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Abstract 

A better understanding of soil-water interactions and associated feedbacks in carbon-

cycle processes is necessary for addressing knowledge gaps in the global carbon budget. This 

doctoral dissertation research investigated soil carbon-cycle processes in two ecosystems, 

Ecuadorian páramos and constructed agricultural wetlands, which are understudied in terrestrial 

carbon research. These sites represent ecosystems where land-use induced changes in soil 

moisture were expected to play an important role in soil carbon processes.  

Soil carbon dioxide (CO2) flux and extracellular enzyme (EE) activities were measured to 

assess changes in soil carbon processes in soil from four types of land use in Ecuadorian 

páramos. Soil CO2 flux was greater at sites with tree cover, which had lower soil moisture 

content, than at grass páramo sites, with higher soil moisture content. The results suggest that 

soil CO2 flux responds to biological soil moisture thresholds, but the relationship between CO2 

flux and moisture in aerobic and anaerobic conditions is unclear. Carbon-acquisition EE activity 

indicated that soil carbon resources were in high demand for microbial utilization under non-

native pine trees. Despite high soil carbon content at the grass páramo site, high carbon-

acquisition EE activity there indicated high microbial demand for carbon resources, possibly due 

to the development of more stable forms of pyrogenic soil organic matter from a history of 

burning for grazing management. 

Field-based data and a controlled laboratory experiment were used to investigate the 

relationship between soil moisture and soil CO2 flux in two constructed agricultural wetlands 

with different hydrologic regimes, perennial and intermittent, in East Tennessee. The results 

suggest that constructed wetland hydrology plays an important role in soil moisture variability 

and mean CO2 flux, and highlight the importance of the hydrologic design of constructed 

wetlands with respect to potential CO2 emissions. 

Results of this research suggest that soil moisture change due to land-use change can 

influence soil carbon decomposition and loss through CO2 flux. The relationships between soil 

moisture, land-use change, and CO2 flux have implications for land management and constructed 

wetland design.  
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Chapter 1 Introduction 

The significant increase in atmospheric carbon dioxide (CO2) concentrations since the 

Industrial Revolution has created the scientific need to understand carbon-cycle processes and 

their role in global climate patterns (Revelle and Suess 1957; Baes et al. 1977; IPCC 2007). In 

spite of decades of research, balancing the global carbon budget remains a challenge (WBGU 

1998). Globally, soil carbon pools are estimated to contain approximately three times more 

carbon than the atmosphere (Lal 2004) and to hold twice as much as the vegetative and 

atmospheric carbon pools combined (Davidson and Janssens 2006). Further, soil carbon 

emissions are estimated to annually contribute more than 10 times the amount of carbon to the 

atmosphere than anthropogenic burning of fossil fuels (Schlesinger 1977; Dornbush and Raich 

2006). Consequently, changes in land use or land cover that alter soil carbon-cycle processes can 

significantly affect atmospheric carbon concentrations.  

Houghton et al. (2012) estimated that land-use and land-cover change accounted for 

12.5% of anthropogenic atmospheric carbon emissions between 1990 and 2010. Most of the 

estimates used by Houghton et al. (2012) included studies that reported soil CO2 respiration. 

Numerous studies have shown that fluxes of soil CO2 increase with changes in vegetation cover 

(Raich and Tufekcioglu 2000; Houghton et al. 2012). This is primarily a function of the effects 

that changes in land use and land cover can have on soil environmental conditions, such as soil 

temperature (Savva et al. 2010), soil moisture (Nosetto et al. 2005; Buytaert et al. 2006; Wang et 

al. 2012), and soil ecological properties, such as organic matter quality and quantity 

(Cambardella and Elliott 1992; Smith et al. 2014). Changes in soil CO2 flux have been 

demonstrated for a variety of land-use changes, including the conversion of natural plant 

communities to agricultural land (Braimoh and Vlek 2004; Osman et al. 2013), the conversion of 

grasslands to forest or woody plant cover (Farley et al. 2004; Gibbon et al. 2010; Harden et al. 

2013), and the drainage of wetlands for agricultural or urban development (Arai et al. 2015). The 

changes in soil properties that influence soil CO2 vary with each type of land-use change. 

Further, the magnitude and significance of the effects of changes on soil properties can vary with 

the type of land-use change, geographic location, and ecosystem. Consequently, there is a need 

to better understand the mechanisms driving soil carbon-cycle processes within distinct 

ecosystems to better predict soil CO2 flux responses to changes in land use and land cover.  
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1.1 Soil Carbon Processes 

Numerous studies have shown that loss of soil C through CO2 respiration is often a 

functional response to changes in soil temperature (Raich and Schlesinger 1992; Dornbush and 

Raich 2006; Wang et al. 2008) and soil moisture (Lloyd and Taylor 1994; Raich and Potter 1995; 

Bauer et al. 2008; Hernandez-Ramirez et al. 2009).  Soil CO2 flux response can reflect the 

influences of environmental conditions on soil microbial activity. Soil microbes play a critical 

role in the breakdown of soil organic matter and significantly influence soil carbon storage 

capacity and rates of soil carbon loss (Carriero et al. 2000; Simon et al. 2009). To acquire soil 

organic carbon resources, microbes produce extracellular enzymes that catalyze the breakdown 

of soil organic material (Schimel and Weintraub 2003; Huang et al. 2011). This process, known 

as depolymerization, yields simpler organic components, such as amino acids and sugars, which 

are the constituents of original soil organic material. Simpler organic components are then 

readily taken up and utilized by microbes in the form of dissolved organic carbon (Figure 1.1). 

Each extracellular enzyme is synthesized for the depolymerization of a specific substrate. The 

enzyme β-D-cellulobiohydrolase (CB), for example, facilitates carbon acquisition from 

cellulose-based organic matter, while β-glucosidase (BG) facilitates carbon acquisition from 

sugar degradation (Bell et al. 2013). The production of extracellular enzymes requires the 

investment of substantial energy and resources by the microbe. Consequently, microbes 

prioritize the production of specific extracellular enzymes according to their specific nutrient 

needs. As a result, microbes preferentially increase the synthesis of a specific type or group of 

extracellular enzyme specialized for the acquisition of the most limiting nutrient, or substrate 

(Tischer et al. 2014). Thus, greater activity of a specific enzyme, compared to activity levels of 

other enzymes, can indicate a limitation in the nutrient or substrate targeted by that enzyme. 

The activity of specific extracellular enzymes can be used as a proxy for different aspects 

of ecosystem function. Soil extracellular enzyme activity has been shown to respond to changes 

in soil properties associated with land management practices, especially where changes in soil 

organic matter and nutrient composition occur (Acosta-Martínez et al. 2007; Kizilkaya and 

Dengiz 2010; Gonnety et al. 2012). Soil enzyme activity can also provide information about 

changes in carbon, nitrogen, and phosphorus processes in response to land-use change (Mganga 

et al. 2015). For instance, where labile forms of soil carbon—readily available for decomposition 

and uptake—have been depleted, microbial production and activity of labile carbon-acquisition  
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Figure 1-1 Conceptual model for microbial soil C processes. Labile soil carbon is defined here as 

water extractable organic carbon. Environmental controls on microbes affect all activity directly 

engaged by microbes, including death, uptake, enzyme production, and CO2 respiration.  
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enzymes, such as BG and CB, is expected to be higher than production or activity of enzymes 

specialized for the degradation of more recalcitrant forms of carbon, such as phenol oxidase. 

Consequently, analysis of soil extracellular enzymes can help to determine whether changes in 

microbial activity result from changes in environmental (i.e. soil moisture and soil temperature) 

or ecological (i.e. stoichiometry and shifts in type of organic matter present) soil conditions. 

Where environmental drivers, such as soil temperature or moisture, are more influential, a 

decrease or increase in extracellular enzyme production would be expected without a significant 

shift in the abundance or distribution of different extracellular enzyme groups. 

Microbial organisms involved in soil carbon depolymerization are dominantly aerobic 

and respire CO2 when active. Consequently, changes in soil CO2 flux can be used as a proxy for 

changes in soil microbial activity and related soil carbon processes. Many studies have shown 

that soil physical parameters, such as soil temperature and soil moisture, are significantly 

correlated with rates of microbial activity (Linn and Doran 1984; Allison et al. 2010; Carbone et 

al. 2011; Steinweg et al. 2013; A’Bear et al. 2014). Soil microbial activity is known to increase 

with warming soil temperatures (Raich and Schlesinger 1992; Dornbush and Raich 2006). A 

thermal biological threshold of 10 °C to 15 °C, below which soil microbial activity significantly 

decreases, was estimated by Richards et al. (1952). Trevors (1985) showed that microbial CO2 

production at 20 °C is three times greater than at 10 °C, and microbial soil respiration has been 

shown to increase exponentially at soil temperatures exceeding 20 °C (Yuste et al. 2007).  

Microbial activity, and thus soil CO2 flux responses to changes in soil moisture, is more 

complex than CO2 flux responses to soil temperature. Water, required for microbial biological 

processes, can be limiting to soil microbial activity when water resources are scarce. 

Consequently, soil microbial activity and CO2 respiration rates are positively correlated with soil 

water content when soil conditions are aerobic (i.e. when there is sufficient oxygen diffusion to 

support aerobic respiration). In anaerobic soil conditions, however, soil microbial activity 

associated with soil organic matter decomposition is limited and, as a result, soil CO2 flux rates 

are significantly lower (Moore and Dalva 1993; Moyano et al. 2012; Suseela et al. 2012). The 

aerobic-anaerobic threshold is estimated to occur when water-filled pore space reaches 60–65%, 

with anaerobic conditions occurring at higher contents of water-filled pore space (Linn and 

Doran 1984). As a result, linear relationships between soil moisture and soil CO2 flux may be 



5 

 

found when data are partitioned to represent aerobic and anaerobic conditions separately. 

However, when a wide range of soil moisture content (e.g. 25–75% water-filled pore space) is 

assessed with respect to soil CO2 flux rates, a quadratic polynomial relationship is expected, 

showing a positive relationship below approximately 60% water-filled pore space and a negative 

relationship above 60% water-filled pore space (Figure 1.2; Linn and Doran 1984).  

1.2 The Need for Coupled Water-Carbon Studies   

Soil-water interactions clearly play an important role in terrestrial carbon-cycle processes 

and should be considered when evaluating terrestrial carbon budgets. However, knowledge gaps 

remain that constrain efforts to investigate water and carbon cycles as coupled systems (Lohse et 

al. 2009). Variations in water table level and soil moisture content have been shown to 

significantly influence soil carbon processes and atmospheric carbon fluxes (Moore and Dalva 

1993; Blodau and Moore 2003; Chivers et al. 2009; Mander et al. 2011; Gazovic et al. 2013). In 

fact, some of the most significant global terrestrial carbon sinks attain their capacity for soil 

carbon storage through hydrologic controls on soil properties within the system. Wetlands, for 

instance, represent only about 5% of the global land area, but account for more than 30% (>500 

Gt C) of global terrestrial carbon stores (WBGU 1998; Mitra et al. 2005; CBD 2007). High water 

table and very high soil moisture conditions required for the development of wetland hydric soils 

sustain anaerobic conditions that impede soil microbial activity. As a result, wetlands are often 

characterized by low rates of soil organic matter decomposition and soil CO2 respiration. 

Although methanogenesis occurs in anaerobic conditions, wetland emissions of methane (CH4) 

can be offset by continued plant uptake of atmospheric CO2 and accumulation of soil organic 

matter within the wetland (Gazovic et al. 2013). Emissions of CH4 can also be offset by the 

fixation of atmospheric CH4 by methanotrophs—organisms capable of utilizing CH4 for 

biological processes in upland ecosystems (Zhuang et al. 2013). Changes in land use, land cover, 

or climate conditions that induce long-term drought, or permanent drainage in wetland soils that 

induces aerobic conditions, can significantly alter these processes. The transition from anaerobic 

to aerobic soil conditions can stimulate soil organic matter decomposition by microbes and cause 

an associated loss of soil carbon via CO2 respiration. In instances where soil moisture conditions 

are altered permanently, soil CO2 emissions will equilibrate with CO2 fluxes within the local  
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Figure 1-2 Relationship between percent water-filled pore space (WFPS) and relative microbial 

activity. The range of WFPS from 0% to 60% (water limiting) is representative of aerobic soil 

conditions. The range of WFPS from 60% to 100% (aeration limiting) is representative of 

anaerobic soil conditions. Relative microbial activity corresponds to expected trends in soil CO2 

flux rates. Source: Figure 1 in Linn and Doran (1984).  
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landscape surrounding the wetland (Blodau and Moore 2003). However, a significant loss of soil 

carbon from wetlands cannot be offset by carbon uptake within the landscape due to the 

disproportionately greater soil carbon storage capacity of wetlands, compared to the soil carbon 

storage capacity of upland ecosystems (Vicari et al. 2010). Soil-moisture induced biological 

thresholds are thus critical in the planning and development of constructed wetlands for 

maintaining the carbon sequestration potential of wetland ecosystems. This is only one example 

of the significant influence of soil moisture on terrestrial carbon processes.  

1.3 The Case for Understudied Ecosystems   

A better understanding of the linkages between hydrologic and biogeochemical cycles, 

especially in understudied ecosystems, is necessary to provide an account of the ‘missing’ carbon 

in terrestrial studies (Post et al. 1990). Gardner et al. (1980 p. 313) stated that “true values of 

transfer and variability of carbon cycle processes relative to time and space” are required to 

create informed carbon-cycling prediction models. While advancing knowledge of 

biogeochemical processes contributes to determining ‘true values,’ a better understanding of 

understudied ecosystems is needed to account for the transfer and variability of carbon-cycle 

processes. Much focus in terrestrial carbon research has been given to ecosystems that are 

recognized as globally significant carbon sinks and are most sensitive to global climate change, 

namely forests and wetlands in boreal and tropical climate zones (Gorham 1991; WBGU 1998). 

While these studies have contributed a wealth of knowledge to global carbon research, the 

complexity and connectivity of ecosystem processes across spatial scales require a more detailed 

account of hydrologic and biogeochemical processes in adjacent and understudied systems 

(Jones et al. 2013). Local and regional changes in surface water or soil hydrology, for instance, 

can have significant implications for carbon-cycle processes at landscape scales (Lohse et al. 

2009). This is increasingly evident in ecosystems where land management practices were 

implemented prior to the existence of sufficient scientific information to accurately predict 

environmental responses. My doctoral dissertation research focuses on two ecosystems, 

constructed agricultural wetlands and Ecuadorian páramo grasslands, each of which represents a 

fraction of the larger landscape in which it occurs, yet has the potential to play a significant role 

in landscape-scale carbon-cycle processes.  
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1.4 Ecuadorian Páramo Grasslands  

Páramo grasslands are high altitude ecosystems that extend from Costa Rica to the 

northern Andes in South America and occur between 3200 m and 4700 m in elevation (Horn and 

Kappelle 2009). Ecuadorian páramos are characterized by Andisol (volcanic ash) soils and 

perennially cool, moist climate conditions. Andisol soils in páramo grasslands have a high water-

holding capacity. Previous studies have reported very high volumetric soil moisture content, 

ranging between 79 and 86% for páramo grasslands in Ecuador (Hartsig 2011; Harden et al. 

2013). Soils in páramo grasslands in Ecuador are primarily non-allophanic Andisols dominated 

by Al-humus complexes. Due to the combination of climate and physical and chemical soil 

properties in Ecuadorian páramo grasslands, these ecosystems also have high soil carbon storage 

capacities. Previous studies have shown that páramo grasslands in Ecuador can store up to 143 

tons C ha
-1

 (Farley et al. 2012) and yield 506–933 mm of water per year (Buytaert et al. 2007a). 

Water yield from páramos supports domestic water provision to many of the major cities in 

Ecuador. Additionally, due to the high retention of soil organic matter in páramo soils, these 

ecosystems act as significant regional carbon sinks. Consequently, as páramos are sensitive to 

disturbances, a better understanding of ecological responses in páramos to land-use change has 

significant implications for land management decisions in the Ecuadorian Andes. 

The role of human activity in defining the boundaries of páramo ecosystems has been 

debated for some time (Ellenberg 1979; Keating 1998, 2007; Horn and Kappelle 2009). In recent 

decades, anthropogenic fire has been recognized to play an important role in defining boundaries 

between páramo grassland and montane forest (Keating 2007; Horn and Kappelle 2009). 

Previous studies suggested that some regional páramo ecosystem boundaries throughout Ecuador 

have been maintained by anthropogenically induced fire regimes for thousands of years (Keating 

2007; White 2013). The use of fire as a land management tool has been suggested to be 

associated with grazer ecology (White 2013). Burning in páramo grasslands stimulates the 

growth of new plant shoots that can support more grazing animals (Lægaard 1992; Verweij and 

Budde 1992; Hofstede 2003), which have supported the livelihoods of local populations from the 

hunter-gatherer cultures of the late Holocene to modern agricultural societies (White 2013). 

Although fire has been associated with the expansion and maintenance of páramo grassland area, 

the effects of burning, at intervals from one to several years, on soil carbon processes in 
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Ecuadorian páramo soils is poorly understood. Further, it has been suggested that the suppression 

of controlled anthropogenic burning may result in the encroachment of native forest and woody 

plant species into páramo grassland areas at higher altitudes (Farley 2010).  

Afforestation in páramo grasslands, both as tree plantation and as native woody plant 

encroachment, has been promoted for a variety of purposes. Recently, the Ecuadorian Ministry 

of Environment has suppressed controlled burning to reduce direct anthropogenic impacts on 

páramo landscapes (Farley et al. 2011). In some areas in the Andes, this management decision 

may result in the encroachment of woody vegetation into grassland areas. In some instances, tree 

plantations, often pine or eucalyptus, have been established in páramo grasslands for a variety of 

reasons including, but not limited to, lumber production and the generation of international 

carbon credits. Previous studies have shown that both soil carbon content (Farley et al. 2012) and 

water yield (Buytaert et al. 2007a) were significantly reduced where grassland was converted to 

forest cover. In spite of the increase in aboveground carbon stocks, the depletion of soil organic 

carbon stores was an unanticipated outcome that countered the original objectives of the carbon-

focused afforestation programs. Further, because páramo ecosystems provide water resources to 

more than 10 million people in Ecuador (Buytaert et al. 2007a), these findings have significant 

implications for existing or future plans for afforestation (Harden et al. 2013).  

High soil organic matter in páramo grasslands in Ecuador has been significantly 

correlated with soil water retention (Buytaert et al. 2007b). However, to my knowledge, no 

known studies have investigated the role of land-use-induced changes in soil moisture on the loss 

of soil carbon stocks through increased soil carbon decomposition, or depolymerization, rates. 

Further, I am aware of no studies that report soil CO2 flux rates for Ecuadorian páramo 

grasslands. This dissertation research provides a first insight into soil CO2 flux rates and the 

relationship between soil moisture and soil carbon processes in Ecuadorian páramos.  

1.5 Constructed Agricultural Wetlands  

In spite of their significance to the global carbon budget (WBGU 1998; Mitra et al. 

2005), wetland areas have been greatly diminished due to anthropogenic activity and land-use 

change. In the United States, agricultural development contributed to the loss of more than 50% 

of natural wetlands between the early 1600s and the 1900s (Dahl and Johnson 1991; Dahl and 

Allord 1999). In addition to the depletion of soil carbon stores where wetlands were drained, soil 
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carbon was further reduced in agricultural landscapes due to cultivation practices and animal 

trampling (Caride et al. 2012; Hiltbrunner et al. 2012). Although recognition of agricultural 

carbon loss instigated efforts to increase carbon sequestration in agricultural areas through 

sustainable crop selection and cultivation, agricultural landscapes in the United States still 

contribute approximately 460 Tg of CO2 annually to atmospheric carbon concentrations (US 

EPA 2004).  

In recent decades, wetland construction has been increasingly used as a land management 

practice for flood control and for the mitigation of nutrient and erosion runoff in crop and pasture 

land (Hefting et al. 2013; Tanner et al. 2013). However, the role of constructed wetlands in 

landscape carbon budgets is not well documented. Conversion of cropland to wetland has been 

shown to increase soil carbon stocks (Euliss et al. 2006) and, in some cases, soil organic carbon 

in constructed wetlands is up to 70% greater than in similar natural wetlands within the same 

region (Anderson and Mitsch 2006; Bernal and Mitsch 2013). Bernal and Mitsch (2012) showed 

that carbon sequestration capacities of freshwater wetlands are not always comparable. A better 

understanding of the biogeochemical processes affecting soil carbon processes in constructed 

wetlands in distinct geographic settings can provide insight into why these differences exist. 

Consequently, to define the functional role of constructed wetlands in agricultural landscapes, 

more information on biogeochemical processes in constructed agricultural wetlands, and on how 

they compare to natural wetlands, is necessary. The number of previous studies that have 

assessed soil carbon processes in constructed wetlands is limited, and even fewer studies have 

assessed the relationship between wetland soil hydrology and soil carbon processes. Further, 

those studies that have investigated the effects of soil moisture variation on soil carbon fluxes in 

constructed wetlands have been primarily conducted using laboratory or mesocosm experiments, 

while field studies in constructed wetlands are lacking. Finally, the majority of existing studies 

that assess greenhouse gas emissions in constructed wetlands focus primarily on fluxes of 

methane and nitrous oxide (Fey et al. 1999; Sovik et al. 2006; Maltais-Landry et al. 2009; Fuchs 

et al. 2011). As a result, very few studies contribute to our understanding of soil moisture 

controls on soil CO2 fluxes in constructed wetlands, and no known field studies investigating 

these processes have been conducted for agricultural landscapes in East Tennessee. 

As agricultural lands comprise more than 50% of the conterminous United States (USDA 

2011), the growing use of constructed wetlands for water quality best management practices 
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(BMPs) will likely have significant effects on regional and landscape carbon-cycle processes. 

Quantifying soil and aquatic carbon flows and their response to hydrologic feedbacks is therefore 

essential to the integration of constructed wetlands into agricultural and landscape carbon budget 

models. 

1.6 Research Questions  

My doctoral dissertation research investigated soil carbon-cycle processes in páramo 

grasslands in the Ecuadorian Andes and in two constructed agricultural wetlands in East 

Tennessee. These study sites represent two understudied ecosystems in which land-use induced 

changes in soil moisture were expected to play an important role in soil carbon processes. The 

primary research questions for this dissertation are:  

1) What is the relationship between land-use induced changes in soil moisture and 

soil CO2 flux rates among four different land-use types in the Ecuadorian 

páramos? (Chapter 2) 

2) How does soil extracellular enzyme carbon-acquisition activity differ between 

four different types of land use in Ecuadorian páramos? (Chapter 3) 

3) What is the importance of soil moisture variability on soil CO2 flux rates in two 

constructed agricultural wetlands with different hydrologic regimes, perennial 

versus intermittent, in East Tennessee? (Chapter 4) 

1.7 Organization of Dissertation 

 This dissertation consists of five chapters. Chapter 1 has provided an introduction to 

coupled water-soil interaction studies in terrestrial carbon research and put into context the value 

and need for the research being presented. Chapters 2 through 4 are included as stand-alone 

manuscripts that will be submitted for publication to peer-reviewed journals.  

In Chapter 2, differences in soil moisture and soil CO2 flux among four different types of 

land use are assessed. This research reports the first known data for soil CO2 flux in the 

Ecuadorian Andes and provides a new view of soil carbon processes in high altitude páramo 

landscapes.  
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 Chapter 3 reports an investigation into the effects of land-use and soil moisture changes 

on soil extracellular enzyme carbon-acquisition activity at four sites representing different land 

uses in Ecuadorian páramo landscapes. Microbial and nutrient acquisition activity, as indicated 

by measures of extracellular enzyme activity, provides valuable insight in soil carbon 

degradation and loss through biological pathways. 

 In Chapter 4, differences in soil moisture variability and soil CO2 flux in two East 

Tennessee constructed agricultural wetlands, with different hydrologic regimes, are investigated. 

This research was intended to contribute to a better understanding of the relationship between 

wetland hydrology and soil carbon processes in constructed agricultural wetlands in East 

Tennessee. This knowledge is also intended to better inform the design and construction of man-

made wetlands, especially for land managers engaged in reducing or offsetting greenhouse gas 

emissions in agricultural landscapes.  

 Chapter 5 summarizes the findings of Chapters 2 through 4, discusses the potential 

implications of this research with respect to land management and the broader scientific 

community, and provides suggestions for future research.   
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Chapter 2  Differences in and relationship between soil moisture and soil carbon dioxide 

flux among four types of land use in Ecuadorian páramos 
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A version of this chapter will be submitted for publication to Biogeochemistry by Julie 

McKnight, Carol P. Harden, and Sean P. Schaeffer.  

Abstract 

Páramo grasslands are important carbon sinks in the Ecuadorian Andes. The organic 

matter content of the páramo Andisols is significantly correlated with their capacity for water 

retention, but no published studies have previously investigated the effects of land-use induced 

soil moisture change on soil carbon processes in these ecosystems. This study assesses the 

differences in and relationship between soil moisture and soil CO2 flux among four different 

types of land use in Ecuadorian páramo landscapes: grass páramo, recently burned grass páramo 

grassland (< 6 months), native montane forest, and pine plantation (age 25 years). Soil CO2 flux 

and soil moisture were measured over a 3-week period in December 2013. The highest (5.79 g 

CO2-C m
-2

 d
-1

) and lowest (3.61 g CO2-C m
-2

 d
-1

) mean soil CO2 flux rates were measured at the 

pine and recently burned páramo sites, respectively. Soil CO2 flux rates were higher (p<0.5) at 

the forest and pine sites than at the grassland sites, and CO2 flux was higher (p<0.05) at the grass 

páramo than at the recently burned páramo site. Lower soil CO2 flux rates at both grassland sites 

were associated with anaerobic conditions (water-filled pore space > 60%). Soil CO2 flux 

appears to respond to biological soil moisture thresholds; however, there is no clear trend within 

aerobic and anaerobic soil moisture gradients. Our results suggest that decreases in soil moisture 

content with land-use change from páramo grassland to forest or pine plantation can lead to 

higher soil CO2 flux rates in the páramo of the Mazar Wildlife Reserve, but further research is 

required to better define the relationship between soil moisture and CO2 flux within specific 

types of land use. To our knowledge, these are the first soil CO2 flux rates reported for 

Ecuadorian páramo grasslands.  

1. Introduction 

Globally, soil carbon accounts for more than three times the amount of carbon in the 

atmosphere and almost twice as much carbon as is present in the atmospheric and biotic pools 

combined (Lal 2004; Davidson and Janssens 2006). Soil CO2 flux is a primary mechanism for 

soil carbon loss to the atmosphere, as it is a product of the breakdown and utilization of soil 

carbon resources by soil microorganisms. Changes affecting soil carbon-cycle processes thus 

have significant implications for terrestrial carbon fluxes. In fact, land-use change is second only 
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to fossil fuel burning in terms of anthropogenic carbon dioxide (CO2) emissions, with an 

estimated loss of 25–50% of soil organic carbon (SOC) in the conversion of native vegetation to 

cropland alone (IPCC 2014; Scharlemann et al. 2014). Still, net flux of terrestrial carbon from 

land-use and land-cover change is among the most uncertain of factors in the global carbon 

budget, partly due to knowledge gaps regarding the amount and distribution of carbon in lands 

undergoing change (Houghton et al. 2012). Although estimates of carbon emissions from land-

use change commonly include emissions resulting from deforestation and agricultural 

management, some ecosystems (e.g. peatlands), known to be significant carbon sinks and 

sensitive to land-use change, are not well represented in those estimates (Houghton et al. 2012). 

In addition, estimates of carbon emissions induced by land-use change poorly represent 

terrestrial carbon fluxes associated with unintended changes in land cover that result from land 

management, such as woody encroachment as a response to fire suppression (Hurtt et al. 2002). 

Consequently, to more accurately represent the role of land-use change in regional and global 

carbon budgets, studies that estimate carbon flux related to land use must incorporate direct and 

indirect terrestrial carbon responses and include a broader range of ecosystems.  

Soil carbon dioxide (CO2) flux, a primary mechanism for soil carbon loss, can be used as 

a proxy to reflect rates of soil microbial activity. Microbes require the transformation of soil 

organic matter into simpler organic components, such as amino acids and sugars, for uptake and 

utilization. This transformation process, known as depolymerization, is associated with aerobic 

microbial activity, from which CO2 is an end product via respiration. As a result, changes in soil 

CO2 flux rate can be used to indicate changes in soil microbial activity, which can be related to 

rates of soil carbon depolymerization. Soil CO2 flux is a function of biological activity; thus, flux 

rates vary along gradients of environmental conditions that influence biological processes and 

that can create biological thresholds. Specifically, numerous studies have shown that soil CO2 

flux is sensitive to changes in soil temperature (Raich and Schlesinger 1992; Dornbush and 

Raich 2006; Wang et al. 2008) and soil moisture (Bauer et al. 2008; Hernandez-Ramirez et al. 

2009; Sainju et al. 2010), both of which can be significantly altered by land-use change. Linn 

and Doran (1984) showed that soil CO2 flux variation can be a function of soil moisture, as 

microbial processes are affected by aerobic or anaerobic conditions. This response is two-fold: 

too little water can be limiting, as it is vital to support biological activity; however, too much  
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Figure 2-1 Relationship between percent water-filled pore space (WFPS) and relative microbial 

activity. The range of WFPS from 0% to 60% (water limiting) is representative of aerobic soil 

conditions. The range of WFPS from 60% to 100% (aeration limiting) is representative of 

anaerobic soil conditions. Relative microbial activity corresponds to expected trends soil CO2 

flux rates. Source: Figure 1 in Linn and Doran (1984).   
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water can create anaerobic conditions, which hinder microbial processes (Figure 2-1). Linn and 

Doran (1984) showed that soil microbial CO2 respiration responded positively to increasing soil 

moisture content until reaching the anaerobic threshold, estimated to be at approximately 60% 

water-filled pore space (WFPS). In soil moisture conditions that exceed 60% WFPS, microbial 

CO2 respiration decreases because microbial activity responds negatively to anaerobic 

conditions. Accordingly, where land-use change results in significant changes in soil moisture, 

especially where conditions shift from anaerobic to aerobic or vice versa, the rate of soil CO2 

flux rate is expected to change.  

In the Ecuadorian Andes, páramo grasslands are valuable ecosystems that represent less 

than 10% of the total land area but facilitate significant ecosystem services, including their 

functional role as regional carbon sinks (Hofstede 1995; Luteyn 1999). Páramo grasslands in 

Ecuador occur between elevations of 3200 m and 4700 m (Luteyn 1992), where a high-altitude 

equatorial climate facilitates consistently cool temperatures and high precipitation, including fog-

moisture capture. Histic Andisols (organic-rich volcanic ash soils) are the dominant soils in 

Ecuadorian páramo grasslands (Buytaert et al. 2007a). Due to the high soil-water retention of 

histic Andisols and the perennially low temperatures, soil conditions in the Ecuadorian páramos 

are conducive to low decomposition rates of soil organic matter. The chemical characteristics of 

Andisols also contribute to soil organic matter retention, as properties such as low pH and the 

development of aluminum (Al)- complexes help to stabilize organic carbon in the soil (Poulenard 

et al. 2003). High soil organic matter retention, low decomposition rates, and thick A horizons 

(0.5–1 m) result in the storage of large amounts of soil carbon in the form of organic matter. This 

supports the role of Ecuadorian páramo grasslands as a carbon sink and, in fact, they have been 

shown to store up to 77 tons C ha
-1

 (~7 kg m
-2

) within the first 10 cm of the soil profile (Farley et 

al. 2013). Páramo grasslands are sensitive to climate change and anthropogenic disturbances, 

which can result in soil carbon loss via leaching or soil organic matter decomposition and uptake. 

Consequently, changes in land use or land cover that affect physical or chemical soil properties 

can have significant implications for soil carbon storage and for the functional role of páramos as 

an atmospheric carbon sink or source. 

In the Ecuadorian páramo, soil water retention is significantly correlated with organic carbon 

content (Buytaert et al. 2007a). Soil moisture in the Ecuadorian páramo grasslands is very high. 
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Previous studies have reported volumetric soil moisture content ranging between 79 and 86% for 

páramo grasslands in central-south Ecuador (Harden et al. 2013; Hartsig 2011). Working from 

the low bulk densities and the volumetric water contents reported in these earlier studies, WFPS 

can be estimated to be approximately 90 to 95%. According to the model proposed by Linn and 

Doran (1984), the high moisture contents of páramo soils (Harden et al. 2013; Hartsig 2011) 

support the expectation that, in the case of Ecuadorian páramos, a decrease in soil moisture 

content would likely correspond to an increase in soil CO2 flux due to higher soil organic matter 

decomposition rates associated with more aerobic conditions. The increased rate of 

decomposition and uptake of soil carbon would result in a net decrease in soil carbon stocks. 

Previous studies in south Ecuadorian páramos have shown that land-use change, such as the 

transition from grassland to tree plantation, can significantly reduce both soil water content 

(Buytaert et al. 2006; Buyteart et al. 2007b; Harden et al. 2013) and soil carbon storage (Farley et 

al. 2013) by up to 50% and ~35%, respectively. This suggests that land-use-induced changes in 

soil moisture play an important role in soil carbon processes in Ecuadorian páramo landscapes; 

however, this hypothesis has not been tested explicitly.  

Apart from agriculture, afforestation and controlled burning are prominent types of land 

management practices associated with land-use change in the Ecuadorian páramos. 

Afforestation, including both tree plantation and woody native forest encroachment, has been 

promoted for páramo grasslands for a variety of purposes in Ecuador, including compensation 

for ecosystem service programs and the generation of international carbon credits (Farley et al. 

2011). Previous research has used tree plantations in space-for-time substitution studies to assess 

the effects of afforestation on páramo soil hydrology and carbon stocks to better understand the 

ecological benefits and consequences of afforestation of paramo grasslands. These studies found 

that, while aboveground carbon was greater in pine tree plantations, soil carbon content and 

water yield in the plantation, 42 tons C ha
-1

 and 506–933 mm y
-1

, respectively, were much lower 

than in páramo grassland, at 77 tons C ha
-1

 (Buytaert et al. 2007b) and 175 mm y
-1 

(Farley et al. 

2013), respectively.  

Anthropogenic fire has played a significant role in defining páramo grassland boundaries 

(Keating 2007; Horn and Kappelle 2009) and is thought to have been a prevalent land 

management practice throughout the Andean páramos for more than 10,000 years (White 2013). 
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Fire suppression in páramos thus has the potential to promote native woody forest encroachment 

into grassland areas (White 2013; Luteyn 1999). Consequently, recent efforts by the Ecuadorian 

Ministry of Environment to limit anthropogenic burning have the potential to result in larger 

areas of grassland becoming forest via succession of native woody species. Soil moisture and 

soil organic matter have been shown not to vary significantly between grassland and montane 

forest vegetative communities (Hofstede et al. 2002). As a result, according to the work of Linn 

and Doran (1984), then, soil CO2 flux would not be expected to differ between grassland páramo 

and areas where grassland has been converted to native forest cover. As no studies have reported 

soil carbon content for montane forest in areas that were previously páramo grassland, and no 

soil CO2 flux rates have been reported for either páramo grassland or montane forest, this 

hypothesis has also not been explicitly tested.  A better understanding of soil carbon-cycle 

processes in páramo landscapes is required to anticipate the effects of fire suppression on soil 

carbon stocks in native montane forests in the Ecuadorian Andes.  

Due to the significant correlation between soil moisture and organic carbon content of 

páramo soils (Buytaert et al. 2007a), there is a critical need to assess the effects of land-use-

induced changes in soil moisture on soil carbon fluxes. The objectives of this research were to 

compare soil CO2 flux and soil moisture among sites representing four types of land use in 

Ecuadorian páramo landscapes, and to examine the relationship between CO2 flux and soil 

moisture across these four sites. The four study sites were chosen to represent four different 

types of land use common to the Ecuadorian Andes: páramo grassland (last burned 5–6 years 

prior to the study), recently burned páramo grassland (burned 6 months prior to the study), pine 

plantation (25 years old), and native woody forest. Soil CO2 flux rates for the two grassland sites 

were not expected to differ (Hypothesis 1). Further, CO2 flux at the native forest site was not 

expected to differ from flux at the grassland sites (Hypothesis 2), due to evidence that soil 

moisture and soil organic matter content are similar between these two land-cover types 

(Hofstede et al. 2002). Because grassland and native forest sites have previously been shown to 

have higher moisture contents than pine plantations (Hofstede et al. 2002; Buytaert et al. 2006; 

Buytaert et al. 2007b; Harden et al. 2013), soil CO2 flux was expected to be highest at the pine 

site (Hypothesis 3), and soil CO2 flux was expected to differ between the pine plantation and 

native forest sites (Hypothesis 4). Finally, soil CO2 flux was expected to follow the trend 

outlined by Linn and Doran (1984) in response to soil moisture differences across the four sites: 
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a non-linear relationship was expected in which soil CO2 flux would respond positively to higher 

levels of soil moisture until reaching a WFPS of 60%, at which point soil CO2 flux would begin 

to decrease (Hypothesis 5).  

2. Materials and Methods 

2.1 Site Description 

This study was conducted at the Mazar Wildlife Reserve (MWR) in the Sangay National 

Park (Figure 2–2). The MWR is a privately owned 1,800-ha reserve, located in the Nudo del 

Azuay, which spans an elevation gradient from 1,200 m to 4,500 m above sea level. The MWR 

supports the conservation of Andean cloud forest and páramo grassland ecosystems that occur 

within this elevation range and scientific research that contributes to a better understanding of 

these systems (FCT 2008). The MWR provides an ideal location for studying the effects of 

different types of land use on soil-water and soil-carbon processes. Using an aerial photo from 

1977 and expert knowledge of the MWR owner and manager of 30 years (S. White, personal 

communication, December 2013), we identified and described four study sites with different 

histories of land use. Historically, the area of the MWR was predominantly characterized by 

páramo grassland maintained by regular cattle grazing and controlled burning approximately 

every 4 to 6 years (S. White, personal communication, December 2013). A variety of uses and 

land-management practices have been implemented in the MWR páramo, which is now a 

heterogeneous landscape containing native forest, pine plantations (25 years old), alpaca-grazed 

páramo (~350 ha), and páramo with varying burn histories (with most recent burn ranging from 6 

months to >40 years earlier).  

We chose four sites, representing different types of land use: a páramo grassland site with 

no burning during the previous 4 to 6 years, a páramo grassland site that had recently burned 

within 6 months of the study, a site with native woody species forest cover, and an afforested site 

with a stand of Pinus patula established 25 years prior to sampling (Figure 2–3; Table 2-1). At 

each study site, a location was selected arbitrarily to establish a plot center. Four data collection 

points were established, each 5 m from the plot center, at 0°, 90°, 180°, and 270°. Data collection 

points were used for ongoing field measurements during the study period. All field data  
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Figure 2-2 Map of study area. This study was conducted in the Mazar Wildlife Reserve located 

in the Nudo del Azuay east-northeast of the city of Cuenca. (Source: Harden et al. 2013)  
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Figure 2-3 Scanned topographic map (IGM 1969) with letters indicating the location of the (A) 

pine plantation, (B) native forest, (C) páramo grassland, and (D) recently burned páramo 

grassland sites. Arrows from each site location provided on the maps point to a photo of each of 

the four study sites. Grid cells on the maps are 1 km by 1 km. Green shading on the map forest 

areas do not accurately support forest cover area and should be disregarded. 
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collection and sample collections were taken over a three-week sampling period from December 

12 to December 31, 2013. 

Our research was based out of the MWR Jalogus field camp (UTM: S 02.57081, W 

078.74585) located at 3,300 m elevation. Average daily temperatures at Jalogus range from 7°C 

to 21°C, and the mean annual precipitation exceeds 1,500 mm, according to a time series 

analysis (1998–2009) by Bookhagen (in review) and on-site measures of precipitation by the 

FCT (Bremer 2012).  Native forest vegetation is tropical montane cloud forest. Páramo grassland 

is dominated by tussock grasses and Puya clava-herculis, with little to no bare-soil interspace. 

The MWR sites in this study are between 3,200 m and 3,450 m in elevation and are characterized 

by non-allophanic Andisol soils dominated by Al-humus complexes (Bremer 2012; Poulenard et 

al. 2003). 

2.2 Field Methods 

To measure soil CO2 flux, one PVC soil collar (20 cm diameter) was installed at each of the four 

data collection points within each of the four study sites (4 x 4 = 16 collars). All soil collars were 

installed at least 24 hours prior to the first soil CO2 flux measurement, to minimize flux 

variations from site disturbance, and were removed upon completion of the study. A total of nine 

field CO2 measurements were taken at each soil collar over the course of three weeks (the 

number of measurements being constrained by electrical power limitations). On each of the nine 

data collection days, CO2 flux was measured at all data collection points. All field CO2 

measurements were taken between 10:00 and 14:00 to minimize effects of diurnal variation 

(Mielnick and Dugas 2000; Laporte et al. 2001; Petrone et al. 2008). At the time of each 

measurement, a LI-8100 20-cm Survey Chamber (chamber) was placed atop an installed soil 

collar, and the soil CO2 flux rate was measured using a LICOR 8100A Automated Soil CO2 Flux 

Infrared Gas Analyzer (LI-8100). Settings for each site measurement included a total 

measurement length of 120 seconds, a deadband (time between measurements) of 30 seconds, 

and purge of time 60 seconds. At the time of soil flux measurement, soil temperature and 

volumetric soil moisture were also measured, adjacent to the soil collar, using an Omega Type E 

Soil Temperature Probe and EC H2O Soil Moisture Probe, respectively. For data analysis, 

volumetric soil moisture values were converted to water-filled pore space (WFPS) to compare 

results with predicted trends in WFPS and soil CO2 flux rates as reported in previous studies. 
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Table 2-1 MWR soil properties and site descriptions. Results of laboratory analyses (pH, total soil carbon, soil organic carbon, soil 

organic matter content) and calculated estimates (bulk density, porosity) reported as mean values. For each study site: N=4 for pH; 

N=6 for bulk density, porosity, soil organic carbon, and soil organic matter; N=8 for total soil carbon. 

 Study Site pH  

(SE
a
) 

Bulk 

Density  

g cm
-3

 (SE) 

b
Porosity 

(SE) 

 

Total Soil 

Carbon 

g kg
-1

 (SE) 

Soil 

Organic 

Carbon 

g kg
-1

 (SE) 

Soil 
Organic 
Matter 

(%) 

Land-Use and Site Description 

Native Forest 
4.32 

(0.07) 

0.6017 

(.0061) 

0.7729 

(.0023) 
142.6 (5.4) 135.9 (2.1) 27.2 (0.4) 

Native montane cloud forest at least 35 years old; 

dominant plant families: Araliaceae, Asteraceae, 

Clusiaceae, Cyatheaceae, Myrsinaceae 

Páramo 

Grassland 

4.39 

(0.04) 

0.5769 

(.0075) 

0.7823 

(.0028) 
176.5 (5.6) 145.2 (3.0) 29.1 (0.6) 

Intermediate burn (6 years); Alpaca grazing;  

tussock grass & Puya clava-herculis 

Recently Burned 

Páramo 

Grassland 

4.62 

(0.08) 

0.6437 

(.0052) 

0.7571 

(.0020) 
137.0 (2.5) 121.9 (1.6) 24.4 (0.3) 

Recent burn (<6 months); Alpaca grazing;  

tussock grass & Puya clava-herculis 

Pine Plantation 
4.10 

(0.06) 

0.6219 

(.006) 

0.7653 

(.0021) 
138.0 (4.2) 129.0 (1.9) 25.8 (0.4) 

Pine plantation (25 years old); previously  

páramo grassland used for grazing;  

Pinus patula 
a
SE: Standard Error 

 
b
Soil porosity values reported here were determined using the standard mineral particle density (2.65 g cm

-3
). Additional data analyses, not reported here, were 

performed using a particle density of 1.5 g cm
-3

, reported for boreal wetland soils with very high organic matter (Redding and Devito 2005). These two particle 

densities are considered to bracket the actual particle density for the soils collected in the Mazar Wildlife Reserve, and calculations using both particle density 

values yielded the same trend between soil water-filled pore space and soil CO2 flux.  
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Soil samples were collected from within each study site for soil carbon-content analysis. 

Samples consisted of soil cores taken adjacent to each of the four soil collars within each of the 

four study sites (16 soil cores in total). Analysis of the 16 individual cores was used to determine 

soil properties (pH, total soil carbon, soil organic carbon, bulk density, porosity, water-filled pore 

space) for each study site. Soil cores were taken with a 2.0-cm diameter Oakfield Model G soil 

sampler to a depth of 10 cm and placed on ice within 24 hours of collection for shipment to the 

University of Tennessee, Knoxville, Tennessee. 

2.3 Soil Properties 

Soil pH was determined in deionized water solution using a Denver Instrument 

UltraBASIC pH Meter. To determine soil carbon content with a Costech Combustion Module, 

subsamples of each soil were dried at 60°C for 48 hours (ASTM 2010) then homogenized into a 

fine powder. Approximately 7.0 mg of each soil sample was weighed into a 3 x 5 mm tin capsule 

and stored in a desiccator until analysis. For soil organic carbon content, soils were first acidified 

in 3.0 N phosphoric acid to remove the soil mineral component. Soil organic matter (%SOM by 

weight) content was estimated as: 

%SOM = % soil organic carbon x 2 

which is a relationship used for soils with high organic matter content (Mitsch and Gosselink 

2007). Soil organic matter content was then used to determine soil bulk density using the 

following method of Adams (1973): 

BD = 100 / [(%SOM / OMBD) + (100 - %SOM) / MSBD] 

where BD is bulk density, OMBD is the average bulk density of organic matter (0.223 g cm
-3

), 

and MSBD is the average mineral bulk density (1.64 g cm
-3

). Soil porosity was then determined 

for the calculation of the water-filled pore space (WFPS) using the following method:  

Porosity = (1 – BD / Mineral particle density) * 100 

where mineral particle density was assumed to be 2.65 g cm
-3

. Water-filled pore space (WFPS) 

was then calculated as volumetric soil moisture (measured in situ) divided by Porosity. 
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2.4 Statistical Analyses  

Data sets for all soil parameters at all sites were tested for normality using the Shapiro-

Wilk test at each study site. The Shapiro-Wilk normality test was used as it is more powerful 

than the K-S (Kolmogorov-Smirnov) test and is recommended for small sample sizes (n<50) 

(Ghasemi and Zahediasl 2012). Due to inconsistencies in normality between the soil CO2 flux, 

soil moisture, and soil temperature data sets, and to the inability to apply data transformations 

universally to achieve normality, non-parametric methods were selected for statistical analyses of 

these parameters. Differences in soil CO2 flux, soil moisture, and soil temperature between the 

study sites were assessed using the Mann-Whitney Wilcoxon test (α = 0.05). To describe the 

relationship between soil water-filled pore space and soil CO2 flux across all four sites, the 

Spearman‘s Rho correlation test was first used to test for a linear relationship between the two 

variables. Where a significant linear relationship was not found, data were fitted using a 

polynomial regression. Statistical analyses were performed using the R statistical software (R 

2013). 

3. Results 

Mean values of volumetric soil moisture, CO2 flux, soil temperature, and percent water-

filled pore space (WFPS) are provided in Table 2.2. The highest mean soil CO2 flux rate, 5.79 g-

C m
-2

 d
-1 

(standard error = 0.35 g-C m
-2

 d
-1

), was measured at the pine plantation site. The lowest 

mean soil CO2 flux rate, 3.61 g-C m
-2

 d
-1 

(standard error = 0.23 g-C m
-2

 d
-1

) was measured at the 

recently burned páramo grassland site. WFPS is reported and discussed to allow for a more 

comprehensive examination of soil biological responses to soil moisture variation. Mean soil % 

WFPS was highest at the páramo, 69%, and recently burned páramo, 68%, sites and did not 

differ significantly between those grassland sites. Mean soil % WFPS at the grassland sites was 

significantly higher than the mean % WFPS at the forest and pine sites. The lowest % WFPS, 

~30%, was measured at the pine plantation. The expected biological threshold for aerobic-

anaerobic activity, 60% WFPS (Linn and Doran 1984), corresponded to a volumetric soil 

moisture of ~46% for MWR soils.  

Contrary to Hypothesis 1, soil CO2 flux in the páramo grassland was significantly 

(p<0.01) greater than flux in the recently burned páramo grassland site (Figure 2-3). CO2 flux at  
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Table 2-2 MWR field data. Mean values are given for soil CO2 flux, soil moisture (expressed in 

both volumetric water content and water-filled pore space), and soil temperature for páramo 

(PA), recently páramo burned (burned within 6 months, PAB), native forest (NF), and pine 

plantation (PI). 

Study Site 

(sample N) 

Soil Flux g CO2-C m
-2

 d
-1

 

(SE
a
) 

% Volumetric 

Soil Moisture 

(SE) 

% Water-Filled Pore 

Space (SE) 

Soil Temperature °C 

(SE) 

NF (36) 5.59 (0.19) 39.0 (2.2) 50.5 (2.8) 9.57 (0.04) 

PA (35) 4.75 (0.23) 55.5 (0.8) 69.0 (2.2) 12.99 (0.08) 

PAB (31) 3.61 (0.23) 51.7 (0.8) 68.3 (1.0) 12.82 (0.08) 

PI (36) 5.79 (0.35) 22.8 (0.7) 29.8 (0.1) 9.87 (0.05) 
a
 SE: Standard Error 
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A.   

B.   

Figure 2-4  (A) Soil CO2 flux and (B) % water-filled pore space, measured at the Mazar Wildlife 

Reserve, Ecuador. Study areas represented are: native forest (NF), páramo grassland (PA), 

recently burned (<6 months) páramo grassland (PAB), and pine plantation (PI). Letters A-C 

indicate significantly different (p < 0.05) values of soil CO2 flux and water-filled pore space. 

Lines within the boxes indicate median values. 

A 

B 

B 

C 

A 

C 

B 

A 
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the native forest was significantly (p<0.05) greater than flux at both grassland sites, causing 

Hypothesis 2 to be rejected. The highest mean CO2 flux was measured under the pines, 

supporting Hypothesis 3. However, we rejected Hypothesis 4, as mean soil CO2 flux did not 

differ significantly between the native forest and pine plantation sites. To further explore 

similarities and differences in soil CO2 flux among the four study sites, we compared only the 

flux rates within a constrained range of soil moistures. Within the range of 20–40% WFPS, the 

Wilcoxon test showed no significant difference (p = 0.522) in soil CO2 flux at the native forest 

and pine sites (Figure 2–7 A, in appendix). Within the range of 50–70% WFPS, soil CO2 flux 

differed significantly (p < 0.01) among the native forest, páramo, and recently burned páramo 

sites. Soil CO2 flux was highest at the native forest site and lowest at the recently burned páramo 

site (Figure 2–7 B, in appendix).  

By sampling across four different types of land cover, we were able to capture a range of 

soil moisture content, from 13–74% WFPS, which corresponds to 23–56% volumetric water 

content. This range of WFPS was sufficient to test Hypothesis 5: that the response of soil CO2 

flux rate to land-use induced changes in soil moisture would follow the theoretical model 

proposed by Linn and Doran (1984). Although our results do not cause us to reject Hypothesis 5, 

the data do not provide robust support. As shown in Figure 2-4, the soil CO2 flux rate across the 

four study sites appears to follow the expected trend. The polynomial regression line fit the data 

(p<0.01; R
2
 = 0.083), indicating a significant but weak relationship between soil moisture change 

and soil CO2 flux across the four different types of land use, and supporting Hypothesis 5. This 

trend suggests that flux rates increase with increasing soil moisture content within the aerobic 

WFPS range of 0–60% and decrease as WFPS contents increase beyond 60%. However, when 

the data were partitioned into two groups—aerobic and anaerobic—the Spearman’s Rho 

correlation test showed no significant linear relationship between soil CO2 flux and soil moisture 

for either group (aerobic: p = 0.301, Rho = 0.134; anaerobic: p = 0.563, Rho = 0.069). Further, 

the shaded confidence interval (α = 0.05) for the fitted polynomial line (Figure 2-5 A) shows that 

many measurements of CO2 flux do not fall within the predicted values. The absence of 

significant correlations on the limbs of the curve suggests that our results differ from the 

theoretical trend proposed by Linn and Doran (1984) and do not support Hypothesis 5 in terms of 

the expected relationship within the partitioned aerobic and anaerobic gradients. However, the 

range of CO2 flux is notably smaller at the inflection point of the fitted polynomial line, between 
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50–60% WFPS, with no flux rates measured below 4.5 g CO2-C m
-2

 d
-1

 at that point. The 

absence of low flux rates at the inflection point supports the theoretical model (Linn and Doran 

1984), in which CO2 flux is higher where soil conditions are wet and aerobic. Correlation 

analysis of % WFPS, including both aerobic and anaerobic groups, and soil CO2 flux rate across 

all four sites did reveal a weak, negative relationship between soil moisture and CO2 flux 

(p<0.05, Rho = -0.17, n = 138).   

Although this study did not include a treatment experiment to measure the response of 

soil CO2 flux to the spatial variability of soil moisture within each land-use type, the range of 

volumetric soil moisture measured in the native forest, from approximately 13% to 54% 

(estimated WFPS of 17% to 70%) allowed us to conduct an exploratory analysis of soil CO2 flux 

response to the gradient of % WFPS captured at that site. When a quadratic polynomial 

regression line is fitted to the soil CO2 flux and soil moisture at the native forest site, the 

regression is not significant (p > 0.05), but the curve appears to show a weak parabolic trend: soil 

CO2 flux rates are relatively higher as soil moisture increases from 17% to ~55%, at which point 

soil CO2 rates appears to decrease above 55–60% (Figure 2-5 B).  

4. Discussion 

The significant difference in soil CO2 flux between the páramo grassland and recently burned 

páramo grassland sites was unexpected due to similarities in plant community, soil organic 

matter, and soil moisture. Since the mean WFPS values for both grassland sites were greater than 

the 60% threshold defined by Linn and Doran (1984), soil CO2 flux was expected to be similar 

between the sites due to the biological limitations on microbial activity associated with anaerobic 

conditions. Although soil temperature can also significantly affect soil CO2 rates, soil 

temperature was not significantly different between the two grassland sites, suggesting this 

environmental parameter is likely not correlated with the difference in flux rate in the range of 

temperatures measured in this environment. Consequently, we hypothesize that the difference in 

soil CO2 flux rate between the grassland sites is due to biochemical effects of fire at the recently 

burned páramo site.  

Fire can result in the transformation of soil organic matter susceptible to microbial 

decomposition (labile carbon) into more recalcitrant forms of pyrogenic organic matter that are 

more resistant to microbial decomposition processes. Studies have shown that pyrogenic organic  
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Figure 2-5 Soil CO2 flux response to variation in water-filled pore space at four sites 

representing different histories of land use in the Mazar Wildlife Reserve, Ecuador. 
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A.  

B.  

Figure 2-6 Relationships between soil moisture and soil CO2 flux (A) across all sites and (B) at 

the native forest site, fitted with a quadratic polynomial regression equations.   

p-value = 0.0012 

R
2
 = 0.0982 

p-value = 0.1088 

R
2
 = 0.1258 
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material in recently burned grasslands can be more susceptible to transport and leaching than 

untransformed, labile forms of soil organic material (Knicker et al. 2012; Hilscher and Knicker 

2011). Transformation and loss of pyrogenic organic material post-fire can result in the loss of 

labile carbon material, thus limiting soil carbon resources available for microbial decomposition 

and uptake by plants and microorganisms. In this case, lower soil CO2 flux rates would reflect 

lower rates of soil microbial activity due to nutrient limitation. Plant activity and nutrient uptake 

are likely to be elevated at the recently burned páramo site because of post-burn regrowth and 

recovery of the plant community. Bell et al. (2014) showed that soil microbial activity—

expressed as extracellular enzyme activity associated with nutrient acquisition, including 

microbial soil carbon uptake—does not always correspond positively to plant activity. In fact, 

soil microbial activity has been shown to decrease when plant nutrient utilization is higher (Bell 

et al. 2014), a response that could manifest as lower soil CO2 flux rates. Although burning is 

considered a disturbance, and oxidation of organic material during the burn may temporarily 

contribute to atmospheric CO2 release, lower soil CO2 flux rates associated with lower microbial 

activity can indicate lower rates of soil organic matter decomposition after a fire. In addition, the 

development of pyrogenic organic matter, which is more resistant to microbial decomposition, 

can contribute to an increase in more stable forms of organic carbon in páramo grassland soils. 

These processes merit further examination in future research to explore the potential long-term 

benefits of different burning regimes on soil carbon storage in Ecuadorian páramos. Because 

conservation efforts and programs in Ecuador have begun to compensate highland communities 

for promoting ecosystem services (Farley et al. 2011; Bremer et al. 2014), the results of such 

research could be used to influence land management decisions.  

It is important to note that, although all field study sites were located within 2 km of each 

other, keeping aspect and elevation consistent, potentially confounding factors exist between the 

páramo and recently burned páramo sites due to localized differences. Specifically, the recently 

burned páramo site is located in an area that has been more regularly grazed and may have thus 

been burned more frequently (every 2–3 years versus every 4–6 years) within the past 30 years. 

Due to its proximity to an alpaca-holding and grazing area, this site may also have been 

subjected to more direct anthropogenic interaction, resulting in a higher level of disturbance. As 

a result, the recently burned páramo site may have been more susceptible to erosion, or other 

physical processes, that could also have led to greater loss of soil carbon to leaching and runoff. 
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Future studies, including more extensive field data collection at multiple sites representative of 

each type of land use, are recommended. 

The significant difference in CO2 flux between the native forest sites and the grassland 

sites was also unexpected. The prediction that soil CO2 flux would be similar between the forest 

and grassland sites (Hypothesis 2) was predicated on evidence from a previous study that showed 

soil moisture did not significantly differ between these land covers in páramo landscapes 

(Hofstede et al. 2002). Our results, expressed as % WFPS show that, in the MWR, soil water 

content was significantly lower at the forest site than at the grassland sites. Further, although the 

range of % WFPS at the native forest site included both aerobic and anaerobic conditions, more 

than half of the field measurements taken fell below the 60% WFPS anaerobic threshold (Linn 

and Doran 1984). Conversely, all but two soil moisture measurements taken at both grassland 

sites were greater than 60% WFPS. This likely contributes to the higher mean soil CO2 flux rate 

at the native forest site, as CO2 flux has been shown to be higher in aerobic conditions (Linn and 

Doran 1984; Moore and Dalva 1993).  

As expected, the highest values of soil CO2 flux appeared to be under the pine plantation; 

however, CO2 flux did not differ significantly between the pine and native forest sites.  Since 

mean %WFPS at the native forest site was significantly greater than at the pine plantation site, 

and mean %WFPS under the forest was ~50%—below the expected anaerobic threshold—soil 

CO2 flux would be expected to be greater at the native forest site. However, the lack of 

significant difference in mean soil CO2 flux rate between the forest and pine sites suggests that 

differences in vegetative community structure between tree-covered sites may have less bearing 

on drivers affecting soil CO2 flux rate than do differences between grass cover and woody 

vegetation cover (Creamer et al. 2013). This is supported by the lack of difference in soil CO2 

flux between the native forest and pine site within a range 20–40% WFPS (Figure 2-7 A in 

appendix). Further, the differences in soil CO2 flux between the native forest and páramo sites 

within a constrained range of %WFPS (50–70%) (Figure 2-7 B in appendix) suggests that soil 

CO2 flux can differ under different land-cover types with similar soil moisture conditions. 

Changes in soil microbial community composition or structure with land-cover change from 

grassland to forest can have implications for organic matter decomposition and soil carbon 

utilization (Yannarell et al. 2014). To determine whether this is the case for the Ecuadorian 
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páramo, future work is needed to investigate differences in microbial community and soil 

carbon-related activity between grassland and forest sites.  

The trend described between soil CO2 flux and soil moisture across the four study sites is 

conceptually similar to the expected trend adapted from the work of Linn and Doran (1984). 

When we compared CO2 flux for samples in the range of 55–60% WFPS, we found that the 

range of flux was smaller compared to flux in the WFPS ranges below 55% and above 60%. 

Between 55–60% WFPS, the lower boundary of soil CO2 flux rate is 3.7 g CO2-C m
-2

 d
-1

, 

compared to a lower flux boundary of 1.8 g CO2-C m
-2

 d
-1 

between 15–55% and 60–78% WFPS. 

Also, the range of CO2 flux between 55–60% WFPS was half that of the flux range measured 

below 55% WFPS and above 60% WFPS. The constrained lower boundary and smaller range of 

flux between 55–60% WFPS coincides with the range of soil moisture conditions expected for 

microbial activity to peak within the transition from aerobic and anaerobic conditions (Linn and 

Doran 1984). However, the large range in soil CO2 flux and lack of significant linear correlation 

with soil moisture within the range of aerobic and anaerobic moisture conditions at the MWR 

differed from the Linn and Doran (1984) theoretical model, indicating that soil moisture may not 

be a primary driver of soil CO2 flux rates. The relationship expressed by Linn and Doran (1984) 

was derived in a controlled laboratory experiment and represents a theoretical trend for 

conditions in which all other environmental factors, apart from soil moisture content, were held 

constant. In our study, however, we present field measurements of soil CO2 flux that represent 

the combined effects of potentially confounding factors, not identified or measured and different 

soil moisture contents. For instance, the difference in soil temperature between the two studies, 

~28°C in the study of Linn and Doran (1984) and 9–12°C in our study, may contribute to the 

difference in magnitude of soil CO2 flux response to soil moisture between the studies, as lower 

soil temperatures limit soil CO2 flux (Dornbush and Raich 2006; Wang et al. 2008). This may 

explain why the magnitude of the CO2 flux trend found across all study sites at MWR was more 

subtle than the relationship shown by Linn and Doran (1984). Our results suggest that biological 

activity resulting in CO2 production responds to the biological soil moisture threshold expected 

with a transition from aerobic to anaerobic soil moisture conditions. However, no conclusive 

statements can be regarding the relationship between soil moisture and soil CO2 flux in aerobic 

or anaerobic soil moisture gradients across the four study sites in the MWR.  
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In addition, the theoretical aerobic-anaerobic threshold of approximately 60% WFPS 

does not take into account the potential for microbial organisms that are either adapted (Pett-

Ridge and Firestone 2005) or acclimated (Blodau and Moore 2002) to perform aerobic processes 

in anaerobic (>60% WFPS) soil moisture conditions. Future that investigates the community 

structure and biological thresholds of microorganisms in páramo soils at the Mazar Wildlife 

Reserve may help explain the range of soil CO2 flux measured at the páramo grassland site. 

Further, the relationship between soil moisture and soil CO2 flux may vary within each study 

site, though this was not tested in this study. The trend of CO2 flux over a range of soil moistures 

at the native forest site was similar to that observed across all study sites, even though the flux-

moisture relationship at the native forest was not significant. The significant relationship 

between soil moisture and flux across all sites may be due to the inclusion of a wider range of 

soil moisture as a result of different soil water contents under different types of land use. This is 

consistent with the weak, negative relationship found across all sites, which supports the concept 

of a decrease in soil CO2 flux when shifting from more to less aerobic soil moisture conditions. 

From these results, we infer that, in páramo landscape of the MWR, decreases in soil moisture 

content with land-use change from grassland to forest or pine plantation can lead to higher soil 

CO2 flux rates from soils in wooded areas. This inference is consistent with changes in soil CO2 

flux rates at other locations where decreases in soil moisture with land-use change created more 

aerobic conditions (Houghton et al. 2012).  

In terms of environmental drivers that influence soil CO2 flux rate, soil temperature is 

known to significantly affect flux rates where soil moisture is less influential. Numerous studies 

have shown that soil temperature is positively correlated with soil CO2 flux, as soil biological 

agents, especially microbes, increase in activity and respiration in warmer temperatures (Bowden 

et al. 1998; Qi and Xu 2001; Laporte et al. 2002; Litton et al. 2011). In other environments, 

shrub encroachment into grassland has been shown to have a negative effect on soil CO2 flux 

rates due to lower soil temperatures under shrub cover (Yannarell et al. 2014). These trends were 

not observed at the MWR sites in this study. Soil temperatures significantly higher at the two 

grassland sites than at the forest and plantation sites, but the lower mean soil temperatures at the 

forest and pine sites were associated with the highest mean soil CO2 flux rates. The inverse 

interaction between soil temperature and soil CO2 flux at the MWR sites may indicate that 

differences in soil temperature, ranging from 9°C to 13°C, do not significantly affect soil CO2 
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flux rates in areas with the four types of land use included in this study. Consistently cool soil 

temperatures in this region likely play a significant role in limiting soil biological activity and 

soil organic matter decomposition. Due to the short time scale and equatorial location of this 

study, within-site variation in soil temperature was not significant. Therefore, it was not possible 

to assess the effects of soil temperature changes on soil CO2 flux rates within each study site. 

Future research, using a controlled treatment experiment with constant conditions of soil 

moisture and land use to investigate the effects of soil temperature variation on soil CO2 flux, 

could provide valuable insight into the potential soil-warming effects of climate change in 

páramo landscapes. 

Changes in soil physical properties that result from land-use change can also affect soil 

CO2 flux rates if they change rates of soil organic material decomposition and microbial soil 

carbon uptake. A recent study conducted at the MWR showed that soil properties are 

significantly altered in south Ecuadorian páramos where grassland is converted to pine plantation 

(Harden et al. 2013). Notable changes in soil properties included a shift from friable soil with 

moderate-to-strong sub-angular structures under grassland to very friable soil with granular 

structures under pine forest (Harden et al. 2013). Although aggregate size and stability were not 

analyzed by Harden et al. (2013), the shift to very friable, granular structures under the pine 

forest may have made soils in MWR páramos more susceptible to microbial decomposition. 

Changes in physical soil properties such as this can increase accessibility of soil organic matter 

to microbial decomposers, thus potentially increasing the rate of soil organic matter 

decomposition. Ecological succession from grassland to forest can also significantly alter 

microbial community structure, with implications for the amount and fractions of soil carbon 

utilized by decomposers. Yannarell et al. (2014) showed that the successional encroachment of 

woody shrub communities into prairie grasslands in the Midwestern United States significantly 

altered the composition of the soil fungi community, which contributes to utilization of different 

fractions of soil carbon pools. Further, compared to semi-wooded grasslands, woodlands have 

been shown to have higher soil carbon-acquisition microbial enzyme activity (Garcia-Morote et 

al. 2012), which corresponds to both increased soil CO2 flux rates and decreases in soil organic 

carbon contents (Creamer et al. 2013). Consequently, the significant difference in soil CO2 flux 

between the grassland and tree-covered sites may be a function of differences in microbial 

community and structure, in conjunction with the response of microbial activity to more aerobic 
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soil moisture conditions at afforested sites. To date, no studies have examined changes in 

microbial activity or microbial community with land-use change in Ecuadorian páramos. 

5. Conclusion 

Soil CO2 flux rates were found to differ among types of land use in páramo landscapes of 

the Mazar Wildlife Reserve (MWR). Soil CO2 flux was higher at a páramo grassland than at a 

recently burned páramo grassland. Although close in proximity, the recently burned páramo and 

páramo sites appeared to have some differences in history of land use. However, the difference 

in soil CO2 flux between the sites merits further investigation that directly tests the effects of 

burning on pathways of soil carbon loss, including the development of more recalcitrant 

pyrogenic organic material. Mean soil CO2 flux was similar between native forest and pine 

plantation communities, and flux measured at sites with tree cover was significantly greater than 

at páramo grassland sites. Our results suggest that soil CO2 flux in the páramo of the MWR is 

susceptible to change where land-use change involves a transition from páramo grassland to tree 

cover. A negative, weak relationship between soil moisture and CO2 flux, found across all four 

sites, suggests that the differences in CO2 flux with land-use type may be a function of different 

soil moisture contents. CO2 flux appeared to respond to biological soil moisture thresholds; 

however, no clear trend was detected between CO2 flux and soil moisture within aerobic and 

anaerobic soil moisture gradients. Our results suggest that decreases in soil moisture content with 

land-use change from grassland to forest or pine plantation can lead to higher soil CO2 flux rates, 

though we recognize that other mechanisms not tested in this study may also affect soil CO2 flux 

rates under different land uses. We recommend that future research investigate potential shifts in 

soil microbial community and activity among different types of land use. Such shifts may 

correspond to different soil organic matter decomposition rates and, thus, different soil CO2 flux 

rates.  

To our knowledge, these are the first soil CO2 flux rates reported for Ecuadorian 

páramos. Further, this study provides a first look at the role of soil CO2 flux as a mechanism for 

soil carbon loss and the interaction between soil moisture and CO2 flux rates in páramo 

landscapes of the MWR. In spite of being a substantial regional carbon sink in Ecuador, the 

páramo landscape is changing at a rapid rate due to human-environment interactions that change 

land-use and land-cover. A better understanding of the mechanisms driving fluxes of soil carbon 
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in Ecuadorian páramos is crucial to predicting shifts in terrestrial carbon pools and integrating 

this information into land management decisions in the Andes.  
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Figure 2-7 Photos of Mazar Wildlife Reserve field study sites. Photos of the four soil collar data 

collection points within each study site are provided in images A (native forest), B (páramo 

grassland), C (recently burned páramo grassland), and D (pine forest). 
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Figure 2–7 Continued 
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Figure 2–7 (continued) 
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Figure 2–7 (continued) 
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Figure 2–7 (continued) 
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Figure 2–7 (continued) 
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Figure 2–7 Continued 
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Figure 2–7 Continued 
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Table 2-3 Measured total and organic soil carbon content and calculated values for soil organic 

matter content, bulk density, and porosity.  

  Total Carbon (g kg-1) Organic Carbon (g kg-1) 

  PA PAB NA PI NA PA PAB PI 

  176.78 129.97 122.50 122.80 139.66 136.20 116.23 125.75 

  187.98 134.27 144.07 151.41 139.12 139.07 123.58 122.41 

  165.43 153.77 146.62 123.57 135.41 155.24 122.12 128.28 

  166.10 135.34 120.24 138.36 141.00 154.57 129.21 135.57 

  201.59 139.85 157.78 130.63 125.45 142.93 119.71 127.26 

  195.18 135.40 160.68 151.26 134.67 143.51 120.33 134.32 

  165.66 137.93 158.82 154.34 
   

  

  153.34 129.28 130.19 131.82         

Mean 176.51 136.98 142.61 138.02 135.88 145.25 121.86 128.93 

SE 5.58 2.54 5.44 4.25 2.12 2.96 1.63 1.89 

  Organic Carbon (%) Organic Matter (%) 

  NA PA PAB PI NA PA PAB PI 

  13.97 13.62 11.62 12.57 27.93 27.24 23.25 25.15 

  13.91 13.91 12.36 12.24 27.82 27.81 24.72 24.48 

  13.54 15.52 12.21 12.83 27.08 31.05 24.42 25.66 

  14.10 15.46 12.92 13.56 28.20 30.91 25.84 27.11 

  12.55 14.29 11.97 12.73 25.09 28.59 23.94 25.45 

  13.47 14.35 12.03 13.43 26.93 28.70 24.07 26.86 

Mean 13.59 14.53 12.19 12.89 27.18 29.05 24.37 25.79 

SE 0.21 0.30 0.16 0.19 0.42 0.59 0.33 0.38 

  Bulk Density Porosity 

  NA PA PAB PI NA PA PAB PI 

  0.5910 0.6005 0.6621 0.6312 0.7770 0.7734 0.7502 0.7618 

  0.5925 0.5926 0.6380 0.6417 0.7764 0.7764 0.7592 0.7578 

  0.6028 0.5517 0.6426 0.6235 0.7725 0.7918 0.7575 0.7647 

  0.5874 0.5532 0.6207 0.6023 0.7783 0.7912 0.7658 0.7727 

  0.6322 0.5823 0.6505 0.6266 0.7615 0.7803 0.7545 0.7635 

  0.6048 0.5808 0.6484 0.6058 0.7718 0.7808 0.7553 0.7714 

Mean 0.6018 0.5769 0.6437 0.6219 0.7729 0.7823 0.7571 0.7653 

SE 0.0061 0.0075 0.0052 0.0056 0.0023 0.0028 0.0020 0.0021 
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Table 2-4 Field data collected at the Mazar Wildlife Reserve during December 2013. Four study 

sites are representative of four different land-use histories, with four data collection points 

established within each site. Soil carbon dioxide (CO2) flux was measured with a LICOR 8100 

Automated Soil Respiration Analyzer using a 20-cm chamber. Soil temperature and soil moisture 

were measured with an Omega Type E Soil Temperature Probe and EC H2O Soil Moisture 

Probe, respectively. The date of data collection is year-month-day (yyyymmdd).  

Study Site 

Data 
Collection 
Point 

Date of Data 
Collection 

Soil CO2 

Flux (g-C 

m
-2

 d
-1

) 

Soil 
Temperature 
(°C) 

Volumetric Soil 
Moisture  (%) 

Native Forest 1 20131214 6.40 9.40 54.2 
  20131215 6.11 9.31 49.7 
  20131216 6.09 9.33 54.3 
  20131217 5.99 9.59 49.1 
  20131219 5.38 9.80 54.2 
  20131223 7.09 9.71 50.7 
  20131224 7.07 9.85 53.1 
  20131226 3.05 9.68 48.3 
  20131228 5.06 9.48 54.0 
 2 20131214 6.16 9.79 25.0 
  20131215 5.65 9.70 32.1 
  20131216 4.85 9.62 45.4 
  20131217 5.49 10.06 42.8 
  20131219 6.27 10.02 42.8 
  20131223 6.87 9.91 42.9 
  20131224 7.07 9.85 53.1 
  20131226 6.68 9.84 35.2 
  20131228 5.13 9.85 48.4 
 3 20131214 6.39 9.41 27.3 
  20131215 5.17 9.50 24.4 
  20131216 4.34 9.38 46.2 
  20131217 5.39 9.71 28.9 
  20131219 6.99 9.56 39.3 
  20131223 4.66 9.71 36.3 
  20131224 4.03 9.71 17.8 
  20131226 3.12 9.58 32.0 
  20131228 5.31 9.48 40.4 
 4 20131214 5.12 9.11 17.4 
  20131215 5.29 9.16 14.6 
  20131216 3.87 9.18 12.8 
  20131217 5.01 9.33 18.8 
  20131219 3.60 9.48 22.0 
  20131223 4.93 9.41 51.1 
  20131224 5.46 9.48 48.3 
  20131226 5.09 9.31 41.3 
  20131228 3.75 9.24 51.0 
Páramo Grassland 1 20131214 5.06  0.0 
  20131215 5.00 12.67 58.4 
  20131216 4.38 12.96 51.6 
  20131217 4.24 12.86 53.3 
  20131219  -      13.03 56.3 
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Table 2–4 (continued) 

Study Site 

Data 
Collection 
Point 

Date of Data 
Collection 

Soil CO2 

Flux (g-C 

m
-2

 d
-1

) 

Soil 
Temperature 
(°C) 

Volumetric Soil 
Moisture  (%) 

Páramo Grassland  20131223 7.55 13.53 59.8 
  20131224 7.14 13.29 54.5 
  20131226 3.81 13.40 54.3 
  20131228 4.09 12.92 52.4 
 2 20131214 5.86 13.18 54.1 
  20131215 4.56 12.88 47.3 
  20131216 4.36 12.84 51.5 
  20131217 3.89 13.00 52.4 
  20131219 4.13 13.63 48.4 
  20131223 4.46 13.83 54.6 
  20131224 5.25 13.90 45.7 
  20131226 3.99 13.58 53.6 
  20131228 2.48 12.97 48.0 
 3 20131214 4.08 11.96 61.0 
  20131215 3.60 12.35 60.7 
  20131216 3.19 12.37 59.8 
  20131217 3.50 12.84 58.5 
  20131219 3.58 12.64 59.3 
  20131223 5.08 12.40 60.8 
  20131224 3.61 13.07 59.3 
  20131226 3.99 13.28 56.9 
  20131228 2.81 12.17 57.2 
 4 20131214 5.77 12.96 60.6 
  20131215 4.34 12.15 60.3 
  20131216 3.74 13.21 61.3 
  20131217 - 12.39 59.6 
  20131219 7.95 12.72 57.9 
  20131223 6.12 13.12 57.2 
  20131224 5.63 13.77 54.2 
  20131226 5.25 13.77 54.7 
  20131228 3.76 12.89 48.0 

Páramo Grassland—Recently 
Burned (<6 months) 

1 20131214 7.45 12.26 51.4 

 20131215 5.21 12.51 46.2 
  20131216 4.39 12.36 53.6 
  20131217 5.90 12.56 53.2 
  20131223 4.57 12.16 52.8 
  20131224 4.56 12.68 40.3 
  20131226 8.27 12.98 59.0 
  20131228 3.54 12.37 45.6 
 2 20131214 3.83 12.63 57.6 
  20131215 3.43 12.73 48.1 
  20131216 2.59 12.18 57.4 
  20131217 2.92 12.56 55.1 
  20131223 2.86 12.37 48.2 
  20131224 2.52 12.96 52.1 
  20131226 3.14 13.01 47.7 
  20131228 2.20 12.15 47.5 
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Table 2–4 (continued) 

Study Site 

Data 
Collection 
Point 

Date of Data 
Collection 

Soil CO2 

Flux (g-C 

m
-2

 d
-1

) 

Soil 
Temperature 
(°C) 

Volumetric Soil 
Moisture  (%) 

Páramo Grassland—Recently 
Burned (<6 months) 

3 20131214 4.70 13.01 54.0 

 20131215 3.72 13.11 52.2 

 20131216 2.97 12.96 51.0 
  20131217 2.70 12.57 57.8 
  20131223 2.84 12.60 52.6 
  20131224 2.31 13.40 49.6 
  20131226 3.35 13.17 52.0 
  20131228 1.89 12.53 46.2 
 4 20131214 4.24 12.99 56.7 
  20131215 3.59 13.35 55.4 
  20131216 2.79 12.82 51.8 
  20131217 3.19 13.97 51.8 
  20131223 2.71 13.06 54.4 
  20131224 2.51 13.45 52.9 
  20131226 3.34 13.42 53.1 
  20131228 1.75 12.88 47.4 
Pine Plantation 1 20131214 8.27 10.27 11.8 
  20131215 9.35 10.15 27.8 
  20131216 7.62 9.98 26.4 
  20131217 8.06 10.11 25.6 
  20131219 8.68 10.25 22.2 
  20131223 7.17 10.82 24.2 
  20131224 7.42 10.72 29.9 
  20131226 6.33 10.16 23.6 
  20131228 5.42 9.82 18.5 
  20131215 5.22 9.58 18.9 
  20131216 4.59 9.48 21.8 
  20131217 4.43 9.87 23.4 
  20131219 5.59 9.99 20.1 
  20131223 3.41 9.80 24.1 
  20131224 5.16 9.85 19.4 
  20131226 3.80 9.75 23.3 
  20131228 3.71 9.57 16.2 
 3 20131214 6.74 9.75 25.7 
  20131215 8.10 9.83 20.1 
  20131216 6.83 9.68 21.2 
  20131217 7.51 9.87 25.9 
  20131219 8.60 9.93 23.1 
  20131223 6.77 9.82 24.8 
  20131224 7.08 9.97 30.5 
  20131226 5.67 9.95 30.7 
  20131228 4.65 9.82 26.3 
 4 20131214 4.51 9.48 19.0 
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Table 2–4 (continued) 

Study Site 

Data 
Collection 
Point 

Date of Data 
Collection 

Soil CO2 

Flux (g-C 

m
-2

 d
-1

) 

Soil 
Temperature 
(°C) 

Volumetric Soil 
Moisture  (%) 

Pine Plantation  20131215 3.87 9.64 20.5 
  20131216 3.59 9.54 19.2 
  20131217 3.39 9.67 23.4 
  20131219 1.76 9.73 26.7 
  20131223 2.48 9.87 22.1 
  20131224 3.46 9.91 21.8 
  20131226 2.58 9.75 16.5 
  20131228 2.96 9.50 25.1 
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A.  

B.  

Figure 2-8 Soil CO2 flux comparisons among study sites (A) within the ranges of 20–40% and 

(B) 50–70% water-filled pore space. Lines within the boxes indicate the median value of soil 

CO2 flux for each study site. Letters A-C indicate significant (p < 0.05) differences between 

study sites.  

A 

A 

A 

C 

B 
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Chapter 3 Carbon-cycle effects of differences in soil moisture and soil extracellular enzyme 

activity at sites representing different land-use histories in high-elevation Ecuadorian 

páramo landscapes 
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 A version of this chapter will be submitted to Soil Biology and Biogeochemistry for 

publication by Julie McKnight, Carol P. Harden, and Sean M. Schaeffer. 

Abstract 

 Ecuadorian páramo grasslands are important regional soil carbon sinks. In the páramo of 

the Mazar Wildlife Reserve, changes in soil moisture and soil carbon stocks have been shown to 

be associated with land-use change. Differences in soil carbon content among different types of 

land use may reflect changes in soil carbon-acquisition related microbial enzyme activity after 

land cover and soil moisture are altered; however, this hypothesis has not been tested explicitly 

for Ecuadorian páramos. This study used a fluorescence enzyme assay to assess the activities of 

four different extracellular enzymes representing carbon acquisition: α-glucosidase (AG), β-

glucosidase (BG), β-D-cellulobiohydrolase (CB), and β-xylosidase (XYL) in Andean páramo 

soils. Acquisition activities were also measured for nitrogen (N-acetyl-β-glucosidase (NAG) and 

leucine aminopeptidase (LAP)) and phosphorus (phosphatase (PHOS)) to assess stoichiometric 

differences between land-uses, which can limit or support soil microbial activity related to 

carbon acquisition. Soils were collected and analyzed from four land uses: native forest, grass 

páramo, recently burned grass páramo, and pine plantation. Carbon acquisition activity was 

highest at the pine site (678 nmol h
-1

 g
-1

) and lowest at the recently burned páramo site (252 

nmol h
-1

 g
-1

), indicating the lowest and highest available soil carbon, respectively. Carbon-

acquisition EE activity had not been expected to differ between the two grassland sites, but was 

significantly higher at the grass páramo site (595 nmol h
-1

 g
-1

) than at the recently burned páramo 

and native forest sites. Although carbon-acquisition activity was high at both the pine and grass 

páramo sites, soil carbon stocks were much higher in the grass páramo site. At the grass páramo 

site, with a history of burning as a management strategy, high carbon-acquisition EE activity 

could indicate the presence of pyrogenic soil organic matter, which is more resistant to microbial 

decomposition.  Soils at the native forest and both grassland sites were phosphorus limited, and 

soil at the (non-native) pine site had higher nitrogen-acquisition activity, indicative of a shift to 

nitrogen-limited soil stoichiometric conditions. To our knowledge these are the first data 

reported for soil extracellular enzyme activities for Ecuadorian páramos. 
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1. Introduction 

The high altitude páramo grasslands of northern South America are important regional 

carbon sinks despite only accounting for less than 5% of the total land area in the Andes 

mountain region. The high organic carbon content of páramos has been significantly correlated 

with water retention capacities of the histic Andisol soils that characterize these ecosystems 

(Buytaert et al. 2007a); however, the effects of land-use change on the interaction between soil 

moisture and soil carbon-cycle processes in páramos remain poorly understood. Soil microbial 

activity plays a significant role in soil organic matter decomposition, in which complex organic 

material is transformed into simpler organic components available for plant and microbial 

uptake. Soil organic matter decomposition is facilitated by the microbial production of 

extracellular enzymes that are synthesized to decompose, or depolymerize, specific substrates, or 

forms of organic matter. Environmental conditions, including soil moisture and soil temperature, 

are known to influence the rate of microbial activity due to thermal and aerobic biological 

thresholds (Richards et al. 1952; Wildung et al. 1975; Linn and Doran 1984; Dornbush and 

Raich 2006; Steinweg et al. 2012). The cool, moist conditions of the Ecuadorian páramos are 

conducive to low rates of microbial decomposition of soil organic matter. Previous studies have 

shown, however, that the transition from grassland to forest or tree plantation has a significant 

effect on soil moisture and soil carbon content in páramo landscapes (Hofstede et al. 2002; 

Buytaert et al. 2006; Buytaert et al. 2007b; Farley et al. 2012; Harden et al. 2013). Although soil 

organic matter content is significantly correlated with soil water-retention capacity (Buytaert et 

al. 2007b), the effect of different soil moistures, under different types of land use, on carbon-

related soil microbial activity is not known for Ecuadorian páramo landscapes.  

Soil microbes play a significant role in nutrient cycling through the release of 

extracellular enzymes (EE). Microbes synthesize specific EE to catalyze the depolymerization of 

specific substrates, or complex organic materials such as cellulose and chitin, into simpler 

organic components, such as sugars (Huang et al. 2011). The simpler organic components can 

then be readily taken up by microbes and plants, to be used as sources of energy and nutrition. 

Specific EE are specialized for the deplolymerization of different types of organic compounds to 

yield specific nutrients. For instance, the extracellular enzyme β-D-cellulobiohydrolase breaks 

down hemicellulose for carbon acquisition, whereas N-acetyl-β-glucosidase breaks down chitin 
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for nitrogen acquisition (Bell et al. 2013). The production of EE is expensive in terms of energy 

and resource allocation. Consequently, microbes preferentially produce EE that acquire the 

nutrient that is most needed, or is least abundant in the immediate soil environment (Tischer et 

al. 2014). Extracellular enzyme activity can be used as a proxy for microbial activity. 

Consequently, changes in extracellular enzyme activity can reflect changes in microbial activity 

associated with nutrient availability and deficiencies. Since microbes synthesize EE according to 

their specific nutrient, or substrate, needs, higher activity for a specific EE compared to others 

indicates a deficiency in the nutrient for which that EE is synthesized. This relationship can be 

used to indicate shifts in the stoichiometric balance of nutrients in a soil environment. As 

biological processes require carbon, nitrogen, and phosphorus, the least abundant of the three is 

considered the nutrient most limiting to growth and biological function, and is indicated by high 

levels of EE activity specific to the acquisition of that nutrient. For example, in a relatively 

phosphorus-limited system, the addition of other nutrients, such as nitrogen, will increase 

phosphorus-acquisition EE activity, whereas the application of phosphate corresponds to a 

decrease in phosphorus-acquisition EE activity (Treseder and Visoutek 2001). The measurement 

of EE activity is thus a proxy expression of nutrient resource deficiencies and needs of the 

microbial community.  

The relationship between nutrient availability and EE activity can also be used to detect 

shifts in the abundance or availability of specific fractions of a single nutrient within the soil 

environment. For instance, the addition of nitrogen in a nitrogen-limited environment can 

increase microbial activity and induce higher rates of soil organic matter decomposition. In some 

cases, an increased rate of soil organic matter decomposition can deplete labile, i.e. easily 

degradable, soil organic carbon pools (Du et al. 2014). This process would be reflected in smaller 

pools of labile soil organic carbon and higher levels of EE activity, corresponding to increased 

acquisition of labile forms of carbon (e.g. cellulose and sugar). Where this process is taken to an 

extreme, for instance, if nitrogen is continuously added to the soil environment over long periods 

of time, the transformation of more recalcitrant forms of carbon into labile carbon pools (Du et 

al. 2014; Jiang et al. 2014) supports biological processes until soil carbon, or other nutrient 

pools, become limiting. Since EE activity reflects substrate-specific microbial activity, changes 

in EE activity can reflect changes in soil stoichiometry and limitations in nutrient abundance.  
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The transition of regional carbon sinks to atmospheric carbon sources has significant 

implications for global greenhouse warming effects. As a result, understanding the mechanisms 

for soil carbon retention in and loss from regional terrestrial carbon sinks is critical for global 

concerns regarding climate change. Páramo ecosystems are important regional carbon sinks due 

to their high capacity for soil organic carbon retention: soil carbon content can be up to 15% in 

South American páramo soils (Hofstede 1995). Although the physical and chemical properties of 

the andic soils that characterize Ecuadorian páramo ecosystems facilitate the stabilization of soil 

organic carbon (Matus et al. 2014), land management that affects soil properties can alter soil 

carbon-cycle processes. In the Ecuadorian páramos, conversion of grassland to tree plantation 

has been shown to correspond with a decrease in soil organic carbon content (Farley et al. 2004; 

Farley et al. 2012). This indicates a change in soil carbon-cycle processes, resulting in net soil 

carbon loss. Previous studies show decreases in soil organic carbon associated with decreased 

soil moisture content under pine plantations in Ecuadorian páramo landscapes (Poulenard et al. 

2003; Farley et al. 2004; Hartsig 2011; Harden et al. 2013). Soil moisture changes from less to 

more aerobic conditions can stimulate greater carbon-utilization soil microbial activity resulting 

in a decrease in soil carbon content. Further, soil organic matter content has been shown to be 

correlated with soil water-holding capacity in Ecuadorian páramo soils (Buytaert et al. 2007a). A 

decrease in soil carbon content can thus contribute to a positive feedback in which soil-water 

holding capacity is also reduced. The relationship between changes in soil moisture and soil 

carbon-cycle processes has not been directly tested for Ecuadorian páramos. A better 

understanding of the relationship between these processes is crucial as land-use change that 

affects soil carbon processes and storage may also have important implications for water-

provision ecosystem services provided by Ecuadorian páramos.  

Studies conducted in montane forests and numerous laboratory experiments show that 

soil microbial activity, measured as soil CO2 respiration and EE activity, is positively correlated 

with soil moisture content in aerobic soil conditions (A’Bear et al. 2014; Zhou et al. 2014; 

Krashevska et al. 2012). Linn and Doran (1984) showed that maximum soil microbial activity is 

supported at ~60% water-filled pore space (WFPS), with microbial activity decreasing at higher 

soil moisture contents due to a transition to anaerobic soil conditions (Figure 3-1). In the case of 

the Ecuadorian páramos, soil moisture content has been shown to exceed the 60% WFPS 

threshold (McKnight 2015; Hartsig 2011). Consequently, decreases in soil moisture that result  
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Figure 3-1 Relationship between percent water-filled pore space (WFPS) and relative microbial 

activity. The range of WFPS from 0% to 60% (water limiting) is representative of aerobic soil 

conditions. The range of WFPS from 60% to 100% (aeration limiting) is representative of 

anaerobic soil conditions. Relative microbial activity corresponds to expected trends soil CO2 

flux rates. Source: Figure 1 in Linn and Doran (1984).   
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from land-use change may create more aerobic soil conditions. Changes in soil moisture that 

result in more aerobic conditions have been associated with higher soil CO2 flux rates in 

controlled water-table studies (Linn and Doran 1984; Moore and Dalva 1993), indicating a 

corresponding increase in soil microbial activity. Results from a field experiment conducted in 

Ecuadorian páramos support this trend— a forest and a pine plantation had higher soil CO2 flux 

and more aerobic soil moisture conditions than nearby páramo grassland sites (McKnight 2015: 

Chapter 2). Consequently, land-use change that results in a decrease in soil moisture under 

páramo grassland cover can be expected to increase rates of microbial activity and soil organic 

matter decomposition.  

This study investigates differences in soil microbial activity under four types of land use 

with different average soil moisture conditions. Four study sites were selected to represent 

common types of land use in Ecuadorian páramo landscape: a páramo grassland that has been 

grazed but not burned for 6 years; a recently burned páramo grassland (burned within 6 months 

of the study); a native forest (at least 40 years since conversion from grass páramo), and a pine 

tree plantation (at least 25 years since conversion from grass páramo). A native forest site was 

included in this study because White (2013) suggested that páramo grasslands are a hunter-

gatherer landscape maintained by anthropogenic fire regimes and that, in the absence of 

controlled burning, some grassland areas may be susceptible to native forest encroachment. 

Because regular burning (typically at least every 4–6 years) is typical páramo grassland 

management, a recently burned grassland site was included to capture the short-term effects of 

fire on soil moisture and soil microbial activity (Lægaard 1992; Verweij and Budde 1992). Seven 

extracellular enzymes, representing labile carbon, nitrogen, and phosphorus acquisition 

activities, were analyzed in soil samples from each of the four sites.  

In this paper, we report the results of two lines of investigation. First, we test whether 

carbon-acquisition activity differs among the four study sites. Carbon-acquisition EE activity 

was expected to be higher at the pine plantation and native forest sites compared to the two 

grassland sites (Hypothesis 1). This hypothesis was predicated upon results from McKnight 

(2015 Chapter 2) showing lower soil moisture contents, assumed to be associated with more 

aerobic soil conditions, under the plantation and forest sites. As no difference in soil moisture 

was expected between the grass páramo and recently burned páramo sites, we expected to find 
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no difference in carbon-acquisition activity (Hypothesis 2) between the two grassland sites. In 

the second line of investigation, we test whether the ratio and distribution of carbon-nitrogen-

phosphorus acquisition activities differs among the four study sites. This measure provides 

insight into changes in microbial activity with respect to the stoichiometry of the soil. We 

expected no difference among the sites (Hypothesis 3).  

2. Methods 

2.1 Study Sites 

 This study was conducted at the Mazar Wildlife Reserve (MWR) in the Sangay National 

Park in Ecuador (Figure 3–2). The MWR is a privately owned 1,800 ha reserve, which is located 

in the Nudo del Azuay and spans elevations of 1,200 m to 4,500 m above sea level. The MWR 

supports the conservation of Andean cloud forest and páramo grassland ecosystems that occur 

within this elevational range and scientific research that contributes to a better understanding of 

these systems (Schloegel 2010; FCT 2015). The MWR provides an ideal location for studying 

the effects of land-use change and differences in land-use history on soil-water and soil-carbon 

processes. Historically, the area now managed as MWR was predominantly a páramo grassland 

maintained by regular cattle grazing and controlled by burning every 3 to 6 years (White and 

Maldonado 1991; Lægaard 1992; Verweiij and Budde 1992). A variety of uses and land-

management practices have been implemented in the MWR páramo, which is now a 

heterogeneous landscape containing native forest, pine plantations (>25 years old), alpaca-grazed 

grass páramo (~350 ha), and grass páramo with varying burn histories (most recent burn ranging 

from 6 months to >40 years prior to this study).  

Four study sites were chosen to represent the following types of land use: a páramo site with 

no burning in the past 6 years, a páramo site burned 6 months prior to the study, a site with 

native montane forest cover at least 35 years old, and an afforested site with a Pinus patula stand 

more than 25 years old (Table 3-1). All soil collection sites were selected arbitrarily. Our 

research was based out of the MWR Jalogus field camp (UTM: S 02.57081, W 078.74585) 

located at 3,300 m elevation. Average daily temperatures at Jalogus range from 7°C to 21°C, and 

the mean annual precipitation exceeds 1,500 mm, according to a time-series analysis (1998–

2009) by Bookhagen (in review) and on-site measures of precipitation by the Fundación  
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Table 3-1 Site descriptions and soil properties for the four study sites: native forest (NF), páramo 

grassland (PA), recently burned páramo grassland (PAB), and pine plantation (PI). Mean values 

(and standard error) are provided for soil organic carbon (SOC), water-extractable soil organic 

carbon (WEC), volumetric soil moisture, and soil pH. Sample size, indicated by ‘n’, is reported 

for each individual site. (Source: McKnight 2015 Chapter 2) 

Study 

Site 

SOC g 

kg
-1

 

(SE)   

n=6 

WEC
a 

 

n=2 

% Volumetric Soil 

Moisture (SE) 

n
b
 

Soil 

Temperature °C 

(SE) 

n
b 

pH 

(SE) 

n=8 

Land-Use and Site Description 

NF 142.6 

(5.4) 
14.8 39.0 (2.2) 9.57 (0.04) 4.29 

Native montane cloud forest; 

Elevation = 3,425 m 

PA 
176.5 

(5.6) 
83.1 55.5 (0.8) 12.99 (0.08) 4.32 

Intermediate burn (6 years); Alpaca 

grazing; Tussock grass & Puya 

clava-herculis; Elevation = 3,428 m 

PAB 
137.0 

(2.5) 
5.3 51.7 (0.8) 12.82 (0.08) 4.69 

Recent burn (<6 months); Alpaca 

grazing; Tussock grass & Puya 

clava-herculis; Elevation = 3,521 m 

PI 

138.0 

(4.2) 
9.3 22.8 (0.7) 9.87 (0.05) 4.08 

Pine plantation (25 years old); 

Previously páramo grassland used for 

grazing; Pinus patula; Elevation = 

3,435 m 
a 
Water-extractable organic carbon reported here is representative of a preliminary data set. Additional samples are 

prepared and in storage until additional analyses can be completed. With analysis of additional samples, the sample 

size to determine mean WEC for each site will increase to 16. The larger data set will be used for publication. 

b 
Sample sizes for mean values of % volumetric soil moisture and soil temperature for each study site are: NF=36, 

PA=35, PAB=31 and PI=36. 
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Cordillera Tropical (FCT) (Bremer 2012). The native montane forest is characterized by the 

following dominant plant families: Araliaceae, Asteraceae, Clusiaceae, Cyatheaceae, and 

Myrsiraceae (Martinez 2001; Salgado et al. 2007). The grass páramo site is dominated by 

tussock grasses (e.g. Calamagrostis intemedia) and by Puya clava-herculis. Although the same 

dominant plant species appeared to be present in both the grass páramo and recently burned 

páramo sites, the grass páramo site had a higher density of Puya than the recently burned páramo 

site. Further, the grass páramo site had little to no bare interspace, whereas the recently burned 

páramo site was characterized by more bare soil space between the bunch grasses. The MWR 

sites in this study are between 3,200 m and 3,450 m in elevation, with non-allophanic Andisols 

dominated by Al-humus complexes (Bremer 2012; Poulenard et al. 2003). Site descriptions, 

including soil properties, are provided in Table 3-1, and photos of each of the four sites are 

provided in Figure 3–3. 

2.2 Soil Sampling 

We obtained a composite soil sample from each study site to represent soil conditions under 

each of the four types of land use.  Samples were collected to a depth of 10.0 cm at 0.5-m 

intervals along a horizontal, 12-m transect, with the transect mid-point at the site plot center. We 

used a 2.0-cm diameter Oakfield Model G soil auger, collected 25 soil cores along each transect, 

and combined cores to form a composite sample. All soil samples were collected on December 

31, 2013 and placed on ice with 24 hours of collection for shipment to the University of 

Tennessee, Knoxville, Tennessee. Soils were stored at 4°C until analyzed. 

2.3 Soil Properties 

Volumetric soil moisture was measured in situ at the four data collection points established 

within each study site. To determine whether soil moisture differed among the four study sites, 

nine sets of soil moisture measurements were taken over a 3-week sampling period, from 

December 12, 2013 to December 31, 2013. Volumetric soil moisture was measured using an EC 

H2O Soil Moisture Probe; all measurements were taken between 10:00 and 14:00 on the same 

days.  

Water-extractable organic carbon (WEC) was determined using the extraction method 

followed in the Schaeffer soil laboratory at the University of Tennessee Institute of Agriculture. 
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Figure 3-2 Map of study area. This study was conducted in the Mazar Wildlife Reserve located 

in the Nudo del Azuay east-northeast of the city of Cuenca. (Source: Harden et al. 2013)  
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Figure 3-3 Scanned topographic map (IGM 1969) with letters indicating the location of the (A) 

pine plantation, (B) native forest, (C) páramo grassland, and (D) recently burned páramo 

grassland sites. Arrows from each site location provided on the maps point to a photo of each of 

the four study sites. Grid cells on the maps are 1 km by 1 km. Green shading on the map forest 

areas do not accurately support forest cover area and should be disregarded. 

D 

C 
B A 
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In a 50 mL conical centrifuge vial, 20 mL of deionized water was added to 5 g of field-moist 

soil, shaken for 1 hour on a mechanical shaker (Innova 2100 Platform Shaker), centrifuged at 

4,500 rpm for 10 minutes on a Thermo-Scientific ST 16R centrifuge, and filtered through a No. 1 

Whatman filter. The extraction solution was then mixed with 4 mL of phosphoric acid to remove 

inorganic content, allowed to site for at least 8 hours, and vented to allow headspace CO2 

concentration to return to ambient concentrations. Then, 10 mL of extract was oxidized with 10 

mL of sodium perchlorate at 90°C overnight in airtight sealed vials. The concentration of CO2 in 

the headspace of the container for each oxidized sample was then measured on a LICOR 820 

infrared gas analyzer.  

To determine soil carbon content with a Costech Combustion Module, subsamples of each 

soil were dried at 60 °C for 48 hours then homogenized into a fine powder. Approximately 7.0 

mg of each soil sample were weighed into a 3 x 5 mm tin capsule and stored in a dry place until 

analysis. For soil organic carbon content, subsamples were first acidified in 3.0 N phosphoric 

acid to remove mineral components. Soil pH was measured in deionized water solution using a 

Denver Instrument UltraBASIC pH Meter.  

2.4 Extracellular Enzyme Activity 

The activity of seven different EE, representing three microbial nutrient-acquisition 

groups, was measured in this study. A list of all EE measured, including the abbreviation and 

nutrient acquisition group assignment for each EE, is provided in Table 3-2. Extracellular 

enzyme activity was determined using a fluorescence microplate assay procedure. The 

fluorescent activity of each enzyme was measured as the amount of fluorescent dye released 

during an enzyme-catalyzed reaction that occurs when each soil sample reacts with a synthetic 

substrate, specific to the enzyme being assessed, bound with fluorescent dye. Two standard 

solutions, 4-methylumbelliferone (MUB) and 7-amino-4-methylcoumarin (MUC), were used in 

this study to create standard curves for each soil sample from which the fluorescence activity for 

each sample was calculated. MUB was used to create the standard curve for substrates used to 

measure the fluorescent activity of six of the enzymes measured: α-glucosidase (AG), β-

glucosidase (BG), β-D-cellulobiohydrolase (CB), β-xylosidase (XYL), N-acetyl-β-glucosidase 

(NAG), and phosphatase (PHOS); and MUB was used to create the standard curve for the 

substrate used to measure the fluorescent activity of Leucine aminopeptidase (LAP). Soil slurries  
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Table 3-2 General functions of extracellular enzymes by stoichiometric group (Source: Bell et al. 

2013) 

Group Enzyme ID Enzyme Function 

Carbon Acquisition AG α-glucosidase Sugar degradation 

 BG β-glucosidase Sugar degradation 

 CB β-D-cellulobiohydrolase Cellulose degradation 

 XYL β-xylosidase Hemicellulose degradation 

Nitrogen Acquisition NAG N-acetyl-β-glucosidase  Chitin degradation 

 LAP Leucine aminopeptidase Protein degradation 

Phosphorous Acquisition PHOS phosphatase Phosphorous degradation 
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were prepared by blending 2.75 g of each soil sample with 91 mL of sodium acetate buffer, 

adjusted to a pH of 4.5 to match the acidic conditions of the field moist soils. Then, 800 µL of 

the soil slurry was pipetted into three deep-well plates, two of which were used to create a 

standard curve for each soil sample using concentration gradients (0 µM, 2.5 µM, 5 µM, 10 µM, 

25 µM, 50 µM, and 100 µM) of MUB or MUC. Substrates for the seven EE measured in this 

study were added to the third plate. Upon adding 200 µL of MUB standard, MUC standard, or 

EE substrate to the appropriate microplate well, the soils were mixed with the respective 

standard or substrate by inversion and incubated at 25°C for 3 hours. After 3 hours, the assays 

were removed from incubation, and centrifuged at 1,500 rpm for 3 minutes to separate soil 

particles from aqueous solution. Finally, 250 µL of aqueous solution was pipetted into 

corresponding, flat-bottomed, black, 96-well plates, and 5.0 µL of 0.5 N NaOH was added to 

each soil sample to cease the enzyme activity. Extracellular enzyme activity was measured on a 

BioTek Synergy H1 Hybrid microplate reader with the excitation and emission wavelengths set 

to 365 nm and 450 nm, respectively. Enzyme activity is reported in nmol g
-1

-dry soil h
-1

 for 

specific enzymes, total carbon (C)-acquisition activity (AG+BG+CB+XYL), total nitrogen (N)-

acquisition activity (NAG+LAP), total phosphorus (P)-acquisition activity (PHOS), and total 

overall EE nutrient acquisition activity (sum of all seven enzymes measured).  

2.5 Statistical Analysis 

Statistical comparisons in this study were made to evaluate differences between sites with 

different histories of land use. Variables were checked for normality using the Shapiro-Wilk test. 

The Mann-Whitney Wilcoxon test was used to assess differences in EE activity between sites 

due to the presence of non-normal sets that could not be transformed using consistent methods. 

Statistical analyses were performed using R Statistical Software (R 2013). 

3. Results 

3.1 Soil Properties 

Mean volumetric soil moisture differed significantly among the four study sites. The 

grass páramo and recently burned páramo sites had the greatest mean soil moisture contents, of 

56% and 52%, respectively (Table 3-1). The pine plantation site had the lowest mean soil 

moisture content, of 23%. Although the mean volumetric soil moisture of the native forest site, 
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41%, was lower than that of the páramo grassland sites, our results show higher soil moisture 

contents under native forest species than under the non-native pines.  

Soil organic carbon content at the grass paramo site, 177 g kg
-1

, was greater than soil 

organic carbon measured at all other sites. Although there was no significant difference in soil 

organic carbon among the native forest, pine, and recently burned páramo sites, soil organic 

carbon measured at the recently burned páramo site was greater than at either the native forest or 

pine sites (Table 3-1). Relative concentrations of water-extractable organic carbon (WEC) 

among the study sites showed a different pattern than did soil organic carbon content. The 

greatest WEC (83.1 mg L
-1

) was measured at the grass páramo site; however, the lowest WEC 

(5.3 mg L
-1

) was measured at the recently burned páramo site, despite this site having the second 

greatest soil organic carbon content. Further, the WEC at the native forest site (14.8 mg L
-1

) was 

greater than at the pine site (9.3 g L
-1

), despite the pine site having a slightly, though not 

significantly, higher soil organic carbon content.  

3.2 Soil Extracellular Enzyme Activity 

Carbon-acquisition EE activity at the native forest site, 383 nmol h
-1

 g
-1

-dry soil, was 

greater than at the grassland sites, as predicted; however, carbon-acquisition EE activity at the 

pine site, 678 nmol h
-1

 g
-1

-dry soil, was not significantly (p<0.05) greater than at the páramo 

grassland site, 595 nmol h
-1

 g
-1

-dry soil (Hypothesis 1). Contrary to what we hypothesized for 

carbon-acquisition EE activity at the two grassland sites (Hypothesis 2), carbon EE activity was 

significantly higher (p<0.05) at the páramo grass site than at the recently burned páramo site, 252 

nmol h
-1

 g
-1

-dry soil (Figure 3-3). Mean, maximum, and minimum values for activities measured 

for individual EE and EE nutrient groups are given in Table 3-3.  

With respect to the labile carbon-acquisition EE group (AG, BG, CB, and XYL), BG 

accounted for most of the EE activity, representing 59% (pine) to 76% (native forest) of the 

labile-carbon-acquisition activity across all four sites. Activity for BG was greatest at the pine 

site (521 nmol h
-1

 g
-1

-dry soil) and lowest at the recently burned páramo site (150 nmol h
-1

 g
-1

-

dry soil). BG activity varied significantly (p<0.5) among all sites, except between native forest 

and grass páramo, and between grass páramo and pine (Figure 3-4). XYL was the second most 

produced labile carbon-acquisition enzyme at native forest, páramo and recently burned páramo
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Figure 3-4 Comparison of extracellular enzyme activity by nutrient acquisition group. Horizontal 

lines across each box indicate the median for each group. Study sites are: NF – native forest, PA 

– grass páramo, PAB – recently burned páramo (<6 months), PI – pine plantation. The carbon 

acquisition group is α-glucosidase (AG), β-glucosidase (BG), β-D-cellulobiohydrolase (CB), and 

β-xylosidase (XYL). The nitrogen acquisition group is N-acetyl-β-glucosidase (NAG) and 

leucine aminopeptidase (LAP). The phosphorus acquisition group is phosphatase (PHOS). Group 

activity is expressed as the sum of activity (nmol h
-1

g
-1

-dry soil) measured for all extracellular 

enzymes included that group. Letters a-c indicate differences between groups determined using 

the Mann-Whitney Wilcoxon test (p < 0.05). (This figure was created in JMP Pro 11.) 

b 

c 

b 

a 

a 
a 

b 

c 

a 

a 

b 

c 
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Table 3-3 Maximum, minimum, and mean values of extracellular enzyme activities across all sites (NF-native forest, PA – páramo, 

PAB – recently burned páramo, PI – pine) sampled in the Mazar Wildlife Reserve. Enzyme activity is expressed in nmol h
-1 

g
-1

-dry 

soil. Mean, maximum, and minimum values are given for each extracellular enzyme measured (see Table 3.2 for abbreviation 

descriptions) and for the carbon (C-Acq), nitrogen (N-Acq), and phosphorus (P-Acq) nutrient acquisition groups. Acquisition 

activities, shown in bold, represent the sum of activities for all extracellular enzymes in each nutrient acquisition. 

 NF (n = 12) PA (n = 12) PAB (n = 12) PI (n = 12) 

 Mean 

(SE) 

Max Min Mean 

(SE) 

Max Min Mean 

(SE) 

Max Min Mean 

(SE) 

Max Min 

AG 1.9 (3.0) 12 -21 11 (3) 23 0 7 (1) 14 -2 9 (2) 25 0 

BG 293 (23) 439 166 355 (21) 470 236 150 (12) 227 45 521 (86) 1390 202 

CB 36 (3) 52 11 88 (4) 114 59 36 (3) 52 13 258 (73) 1069 84 

XYL 56 (3) 67 38 140 (11) 187 65 59 (6) 78 19 48 (8) 109 6 

C-Acq 383 (27) 518 256 595 (35) 773 413 252 (21) 364 79 678 (70) 1116 316 
NAG 140 (19) 231 39 90 (7) 135 57 34 (3) 54 11 348 (78) 1182 171 

LAP 30 (4) 68 7 46 (6) 79 23 15 (2) 23 4 30 (9) 91 0 

N-Acq 170 (18) 257 97 136 (10) 185 82 49 (5) 72 15 297 (39) 650 172 
PHOS 905 (77) 1291 434 971 (90) 1540 575 470 (45) 655 170 303 (39) 639 155 

P-Acq 905 (81) 1291 434 971 (94) 1540 575 470 (47) 655 170 272 (30) 436 155 
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Figure 3-5 Comparison of extracellular enzyme activity for the carbon-acquisition enzymes α-glucosidase (AG), β-glucosidase (BG), 

β-D-cellulobiohydrolase (CB), and β-xylosidase (XYL). Enzyme activty is reported as nmol h
-1

 g
-1

-dry soil. Study sites are: NF – 

native forest, PA – grass páramo, PAB – recently burned páramo (<6 months), PI – pine plantation. Letters a-c indicate results of 

Mann-Whitney Wilcoxon test for significant difference (p < 0.05) in mean extracellular enzyme activity between study sites. 

Horizontal lines within the boxes indicate median values. (This figure was created in JMP Pro 11.)  

a 
ac 

b 

c 

a 

a 

a 

b 

b 

b 
b 

a a 

b 

a 
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sites; however, at the pine site, CB activity was greater than XYL activity. XYL activity at the 

páramo site was greater than at any other site. Although AG activity was negligible compared to 

the activity levels of the other three labile carbon-acquisition enzymes, AG activity was lower in 

the native forest than at any other site (Figure 3-4).  

In the N-acquisition group (NAG and LAP), NAG accounted for 66% (páramo) to 92% 

(pine) of the overall nitrogen-acquisition. For all sites, NAG activity was significantly greater 

than LAP activity. Mean NAG activity ranged from 34 nmol h
-1

 g
-1

-dry soil (recently burned 

páramo) to 347 nmol h
-1

 g
-1

-dry soil (pine) and differed significantly among all sites (Figure 3-5). 

Mean LAP activity ranged from 14 to 46 nmol h
-1

 g
-1

-dry soil at the recently burned páramo and 

páramo sites, respectively. Mean P-acquisition, represented by PHOS activity, ranged from 303 

to 971 nmol h
-1

 g
-1

-dry soil at the pine and páramo sites, respectively (Table 3-3). Significant 

differences in PHOS activity were found between two pairs of sites—(1) recently burned páramo 

and pine and (2) native forest and páramo grassland—with no significant variation between sites 

within each pair. At the recently burned páramo and pine sites, phosphorus-acquisition EE 

activity was significantly lower (p<0.05) than at the native forest and páramo sites (Figure 3-6).  

With respect to overall enzyme acquisition activity, PHOS accounted for approximately 

60% of all nutrient-acquisition EE activity at the native forest, páramo, and recently burned 

páramo sites, with nitrogen-acquisition activity ranging only from 6% to 12% (Figure 3-7). 

However, at the PI site, phosphorus-acquisition activity only represented 20% of total EE 

nutrient activity, which was lower than the total nitrogen-acquisition activity, at 26%. This shift 

in phosphorus- and nitrogen-acquisition activities indicates a shift to a more nitrogen-limited 

stoichiometry under the pine plantation. 

4. Discussion 

The higher carbon-acquisition activities at the pine site suggest a relatively lower soil 

carbon availability in the pines, compared to that at the native forest and recently burned páramo 

grassland sites. This is consistent with the slower decomposition and nutrient-poor qualities of 

pine needles (Edmonds 1990), compared to organic matter inputs from the native forest and and 

recently burned páramo sites. Further, the lower mean soil moisture content at the pine site was 
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Figure 3-6 Mean extracellular enzyme activity for the nitrogen-acquisition enzymes N-acetyl-β-

glucosidase (NAG) and leucine aminopeptidase (LAP). Enzyme activty is reported as nmol h
-1

 g
-

1
-dry soil. Study sites are: NF – native forest, PA – grass páramo, PAB – recently burned páramo 

(<6 months), PI – pine plantation. Letters a-d indicate results of Mann-Whitney Wilcoxon test 

for significant difference (p < 0.05) in mean extracellular enzyme activity between study sites. 

The line within each box represents the median. (This figure was created in JMP Pro 11.) 

 

  

a 

b 
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ac 

a 

b 

c 

d 



91 

 

 

Figure 3-7 Mean extracellular enzyme activity for the phosphorus-acquisition enzyme 

phosphatase (PHOS). Enzyme activty is reported as nmol h
-1

 g
-1

-dry soil. Study sites are: NF – 

native forest, PA – grass páramo, PAB – recently burned páramo (<6 months), PI – pine 

plantation. The letters a indicate results of Mann-Whitney Wilcoxon test for significant 

difference (p < 0.05) in mean extracellular enzyme activity between study sites. The line within 

each box represents the median. (This figure was created in JMP Pro 11.) 

 

a 

b b 
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Figure 3-8 Relative distribution of carbon (C), nitrogen (N), and phosphorus (P) acquisition 

activities by percent of total enzyme activity measured for each nutrient group. Percent carbon 

acquisition is the sum of AG, BG, CB, and XYL activities. Percent nitrogen acquisition is the 

sum of LAP and NAG activities. Percent of phosphorus activity is the activity measured for 

PHOS. See Table 3.2 for a description of each enzyme abbreviation. Note ‘EE Acq Type’ in the 

legend is the nutrient type. (This figure was created in JMP Pro 11.)  
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shown by McKnight (2015 Chapter II) to correspond to higher soil CO2 flux rates compared to 

those of the other sites. This suggests higher rates of soil carbon depolymerization at the pine site 

which, over time, can result in a depletion of soil labile-carbon pools. The deficiency in labile-

carbon resources is thus expressed as elevated labile carbon-acquisition EE activity. The lack of 

difference in total carbon-acquisition EE activity between the pine and páramo grasslands was 

unexpected. Although carbon-acquisition EE activity was high at the páramo site, soil organic 

carbon and water-extractable organic carbon contents were both highest at this site. This suggests 

that more soil carbon resources are available for microbial decomposition and uptake at the 

páramo site, which should coincide with lower carbon-acquisition EE activity. One plausible 

hypothesis for the high carbon-acquisition activity at the páramo grassland is that the theoretical 

aerobic-anaerobic biological threshold of 60% water-filled pore space (Linn and Doran 1984) 

may not be applicable to microorganisms in the páramo soils of the Mazar Wildlife Reserve 

(MWR). Dynamic soil moisture conditions have been shown to cultivate soil microbial 

communities specifically adapted to fluctuating conditions and tolerant of anaerobic periods 

(Pett-Ridge and Firestone 2005). However, long intervals of high soil moisture content have 

been shown to reduce soil carbon use efficiency in prairie grasslands in North America (Tiemann 

and Billings 2011). These studies support the hypothesis that soil microbial communities in the 

páramos of the MWR may tolerate high soil moisture conditions, but utilize carbon less 

efficiently. A second hypothesis for the relatively high carbon-acquisition activity at the páramo 

grassland is the development of pyrogenic organic matter. However, frequent burning in 

highland grasslands has been shown to transform organic material into pyrogenic organic matter, 

which is more difficult for microorganisms to breakdown and thus more resistant to microbial 

decomposition (Knicker et al. 2012). The presence of pyrogenic organic matter may result in a 

relative deficiency of labile carbon, as the depolymerization of pyrogenic organic material is 

more difficult, and, therefore, a slower process, than the depolymerization of labile carbon pools. 

Future work investigating the microbial community structure and biological thresholds in the 

páramo soils at the MWR will be required to explain the lower levels of EE activity at the 

páramo grassland site. 

In terms of individual carbon-acquisition EE activity, CB-acquisition was greater at the 

pine site than at the other three sites. The decomposition of pine needles is notably slow and 

dominated by the depolymerization of cellulose-based cell wall structural material (Edmonds 
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1990). The slower decomposition rate and greater abundance of the more recalcitrant cellulose-

based organic material of the pine needles likely induces a deficiency of labile carbon resources 

under the pines, which is consistent with higher CB-acquisition activity. Lignocellulose and 

lignin, which decompose more slowly than cellulose (Melillo et al. 1989), are also abundant in 

pine tree organic material and contribute to lower labile soil organic carbon inputs. Carbon-

acquisition EE measured in this study are limited to labile carbon substrates that do not include 

lignin depolymerization enzymes, such as phenol oxidase.  

We originally hypothesized that carbon-acquisition EE activity would be very similar 

between the two páramo grassland sites. However, our results showed that EE activity at the 

recently burned páramo site was lower than at the páramo sites for all enzymes except AG. 

Based on preliminary WEC results, low WEC content at the recently burned páramo site 

supports the hypothesis that soil organic carbon within the first 10 cm of soil is lost to 

combustion or leached as pyrogenic organic matter (McKnight 2015 Chapter 3; Hilscher and 

Knicker 2011). The rapid and significant loss of labile carbon resources may have resulted in a 

temporary shift in microbial allocation of resources from the acquisition of labile to recalcitrant 

soil carbon, including pyrogenic organic matter carbon resources. This would be expressed as 

low EE activity for labile carbon-acquiring enzymes, such as AG, BG, CB, and XYL, and high 

EE activity for recalcitrant carbon-acquiring enzymes, which were not measured in this study. 

Another plausible hypothesis for the low carbon-acquisition activity at the recently burned 

páramo site is that EE activity has been shown to be low when plant nutrient uptake is elevated 

(Bell et al. 2014). As the plant community recovers from the recent burn, plant nutrient uptake 

would be elevated to support biomass growth. Lower EE activity at the recently burned páramo 

site could thus be a function of soil microbial response to plant activity. 

The lack of variation in BG activity between the native forest and páramo sites is 

consistent with the findings of Nierop et al. (2007), who showed that differences in vegetation 

between native cloud forest and grassland páramo do not significantly affect soil organic matter 

composition in Andean ecosystems in Ecuador. The four labile C-acquisition EE measured in 

this study are representative of microbial production of enzymes allocated for the decomposition 

of sugar- (BG and AG) and cellulose- (CB and XYL) based soil organic materials. Although 

sugars, or polysaccharides, are simple organic materials readily available for microbial uptake, 
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the predominantly high activity of BG measured at all four sites suggests that polysaccharides 

are low in abundance. Allophane is known to stabilize polysaccharides in soil organic matter 

pools (Parfitt et al. 1999), but non-allophanic Andisols, like those in the MWR, are associated 

with lower abundances of polysaccharides, including the nitrogen-containing polysaccharide 

chitin (Nierop et al. 2009). Still, with respect to native forest, páramo, and recently burned 

páramo sites, overall carbon-acquisition activity was highest at the páramo site and lowest at the 

recently burned páramo site. Lower carbon-acquisition EE activity at the native forest site, 

compared to that at the páramo site, indicates that labile carbon is more readily accessible for 

microbial use in the native forest. This corresponds to a significantly higher mean soil CO2 flux 

at the native forest compared to the páramo grassland site reported by McKnight (2015 Chapter 

2) in a complementary study, in which field measurements of soil CO2 flux were compared 

among the same four MWR sites used in this study. The higher CO2 flux reported for the native 

forest site by McKnight (2015 Chapter 2) indicates elevated microbial activity, most likely in 

response to more aerobic soil conditions (i.e. lower soil moisture compared to the páramo 

grassland sites). This is consistent with the lower concentration of WEC measured at the native 

forest, because higher rates of soil microbial carbon uptake and CO2 flux can deplete labile 

carbon resources.  

Tischer et al. (2014) reported the effects of land-use change on the activity of five of the 

same extracellular enzymes measured in this study (AG, BG, CB, XYL, and NAG) and a 

phosphorus-acquisition enzyme (phosphomonoesterase). The study sites used by Tischer et al. 

(2014), although located in the Ecuadorian Andes, represented lower montane forest 

(Melastomataceae, Lauraceae, and Rubiaceae), shrubland (Asteraceae, Melastomataceae, and 

Lycopodium), and pasture lands (Setaria sp.), 1900–2150 m in elevation. Although study sites 

used by Tischer et al. (2014) are not located in páramo landscapes, we compare their results for 

EE activity to the results in our study due to geographic proximity and the scarcity of soil EE 

data for the Ecuadorian Andes. The distributions of EE activity for BG (0.23-0.61 µM g
-1

 h
-1

), 

AG (21-61 nM g
-1

 h
-1

), and CB (22-116 nM g
-1

 h
-1

) reported by Tischer et al. (2014) are 

comparable to our results for the native forest, páramo, and recently burned páramo sites in the 

MWR. The similarity in the order of EE—highest to lowest—activity between the native forest, 

páramo, and recently burned páramo sites at MWR and the Tischer et al. (2014) sites suggests 

that EE activity trends are comparable between forested sites and sites with no tree cover in the 
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central Ecuadorian Andes. In the case of the pine site at the MWR, however, the maximum and 

mean EE activity rates are much higher than those reported for native vegetation sites at MWR 

and in the Tischer et al. (2014) study. This suggests a potential shift in soil microbial activity and 

soil organic matter decomposition rates under the (non-native) pines. In general, EE activity rates 

measured at MWR were lower than those reported for the lower elevation sites by Tischer et al. 

(2014). This is likely due to combined negative effects of cooler temperatures and higher 

precipitation (Allison et al. 2010; A’Bear et al. 2014) associated with the higher elevation 

páramo landscapes within the MWR. 

The low LAP activity at the MWR indicates presence of protein-based N across all study 

sites. On the other hand, the higher NAG activity suggests a deficiency in chitin-based nitrogen 

resources. Chitin is very common in nature, as it is an important structural component of 

organisms such as insects and fungi (Gooday 1990). However, non-allophanic Andisols have 

been shown to be depleted in polysaccharides (Nierop et al. 2009), including chitin,a nitrogen-

containing polysaccharide. Assessment of the significantly greater NAG activity at the pine site 

compared to the other three study sites can be complicated by the ability of NAG to assist in the 

decomposition of non-chitin biopolymers and, in some instances, act as a carbon-acquisition 

enzyme (Koyama et al. 2013). But because previous studies have shown that significantly less 

nitrogen is available under mature pine plantations, compared to grasslands (Farley and Kelly 

2004) and native forest (Hofstede et al. 2002),  greater NAG activity at the pine site likely 

compensates for nitrogen, not carbon, limitations under the pine plantation. This is further 

supported by the stoichiometric shift in overall enzyme allocation at the pine site, where 

nitrogen- and phosphorus-acquisition activities are approximately equal. The dominance of 

phosphorus-acquisition activity at the native forest, páramo, and recently burned páramo sites is 

consistent with the previously known phosphorus-limited conditions of South American páramo 

Andisols (e.g. Hofstede 1995). 

5. Conclusions 

 Our results suggest that soil extracellular enzyme activity differs among types of land use 

in the páramo landscapes of the Mazar Wildlife Reserve (MWR) in Ecuador. Although carbon-

acquisition activity was high at both the pine and grass páramo sites, soil carbon stocks were 

much lower under the non-native pines. High carbon-acquisition EE activity in the pine 
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plantation suggests that less soil carbon is available for use at this site compared to the native 

forest and páramo grassland sites. Soil CO2 flux reported by McKnight (2015 Chapter 2) for the 

MWR supports the hypothesis that the depletion of soil carbon resources under the pines is a 

function of higher rates of soil organic matter decomposition and microbial carbon uptake under 

the drier, more aerobic, soil moisture conditions in the pine site. However, high carbon-

acquisition activity at the grass páramo suggests that extracellular enzymes are still produced and 

active at higher soil moisture contents. Further, because soil organic carbon and soil water-

extractable carbon were both highest at the grass páramo site, the more abundant total carbon 

resources there should correspond with lower EE activity. We hypothesize that, due to the 

history of burning at intervals of 4 to 6 years—confirmed for the last 25 years—at the MWR 

páramo grassland site, pyrogenic organic material has developed in the soil profile and is more 

resistant to microbial decomposition than other forms of soil organic matter. If that is the case, in 

spite of higher total carbon resources, the amount of carbon available for microbial 

decomposition and uptake under páramo grassland is more comparable to that of the pine site, 

due to higher recalcitrance of organic matter present. The ratio of carbon, nitrogen, and 

phosphorus EE activities suggested that the native forest and both grassland sites were more 

phosphorus limited than the pine site. However, higher nitrogen-acquisition activity at the pine 

site indicates a shift to nitrogen-limited soil stoichiometric conditions under (non-native) pine 

cover.  

This study provides a first look at soil extracellular enzyme activity in páramo soils in the 

MWR. Our results suggest that differences in aerobic conditions related to differences in soil 

moisture under different types of land use affect nutrient-acquisition extracellular enzyme 

activity. Changes in extracellular enzyme activity following changes in land use have 

implications for rates of carbon uptake by soil microbial activity and for soil carbon storage in 

the MWR and similar páramo landscapes.  
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A version of this chapter will be submitted to Wetlands Ecology and Management for 

publication by Julie McKnight, Carol P. Harden, and Sean M. Schaeffer. 

Abstract  

Constructed wetlands are integrated into land management strategies to mitigate nutrient 

and erosion runoff in agricultural landscapes. Wetlands with an intermittent hydrologic design 

are commonly constructed in agricultural landscapes due their efficiency for runoff filtration; 

however, little is known about the effects of intermittent inundation on emissions of soil CO2 in 

constructed wetlands. This study investigated the relationship between soil moisture variability 

and soil CO2 flux rates in two constructed agricultural wetlands—one perennially inundated and 

one intermittently inundated—in East Tennessee. Although mean soil moisture for the field 

sampling season was not significantly different between the two sites, soil moisture content was 

more variable at the intermittently inundated wetland. Patterns in soil CO2 flux were similar 

throughout the field season; however, the magnitude of change in CO2 flux rates was greater at 

the intermittent wetland. Greater variability in both soil moisture and soil CO2 flux rates through 

the field season corresponded to a higher mean soil CO2 flux at the intermittent wetland (306 mg 

CO2-C m
-2

 h
-1

) compared to the mean soil CO2 flux at the perennial wetland (212 mg CO2-C m
-2

 

h
-1

). As soil temperature is a known driver of soil CO2 flux rates in East Tennessee uplands, a 

soil incubation experiment was conducted to assess the effects of soil moisture on soil CO2 flux 

at a constant temperature. Carbon dioxide production rates were low in soil treatments in which 

no water was added, whereas soil CO2 flux rates increased with the addition of water. For both 

wetlands, the highest soil CO2 flux rates were measured in saturated samples, even up to five 

days following saturation. Our results highlight the importance of soil moisture in soil carbon-

cycle processes in constructed wetlands.  

1. Introduction  

 Significant effects of recent changes in climate on human and natural systems underscore 

the importance of generating a better understanding of terrestrial carbon fluxes (IPCC 2014). 

Wetlands play an important role in the global carbon budget. Although only representative of 

approximately 6–7% of the global land surface area (Lehner and Döll 2004), wetlands account 

for approximately 25% of global soil organic carbon stocks (Gorham 1991; Lal 2008). 

Anthropogenic activity has resulted in significant losses in wetland areas. In the United States 

alone, development and land-use change have reduced wetland area by more than 50% since the 
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1600s (Dahl and Allord 1997). This loss of wetland area has contributed significantly to 

anthropogenic carbon dioxide (CO2) emissions (Houghton et al. 2012; Arai et al. 2015). 

Specifically, the oxidation of wetland soils following draining results in an increase of soil 

organic matter decomposition, or depolymerization, in which complex forms of soil organic 

material are transformed into simpler organic soil carbon components available for plant and 

microbial uptake. When wetland soils are oxidized, soil carbon is utilized more rapidly than it is 

deposited, resulting in a net loss of soil carbon content. The end biological product of microbial 

utilization activity is CO2, which is emitted to the atmosphere via respiration. Changes in soil 

CO2 flux can reflect changes in rates of microbial activity associated with soil organic carbon 

decomposition and uptake (Hillman 1997; Wosten et al. 1997). Endeavors to create and restore 

wetlands where loss of wetland area has occurred have significant implications for carbon 

sequestration efforts.   

 In the United States, agricultural development has played a significant role in increasing 

carbon-based greenhouse gas emissions through land-use change. Soil CO2 respiration and 

export of soil through erosion are the primary mechanisms for soil carbon loss resulting from 

land-use change. In spite of efforts to reduce soil carbon losses and increase carbon sequestration 

through sustainable crop selection and cultivation practices, many crop and pasture lands often 

still function as atmospheric carbon sources. Even with the inclusion of sustainable practices, 

agricultural landscapes in the United States contribute approximately 460 Tg of carbon dioxide 

(CO2) to the atmosphere annually (US EPA 2004). In recent decades, the construction of 

agricultural wetlands has been included in land management strategies for flood control and 

mitigation of nutrient and sediment runoff from cropland and pastures. Constructed wetlands 

have been shown to accumulate up to 240 g C m
-2

 yr
-1

 (Bernal and Mitsch 2013), demonstrating 

their potential to function as reestablished carbon sinks. To better assess the role of constructed 

wetlands as carbon sinks or sources, however, atmospheric fluxes of carbon in constructed 

wetlands need to be better quantified with respect to wetland type and climate.  

In spite of their carbon sequestration potential, wetlands in some environmental 

conditions are recognized as potential sources of atmospheric carbon. Wetlands are generally 

characterized by high water tables and saturated soils, which produce anaerobic conditions. 

Because methanogenesis is an anaerobic process, wetlands have high potential for methane 

emissions (Kang et al. 1998). Consequently, wetland carbon flux research has had a strong 
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emphasis on assessing methane emissions (Sovik et al. 2006; Melton et al. 2013; Mander et al. 

2014), with fewer studies reporting CO2 flux. The paucity of information regarding soil CO2 flux 

in constructed wetlands can be problematic, as hydrologic designs that reduce methane emissions 

can increase CO2 emissions. Wetlands characterized by relatively lower water tables—such that 

surface soil horizons support greater oxygen exchange and are more aerobic—are typically 

associated with lower methane emissions (Moore and Dalva 1993). Consequently, wetlands with 

a flowing or pulsed hydrology may be created for their potential to reduce methane emissions 

without significantly increasing CO2 flux (Altor and Mitsch 2008). However, more aerobic soil 

moisture conditions are conducive to higher emissions of CO2 (Moore and Dalva 1993; Boon et 

al. 1997) and, in some instances, flowing and pulsing hydrology has been shown to increase CO2 

flux (Moore and Dalva 1993; Altor and Mitsch 2008; Mander et al. 2011). In these instances, 

constructed wetlands can become a source of atmospheric carbon via CO2 emissions.  

Soil CO2 flux rates in wetlands have been linked to hydrologic variability, with emission 

rates increasing significantly with declining water depth (Moore and Knowles 1989; Mander et 

al.2011). Controlled laboratory studies have shown that CO2 emissions can increase when soil is 

exposed to wetting-drying cycles (Fierer and Schimel 2002; Borken et al. 2003). In a mesocosm 

study with two constructed wetlands, Mander et al. (2011) found that intermittent inundation of a 

constructed wetland can result in significantly greater CO2 emissions than measured in a 

permanently inundated constructed wetland. These studies show that soil moisture variation 

plays an important role in soil CO2 flux. Consequently, the hydrologic design of created wetlands 

should be considered, especially where carbon sequestration is a desired ecosystem service. 

Many of the studies that assess soil moisture variation and soil CO2 flux are laboratory or 

mesocosm studies, in which many other environmental factors can be held constant. These 

studies are useful, but do not replace the need for field-based research that applies laboratory-

based knowledge to constructed wetland systems that have been created with a hydrologic 

design, but left to integrate into the landscape. Although numerous studies report field-based 

information regarding interactions of soil moisture and soil respiration, many of these studies 

have been conducted on natural wetland systems, leaving constructed wetlands underrepresented 

in the literature. Carbon-cycle processes have been shown to be significantly different between 

natural and constructed wetlands in some cases (Bernal and Mitsch 2013). As differences occur 

between natural wetland systems, relationships found in natural wetlands should not be assumed 
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for constructed wetlands. Further, regional variability in wetland carbon-cycle processes should 

be considered, as soil moisture-soil CO2 flux interactions may vary with climatic conditions (e.g. 

boreal versus tropical wetlands). Due to their significance in the global carbon budget, boreal 

wetlands dominate carbon-based wetland research, while temperate wetlands remain 

underrepresented, despite their potential to significantly influence regional carbon budgets (Clair 

et al. 2002; Bernal and Mitsch 2013). Further, to our knowledge, no studies have assessed the 

relationship between wetland hydrology, soil moisture, and soil CO2 flux in constructed wetlands 

in the southeastern United States (U.S.). Wetland creation and restoration is a growing 

management strategy in agricultural landscapes in the southeastern U.S. This presents an 

opportunity to restore carbon-based ecosystem services by constructing wetlands; however, a 

better understanding of atmospheric carbon flux is required to determine net carbon exchange in 

constructed wetlands. This is especially true for flux rates of CO2, as little is known about CO2 

flux in constructed wetlands in the southeastern U.S.  

 This study investigates the effects of soil moisture on soil CO2 flux in two constructed 

agricultural wetlands in East Tennessee. Both wetlands hold water in storage year round and can 

be classified as permanent to semi-permanent. However, one wetland has a perched water table, 

which maintains a higher water surface level (perennial wetland), whereas the second wetland 

does not have a perched water table, resulting in a more variable water surface level and more 

variable wetting-drying cycles (intermittent wetland). To assess the relationship between soil 

moisture variation and soil CO2 flux rates in the two wetlands, we measured soil CO2 flux and 

soil moisture weekly throughout the 2014 growing season.  

Using field data and a laboratory experiment, we tested five hypotheses to gain 

knowledge of soil CO2 flux and soil moisture in a perennial and an intermittent wetland. Mean 

soil CO2 flux was expected to be higher at the intermittent wetland (Hypothesis 1). Mean soil 

moisture content was expected to be higher at the perennial wetland (Hypothesis 2). Mean soil 

moisture trends were expected to follow similar temporal patterns in both wetlands due to their 

close proximity and exposure to similar precipitation patterns. However, the magnitude of soil 

moisture variation was expected to be greater at the intermittent wetland (Hypothesis 3) due to 

differences in hydrologic responses to wetting and drying events. For this reason, soil CO2 flux 

was expected to be higher at the wetland site with more variability in soil moisture (Hypothesis 

4). This hypothesis is based on the assumption that greater variability in soil moisture at the 
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intermittent wetland—i.e. more intense wetting and drying cycles—throughout the field season 

would stimulate soil microbial activity, resulting in higher rates of soil CO2 flux related to 

respiration. Because soil temperature was expected to be an influential factor on soil CO2 rates, 

and therefore a potentially confounding environmental factor, a constant temperature laboratory 

incubation experiment was conducted in which soil samples from both wetlands were air dried 

and rewetted to measure the soil CO2 flux rate response to water addition, with soil temperature 

held constant. At a constant temperature, soil CO2 flux rate was expected to increase with the 

addition of water (Hypothesis 5). This study was undertaken to contribute to a better 

understanding of soil CO2 flux responses to constructed wetland hydrology, which has important 

implications for constructed wetland design in East Tennessee and other similar locations.  

2. Materials and Methods  

2.1 Study Site  

This study was conducted in two constructed agricultural wetlands located at the East 

Tennessee Research & Education Center Little River Animal and Environmental Unit (LRU). 

The LRU is an offsite experimental farm managed by the University of Tennessee, Institute of 

Agriculture. The 214-ha tract is a functioning dairy farm, with 81 ha used for crop research 

(corn, wheat, and soy rotations) and 50 ha used for pasture. While the primary emphasis of the 

LRU is Holstein dairy production, this area is also used for a variety of scientific studies that 

evaluate the interaction between agriculture and the environment. 

The LRU is located approximately 40 km south of Knoxville, Tennessee. The temperate-

subtropical climate of East Tennessee is characterized by annual mean temperature of 14°C, with 

an average maximum temperature of 26°C between July and August and an average minimum 

temperature of 3°C in January. The average annual precipitation is approximately 120 cm, with 

little variation between months. (NOAA 2015) Soils at the LRU are predominantly silt loam, 

with young hydric soils developing in both wetland areas (NRCS 2015). 

