Date of Award

8-2010

Degree Type

Thesis

Degree Name

Master of Science

Major

Chemistry

Major Professor

Shane Foister

Committee Members

George Kabalka, Jimmy Mays

Abstract

Histone Deacetylase (HDAC) plays a vital role in cellular processes, for example gene expression, cell growth, and apoptosis. Finding drug candidates to inhibit the over activity of HDACs in cancer is a growing area of interest. Inhibitors, thus far, have three important motifs to be studied: the zinc binding group, a hydrophobic linker, and a cap group. By altering these groups on the inhibitor, not only can activity be increased but also selectivity within the classes of HDACs. We present the design of two novel sets of molecules that contain either a 1,2,3-triazole or 1,2,4-triazole. The 1,2,3-triazoles were synthesized using “click chemistry” with a novel pyridyl triazine catalyst. The 1,2,4-triazoles were synthesized utilizing substitution chemistry. This set of molecules was designed after suberoylanilide hydroxamic acid (SAHA) but replaced the hydroxamate with the triazole as the zinc binding group. The activity of these inhibitors against HDAC 1, HDAC 6, and SIRT 1 were tested using the Biomol Fluor de Lys in vitro kits. Though none of the synthesized compounds were strong activators or inhibitors of any of the classes of HDACs, trends were observed that could lead to the design of more potent inhibitors.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS