Title

The nuclear envelope localization of DYT1 dystonia torsinA-ΔE requires the SUN1 LINC complex component

Document Type

Article

Publication Date

5-31-2011

Abstract

Background

DYT1 dystonia is an autosomal dominant neurological condition caused by a mutation that removes a single glutamic acid residue (ΔE) from the torsinA (torA) AAA+ protein. TorA appears to possess a nuclear envelope (NE) localized activity that requires Lamina-Associated-Polypeptide 1 (LAP1), which is an inner nuclear membrane localized torA-binding partner. Although hypoactive, the DYT1 dystonia torA-ΔE isoform often concentrates in the NE, suggesting that torA-ΔE also interacts with an NE-localized binding partner.

Results

We confirm that NE-localized torA-ΔE does not co-immunoprecipitate with LAP1, and find that torA-ΔE continues to concentrate in the NE of cells that lack LAP1. Instead, we find that variability in torA-ΔE localization correlates with the presence of the SUN-domain and Nesprin proteins that assemble into the LINC complex. We also find that siRNA depletion of SUN1, but not other LINC complex components, removes torA-ΔE from the NE. In contrast, the LAP1-dependent NE-accumulation of an ATP-locked torA mutant is unaffected by loss of LINC complex proteins. This SUN1 dependent torA-ΔE localization requires the torA membrane association domain, as well as a putative substrate-interaction residue, Y147, neither of which are required for torA interaction with LAP1. We also find that mutation of these motifs, or depletion of SUN1, decreases the amount of torA-WT that colocalizes with NE markers, indicating that each also underlies a normal NE-localized torA binding interaction.

Conclusions

These data suggest that the disease causing ΔE mutation promotes an association between torA and SUN1 that is distinct to the interaction between LAP1 and ATP-bound torA. This evidence for two NE-localized binding partners suggests that torA may act on multiple substrates and/or possesses regulatory co-factor partners. In addition, finding that the DYT1 mutation causes abnormal association with SUN1 implicates LINC complex dysfunction in DYT1 dystonia pathogenesis, and suggests a gain-of-function activity contributes to this dominantly inherited disease.

This document is currently not available here.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS