4-2019

Minimal communities as novel systems for studying ectomycorrhizal community function: examples and future directions

Brian Looney
Duke University

Alejo Rojas
University of Arkansas, Fayetteville

Rytas Vilgalys
Duke University

Follow this and additional works at: https://trace.tennessee.edu/masmc

Recommended Citation

This Presentation is brought to you for free and open access by the Conferences at UT at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Middle Atlantic States Mycological Conference 2019 by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
Minimal communities as novel systems for studying ectomycorrhizal community function: examples and future directions
Brian Looney\(^1\), Alejo Rojas\(^2\), Rytas Vilgalys\(^1\)
\(^1\)Department of Biology, Duke University, \(^2\)Plant Pathology, University of Arkansas, Fayetteville

Ectomycorrhizal fungi (EMF) are mutualistic associates of some of the most dominant and speciose trees on the planet, including pines, oaks, and eucalypts. Typically, an ectomycorrhizal plant species will host up to hundreds of different EMF species. However, there are cases where a restricted community of EMF can be found in specific ecological contexts such as with weakly ectotrophic hosts or in extreme environments. We will showcase instances where we see minimal communities and discuss the factors that may be driving this reduction in diversity. We propose minimal communities as ideal instances for developing and testing evolutionary hypotheses about diversification, co-evolution, and community function.