Date of Award

8-2010

Degree Type

Dissertation

Degree Name

Doctor of Philosophy

Major

Materials Science and Engineering

Major Professor

Narendra B. Dahotre

Committee Members

Wei He, Roberto S. Benson, Syed K. Islam

Abstract

The interaction at the surfaces of load bearing implant biomaterials with tissues and physiological fluids is an area of crucial importance to all kinds of medical technologies. To achieve the best clinical outcome and restore the function of the diseased tissue, several surface engineering strategies have been discussed by scientific community throughout the world. In the current work, we are focusing on one such technique based on laser surface engineering to achieve the appropriate surface morphology and surface chemistry. Here by using a pulsed and continuous wave laser direct melting techniques we synthesize three dimensional textured surfaces of calcium phosphate (Ca-P) based surface chemistry on Ti-6Al-4V. The influence of each processing type on the micro texture and phase evolution and thereby its associated effect on wettability, in vitro bioactivity, and in vitro biocompatibility are systematically discussed. For samples processed using the pulsed laser, it was realized that with increasing laser scan speed and laser pulse frequency there was a transition from surface textures with sharp circular grooves to surface textures with radial grooves and thereby improved hydrophilicity. For CW laser processing the results demonstrated improved hydrophilicity for the samples processed at 100 μm line spacing as compared to the samples processed at 200 μm line spacing. Owing to the importance of Si for cartilage and hard tissue repair, a preliminary effort for synthesizing Ca-P-SiO2 composite coating on Ti-6Al-4V surface were also conducted. As a future potential technique we also explored the Laser Interference Patterning (LIP) technique to achieve the textured surfaces and developed understanding on their wetting behavior. In the current work, by adjusting the laser processing parameters we were able to synthesize textured coatings with biocompatible phases. The in vitro bioactivity and in vitro vi biocompatibility of the coatings were proved by the precipitation of an apatite like phase following immersion in simulated body fluid (SBF), and increased proliferation and spreading of the MC3T3-E1 like cells. The results and understanding of the current research is encouraging in terms of looking at other bio-ceramic precursor compositions and laser process parameter window for synthesizing better textured biocompatible coatings.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS