another factor affecting the pest’s biological control is the production of a range of chemicals by
certain life stages of HWA. These chemicals (anthraquinone, chrysophanol and its anthrone precursor,
chrysarobin) may function as feeding deterrents against predators [118].

An effective biological-control agent should not disturb or disrupt the integrity of other aspects of
its native habitat [12]. The ideal candidate predators for HWA should be found in the pest’s native
range of Japan, eastern Asia or the pacific northwest of the USA. Up to 50 species of generalist and
specialist predators of HWA have been identified in Japan or eastern Asia [119]. Several predators
have been tested for biological control potential since 1992 [17,90,119–130]. For example, the lady
beetle Sasajiscymnus tsugae, a native predator of HWA in Japan was initially imported to and studied
in New Jersey. Field evaluations demonstrated that S. tsugae could establish, locally disperse, and
survive heat waves in southern states and severe winters in northern states [17]. Since 1995, over two
and a half million S. tsugae have been released at more than 400 sites on federal and non-federal lands
from South Carolina to Maine [17]. However, to date, this predator has not been proven to provide
significant control of HWA in forest settings (James Parkman, personal observation), the recovery rates
of hemlock trees were not consistent and the reported number of S. tsugae that recovered from the
lower crown were relative low [131]. More research is needed to monitor their establishment after
release in order to assess the effectiveness and the impact of S. tsugae on hemlock trees recovery.

Laricobius nigrinus beetles, which are native to the northwestern United States and Canada, and feed
exclusively on adelgids, have also been used for the biological control of HWA. After approval for
release in 2000, L. nigrinus were distributed throughout the invasion range of HWA and isolated
populations have established from the southern Appalachians to New England [17,126,129,132].
Unlike S. tsugae, there is evidence that L. nigrinus can exert substantial mortality on HWA and its
preference to feed on HWA over other adelgids, making it a viable biological control candidate [132,133].
Laricobius osakensis, a species related to L. nigrinus, is a voracious predator of HWA widely spread
in Japan. Recently, Arsenault, et al. have shown that L. osakensis, reared in the laboratory in North
Carolina with little to no prior exposure to field environmental cues, responded preferentially to odours
produced by eastern hemlock (regardless if it was infested by HWA or not) and moved promptly onto
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it [129]. This finding suggests L. osakensis relies on volatiles produced by HWA’s host trees to locate
potential prey. The phenology of L. osakensis is highly synchronous with the life cycle of HWA, making
it a good candidate for biological control of HWA in North America [17,134,135].

Recently evidence has emerged indicating imported predator beetles could hybridise in the field
with native species of HWA predators. Widespread hybridisation with asymmetrical introgression
towards L. nigrinus on hemlock has been reported between L. nigrinus, the predator introduced from
western North America and L. rubidus [129,133,136]. Hybridisation could result in the loss of genetic
identity [124], and unintentional hybridisation could also lead to the loss of host specificity [129,137,138];
an increase of fitness (heterosis or hybrid vigour) [139]; enhance the fecundity of the hybrid biological
control agent [140]; decrease fitness of the native biological control agent due to outbreeding depression
or “hybrid breakdown” [139,141,142] or displace the native species, ultimately impairing the efficacy
of the biological control program. Thus far, it is believed that hybridization has not, and should not
impact predation by either Laricobius species [12]. It was reported that L. osakensis and L. nigrinus will
mate but produce only sterile eggs. This is fortunate because L. osakensis appears to be a better HWA
predator than L. nigrinus [143,144].

Ideally, a combination of predators should be used to control HWA populations as opposed to
one single species. Flowers and colleagues [121] studied the possibility of using multiple predators
for HWA control, specifically using S. tsugae and L. nigrinus. In the laboratory setting, S. tsugae
showed increased activity during the day and at higher temperatures, while L. nigrinus showed
increased activity during the night and in spring-like conditions. In a field study, it was found
S. tsugae and L. nigrinus established two years after release onto eastern hemlocks indicating these
two predators can survive and coexist. This is encouraging because they differ temporally in their
occurrence and predation of HWA with L. nigrinus active from late fall to spring and S. tsugae from
spring to early summer [145]. These results suggest that multiple-predator species combinations that
include the specialist predators with complementary temporal and spatial patterns might be superior
than single-species for biological control of HWA [121]. More research is warranted to evaluate the
population stability and dynamics of HWA predators once released into the field.

5.5. Integrated Control

A long-term, sustainable, and cost-effective approach to control HWA will have to integrate
chemical control, biological control, and host-plant resistance methods into one comprehensive
management programme [83,146,147]. Such integration is likely be more efficient and provide better
control over a wider area as well as prolong hemlock health than would otherwise be possible if
only one control method described above were used [12,133,148]. This concept involves using a
simple, low rate application of chemical treatment of infested hemlock trees, while simultaneously
releasing predators and breeding resistant crosses. The chemical treatment can provide short-term
protection as the predator populations establish and grow over time. Chemical protection will become
less effective as residual activity declines but, by then, an established predator population may be
able to control the chemical-resistant HWA population. As the predator populations control HWA
populations, the development of resistant crosses may be capable of saving the Eastern hemlock from
extinction [15,81,145,146,148].

6. Conclusions

The introduction of the combination of multiple specialist predators is a promising biological
intervention strategy. However, how to translate and test a successful laboratory story in the field
on a much larger scale at various geographical locations, and how to effectively evaluate predators’
behaviour in the field, including their immigration and emigration propensity in response to prey
abundance or intraspecific and interspecific predator cues, is still largely unaccomplished [121].
Furthermore, many “effective” predators tested in the laboratories are descended from a limited,
original collection, having been consecutively reared for several generations with continuous exposure
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to a single prey [149], which may not be reflective of the scenario they will encounter in the field.
Predator’s searching patterns can change in response to prey type [121]. Evaluating the combination
of biological control with the silviculture treatment of canopy thinning to increase light exposure has
merit. Canopy thinning is unlikely to affect performance of the most successful predators, Laricobius
species; and the combination may result in suppression of HWA populations below damaging levels.
Hemlock woolly adelgid remains the single greatest threat to the health and sustainability of hemlock
in the eastern USA. Currently along with the development of other new and innovative methods,
available individual and integrated approaches should continue to be evaluated not only in the
laboratory but specific emphasis should also be focus on their application and effectiveness in the field.
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