In 2011, two wetlands were constructed at the LRU to implement water quality best 

management practices, specifically, filtration of stormwater pollutants and runoff from the LRU 

prior to flowing into Ellejoy Creek. Both LRU wetlands are located in excavated depressions 

adjacent to pasture and both receive runoff directed from pasture and cropland areas (Figure 4-

1). The two wetlands are similar in size, with surface areas of 0.28 ha and 0.34 ha for the 
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perennial and intermittent wetlands, respectively (Figure 4-1). Macrotopographic features are 

similar at both wetland sites, and wetland surface area can be classified as 15% deep pool, 55% 

fringe high marsh, and 35% low marsh channels (Ludwig and Wright 2014). Marsh is defined by 

Mitsch and Gosselink (2007) as a permanently or periodically inundated site that has a mineral 

soil substrate and lacks peat accumulation. In the LRU wetlands, low marsh channels are 

seasonally or periodically flooded and are characterized by obligate and facultative wetland 

grasses and rushes. Fringe high marsh areas are considered in this study to be areas that occur 

along the fringe, or boundary, of the wetland. The vegetation zone of the fringe high marsh in 

this study is characterized by leafy emergent species and extends to the first appearance of blade 

grass, marking the uppermost boundaries of high water-table inundation zones. Both wetlands 

were planted with the same plant species, which had either been transplanted from nearby natural 

wetlands or seeded using a native seed blend (Ludwig and Wright 2014).  

In spite of their similarities, hydrologic responses of the two wetlands to precipitation and 

drainage differ due to water-table controls. The ‘perennial wetland’ is located atop a dense clay 

lens, which restricts downward infiltration of water in the soil profile. As a result, the water table 

at this wetland is considered perched (Ludwig and Wright 2014), and higher water surface levels 

are maintained during dry periods. The ‘intermittent wetland’ does not have a perched water 

table, and vertical soil water movement is not restricted. Consequently, the water table and water 

surface levels are subject to greater variation during wetting and drying cycles.  

2.2 Field Data Collection 

Field data collection sites were established using soil collars, which were placed in 

corresponding wetland zones in each wetland. At the onset of the project, six soil collars were 

placed in each wetland: two along the upper boundary of the fringe high marsh, two in low 

depressions in the low marsh channels, and two at the approximate boundary between the fringe 

high marsh and low marsh channel (identified by the transition from obligate to facultative 

emergent plant species). These zones were of particular interest because they represent the 

intermittently inundated hydrologic zone for the LRU sites. Soil measurements could not be 

taken in the deep pool areas due to permanent inundation. The exact locations for soil collar 

installation were chosen arbitrarily once the appropriate zone was identified. One of the two soil 

collars installed in low marsh channel depressions in the perennial wetland was completely 

inundated for most of the field season. As a result, what few data were collected from this site 
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A)     B)   

C)   

Figure 4-1 Map of Study Area. Aerial photos showing the perennial wetland (A) and intermittent 

wetland (B) study sites (Google Earth 2014). As a reference for scale, the yellow line in the 

aerial photos is 15 meters. A detailed topographic map is also provided for the perennial wetland 

(C); however, a topographic map was not drafted for the intermittent wetland. Both sites are 

located at the University of Tennessee Little River Animal Unit (LRU) located in Walland, TN. 
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were not included in this study.  

Field measurements of soil CO2 flux were taken between March 17th and October 8th of 

2014. To measure soil CO2 flux, 20-cm diameter PVC soil collars were inserted into the soil to a 

depth of approximately 3 cm. Five soil collars were installed at the perennial wetland and six soil 

collars were installed at the intermittent wetland. All soil collars were installed at least 24 hours 

prior to the first soil CO2 flux measurement, to minimize flux variations from site disturbance, 

and remained in place until the completion of the study. Soil CO2 flux was measured using a 

LICOR 8100A Automated Soil CO2 Flux Infrared Gas Analyzer (LI-8100) outfitted with a LI-

8100 20-cm Survey Chamber (chamber) fitted to each installed soil collar. Each flux 

measurement was taken over 120 seconds, with a deadband (time between measurements) of 30 

seconds and purge of time 60 seconds. Weekly field measurements were taken between 09:00 

and 12:00 to minimize effects of diurnal variation (Mielnick and Dugas 2000). Volumetric soil 

moisture and soil temperature (°C) were also recorded at the time of each soil CO2 flux 

measurement, using an EC H2O Soil Moisture Probe and an Omega Type E Soil Temperature 

Probe, respectively. 

2.3 Soil Samples and Properties 

Soil samples were collected from the fringe high marsh and low marsh channels to 

support a controlled laboratory incubation experiment and to determine soil properties. For the 

incubation experiment, nine replicate soil samples were collected for each of five soil moisture 

treatments for both wetlands for a total of 90 soil samples (9 replicates x 5 treatments x 2 

wetlands). Soil samples were collected using an Oakfield Model G soil sampler (2.0 cm in 

diameter) to a depth of 5.0 cm. Each of the 90 soil samples was a composite sample that 

consisted of two cores combined to obtain approximately 50 g of field moist soil for each 

incubation sample. In addition to the 90 incubation soil samples, a third core was taken at each 

sampling location to determine gravimetric soil moisture and soil bulk density for the soil 

samples in each incubation jar. All soil samples were collected on September 10, 2014 and 

immediately transported to the University of Tennessee for the laboratory experiment. 

To determine bulk density, the dry weight of each subsample was divided by the sample 

volume. Bulk density was determined for a total of 45 soil subsamples from each wetland. From 

these samples, an average bulk density was calculated for each wetland, and water-filled pore 

space was estimated from volumetric soil water measurements using the following equation: 
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WFPS (%) = (Vw / (1 – (BD/PD))) * 100 

where WFPS (%) is percent water-filled pore space; Vw is volumetric water content; BD is bulk 

density (g cm
-3

); and PD is the mineral particle density expressed as the standard value of 2.65 g 

cm
-3 

2.4 Soil Incubation Experiment  

The laboratory incubation experiment was conducted to assess the response of the soil 

CO2 flux rate to the addition of water, with soil temperature held constant at 22°C. Five soil 

moisture treatments were administered, including one (ambient) in which soil moisture was held 

constant at the field-moisture level observed at the time of soil sampling to serve as a control. 

Four of the five soil moisture treatments represent a gradient of soil moisture conditions, ranging 

from dry to saturated: air-dried soils (Dry), and 33%, 66%, and 100% (saturation) soil water 

content (SWC). As water-filled pore space (WFPS) has been shown to be significantly correlated 

with microbial activity, resulting in heterotrophic soil CO2 respiration (Linn and Doran 1984), 

the 33%, 66%, and 100% soil moisture treatments are defined as percent WFPS. In all four 

moisture treatments, soil samples were air dried until no change in soil weight was observed, 

then brought to the desired treatment soil moisture by the addition of deionized water. Soil CO2 

pulses following the wetting of dry soil have been shown to indicate biological soil quality (van 

Gestel et al. 1991; Franzluebbers et al. 2000). The control treatment, a soil sample held at 

constant field soil moisture from the time of collection, provided a baseline CO2 respiration rate 

without a pulse from rewetting.  

Each incubation sample was transferred to a 0.47-L container, weighed to determine field 

moist weight, and allowed to air dry until no change in weight was observed for at least 24 hours. 

Upon collection, subset soil samples were weighed to determine wet soil weight (g), dried in an 

oven at 105°C for 48 hours, and reweighed to determine dry soil weight (g). These data were 

used to determine gravimetric and volumetric soil moisture content, bulk density, porosity 

(assuming a particle density of 2.65 g cm
-3

), and water-filled pore space (WFPS). Using this 

information, the wet soil weight to be maintained was determined for each individual sample. 

The wet soil weight determined for each soil sample treatment was attained by adding deionized 

water to each incubation jar. Each jar was capped with a sealed lid to prevent water loss due to 

evaporation. To ensure the desired WFPS was maintained, the weight of each incubation jar was 
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monitored at the time of each flux measurement. The total length of the incubation experiment 

was 5 days. Heterotrophic soil CO2 respiration was measured using a LICOR 820 Infrared Gas 

Analyzer on days 0, 1, 2, 3, and 5. All treatments were kept at a constant temperature of 22°C for 

the entire length of the experiment. 

2.5 Analytical Methods  

A graphical, visual inspection of all data sets was completed using a scatter plot and 

histogram to identify any visually distinguishable trends, and the Shapiro-Wilk test was used to 

test the normality of each data set distribution. Although some data sets were found to be 

normally distributed, the inability to apply a consistent data transformation approach to attain a 

normal distribution in all data sets resulted in the use of non-parametric statistical methods. The 

Mann-Whitney Wilcoxon test was used to assess differences between groups. A Spearman 

correlation test was used to determine the strength of a linear association between soil moisture 

and soil CO2 flux. Where a weak linear relationship was found, polynomial regression was used 

to fit non-linear data. A time-series graph for each wetland was visually inspected to compare 

frequency and intensity of changes in soil moisture content and soil CO2 flux. For the incubation 

experiment, the Mann-Whitney Wilcoxon test was used to assess significant differences in soil 

CO2 flux rates between each of the five soil moisture treatments. All statistical analyses were 

performed in JMP Pro 11.1.1 from SAS Software (JMP Pro 2013). 

3. Results  

Results of the Mann-Whitney Wilcoxon test supported Hypothesis 1, that mean soil CO2 

flux for the 2014 field season (March to October) was greater at the intermittent wetland (7.32 

µmol-CO2-C m
-2

 d
-1

) than at the perennial wetland (5.12 µmol-CO2-C m
-2

 d
-1

) (p < 0.01) (Table 

4-1; Figure 4-2). The mean volumetric soil moisture, however, did not differ significantly 

between the two wetland sites, as expected (Hypothesis 2) and was approximately 35% in both 

wetlands. Soil temperature ranged from 5°C to 27°C, with temperatures remaining above 15°C 

from early May in both wetlands. The highest soil temperature measured for each wetland was 

~25°C, measured on July 3
rd

 (Julian Day 184) at both sites. Soil temperature did not vary 

significantly between the two wetlands (α = 0.05; N = 114 for perennial wetland; N = 132 for 
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Table 4-1 Soil CO2 flux rate and % volumetric soil moisture. Mean and range values are representative of the 2014 field data 

collection season (March to October). Wetland 1 is the perennial wetland (perched water table) and Wetland 2 is the intermittent 

wetland. 

Site Soil CO2 Flux (µmol CO2 m
-2

 s
-1

) Soil CO2 Flux (mg CO2-C m
-2

 h
-1

) % Volumetric Soil Moisture Vegetation/Hydrozone 

  Mean (SE) Range Sample Size (n) Mean (SE) Range Sample Size (n) Mean (SE) Range Sample Size (n)   

Wetland 1 4.9 (0.2) 12.6 130 212 (9.2) 543 130 34.7 (0.9)  45.1 122 All soil collars 

  Collar 1 4.9 (0.5) 9.6 28 213 (21) 415 28 40.7 (1.3) 28.4 26 Fringe high marsh 

  Collar 2 5.7 (0.5) 12 29 245 (21) 520 29 36.2 (1.6) 27.6 27 Fringe high marsh 

  Collar 3 4.7 (0.5) 8.9 26 203 (21) 384 26 32.6 (1.8) 31.3 26 Fringe high marsh 

  Collar 4  4.3 (0.4) 9.9 24 184 (19) 429 24 33.0 (2.1) 42.2 22 Low channel marsh 

  Collar 5 4.8 (0.4) 7 23 208 (19) 300 23 30.1 (2.2) 40.1 21 Low channel marsh 

Wetland 2 7.1 (0.3 18.3 153 306 (13) 791 153 34.2 (0.8) 41.6 142 All soil collars 

  Collar 1 5.2 (0.6) 14 29 225 (24) 604 29 35.4 (1.5) 36.7 27 Fringe high marsh 

  Collar 2 7.5 (0.7) 17.1 29 324 (30) 739 29 35.8 (1.6) 30.0 27 Fringe high marsh 

  Collar 3 6.9 (0.6) 12.7 27 300 (27) 549 27 35.5 (1.9) 31.1 26 Fringe high marsh 

  Collar 4  8.4 (0.9) 17.8 29 362 (40) 771 29 34.9 (2.0) 40.6 27 Low channel marsh 

  Collar 5 6.8 (0.8) 13.2 19 292 (34) 570 19 32.4 (2.0) 29.0 17 Low channel marsh 

  Collar 6 7.8 (0.8) 15.2 20 337 (34) 658 20 30.2 (2.5) 39.0 18 Low channel marsh 
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Figure 4-2 Distribution of mean values of soil CO2 flux and % volumetric soil moisture between 

the perennial wetland (W1) and intermittent wetland (W2). The letters a-b represents a 

significant difference in soil CO2 flux between the two wetlands as determined by the Wilcoxon 

Test (p<0.05). The line within each box represents the median.  

a 

b

a 

a a 
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intermittent wetland), and the mean soil temperature for the full field season was 22°C at both 

sites. 

Soil moisture trends followed the same general temporal pattern of alternating wet and 

dry periods (Figure 4-3). The mean soil moisture content did not differ significantly between the 

two wetlands (α = 0.05, N = 114 for perennial wetland; N = 132 for intermittent wetland). 

However, the magnitude of change in soil moisture content was greater in the intermittent 

wetland, supporting Hypothesis 3 (Table 4.2 in appendix). The time-series graph (Figure 4-3) 

was created using the mean value of weekly field measurements of soil moisture (perennial 

wetland, N = 5; intermittent wetland, N = 6) for each wetland over the 2014 field season (March 

to October). On many occasions, the magnitude of change in soil moisture content during wet 

and dry periods was greater at the intermittent wetland (Figure 4-3; Table 4.2 in appendix). The 

time series graph also shows that, on at least two occasions, soil moisture at the intermittent 

wetland increased (Julian Day 134) or decreased (Julian Day 239) by more than 5% from the 

previous week, whereas soil moisture at the perennial wetland remained approximately the same 

(soil moisture change of less than 2%) over the same time period (Table 4.3 in appendix). This 

further supports the expectation of greater soil moisture variability at the intermittent wetland. 

 Increases and decreases in soil CO2 flux followed the same temporal patterns in both 

wetlands. As with soil moisture, the magnitude of change in soil CO2 flux in response to 

alternating wetter and dryer periods was greater at the intermittent wetland. Total change in soil 

CO2 flux for the entire season was 35.6 µmol CO2-C m
-2

 s
1
 and 63.2 µmol CO2-C m

-2
 s

1
 for the 

perennial and intermittent wetlands, respectively (Table 4.2 in appendix). The greater magnitude 

of soil CO2 flux changes in the intermittent wetland contributed to a significantly greater (p < 

0.01) mean soil CO2 flux rate (7.3 µmol CO2-C m
-2

 s
-1

) compared to that of the perennial wetland 

(5.1 µmol CO2-C m
-2

 s
-1

) for the 2014 field season, supporting Hypothesis 4.  

The quadratic polynomial regression, used to describe the interaction between soil 

moisture and soil CO2 flux, showed that volumetric soil moisture accounted for 10% and 16% of 

soil CO2 flux variation at the perennial wetland and intermittent wetland, respectively (p<0.01) 

(Figure 4-4).  

Results of the incubation study showed that the highest CO2 flux rate response was 

measured in the 100% soil moisture treatment for both the perennial and the intermittent  
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A   

 

 

B    

 

Figure 4-3 Time series graph of soil CO2 flux (solid line) and volumetric soil moisture content  

(dashed line) for the perennial (A) and intermittent (B) wetlands. The dotted line represents the 

estimated aerobic-anaerobic threshold for soil moisture conditions. This threshold is defined as 

60% water-filled pore space. Day of Year is the Julian Day. For the LRU wetland, pore space 

was determined by dividing the volumetric water content by soil porosity. One mean value of 

soil porosity was used to represent each wetland site. It was calculated using bulk density 

(measured for 45 soil samples for each wetland) and a standard mineral particle density of 2.65 g 

cm
-3

. (Created in JMP Pro 11) 
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A  

 

B   

 

Figure 4-4 Fitted quadratic polynomial curves to describe the relationship between % volumetric 

soil moisture and soil CO2 flux for the (A) perennial and (B) intermittent LRU wetland sites. 

(Figure created in JMP Pro 11)
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wetlands. For both wetlands, the trend in flux rate was such that the order of treatment responses 

from greatest to least was 100% > 66% > 33% > Ambient > Dry. This relationship supported 

Hypothesis 5, that soil CO2 flux would increase with the addition of water (Figure 4-5).  

4. Discussion  

The carbon dioxide flux rates reported in this study are consistent with CO2 flux values 

reported in previous studies for temperate constructed wetlands, which range from approximately 

50–325 mg CO2-C m
-2

 h
-1

 (Picek et al. 2007; Altor and Mitsch 2008; VanderZaag et al. 2010; 

Mander et al. 2011). Mean values presented here for the LRU wetland sites, 212 mg CO2-C m
-2

 

h
-1

 for the perennial wetland and 306 mg CO2-C m
-2

 h
-1

 for the intermittent wetland, more 

closely resemble those reported for constructed temperate wetlands in Ohio (Altor and Mitsch 

2008). Other researchers have also reported higher CO2 flux rates in wetlands with intermittent, 

as opposed to perennial, hydrology. Mander et al. (2011) showed that, between two constructed 

wetland mesocosms in Estonia, the wetland with a pulsed hydrology had a significantly higher 

median soil CO2 flux compared to the wetland with a stable water table. Mander et al. (2011) 

also showed that the wetland mesocosm with the fluctuating water table had greater variability in 

soil CO2 flux rates, with a range of 30–175 mg CO2-C m
-2

 h
-1

, compared to 30–60 mg CO2-C m
-2

 

h
-1

 in the wetland with the stable water table. Further, in a controlled experiment with soils from 

boreal peatlands in Canada, Moore and Dalva (1993) showed a greater variation in soil CO2 flux 

with rising and falling water tables. These studies support the notion that a greater range in soil 

CO2 flux rates can contribute to a significantly higher mean soil CO2 flux than that measured for 

a wetland with a stable water table.  

The finding that there was no significant difference in mean soil moisture between sites 

in the two wetlands was unexpected. The original hypothesis (Hypothesis 2) that mean soil 

moisture would be greater in the perennial wetland was based on the characteristically higher 

water surface levels maintained by the perched water table at the perennial wetland. In contrast, 

trends in the time series plot (Figure 4-3) for the field season show greater magnitude in soil 

moisture variability at the intermittent wetland, suggesting that the non-perched water table at the 

intermittent wetland was more susceptible to variation in water surface levels during periods of 

wet and dry conditions. Further, between 2012 and 2013, prior to the present study, the perennial 

wetland received up to three times more inflow than the intermittent wetland during episodic 

storm events (Ludwig and Wright 2014). Consequently, it was anticipated that the perennial  
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Figure 4-5 Comparison soil CO2 flux rates between five soil moisture treatments administered in 

a laboratory incubation study. Soil CO2 flux rate response was measured for five soil moisture 

treatments: air-dried (Dry) soil, soil with moisture maintained to match ambient level at time of 

collection (Amb), and soils to which water was added to achieve three different levels of percent 

water-filled pore space (33%, 66%, and 100%). Soils were maintained at treatment moisture 

levels, and soil CO2 flux rate response was measured over 5 days. Letters a-d represent 

significant differences between treatment means determined using the Wilcoxon test (p<0.05; 

n=9 for each treatment in each wetland). The horizontal lines across each box represent the 

median. (Figure created in JMP Pro 11)   
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wetland would have significantly higher mean soil moisture content throughout the 2014 field 

season.  

Although mean soil moisture content values were similar between the two wetlands, 

trends in soil moisture variability throughout the field season, as shown in the time series plot in 

Figure 4-3, indicate differences in the frequency and magnitude of change in soil moisture 

content with periods of wet and dry conditions. Less variability in water-table levels is consistent 

with perched water-table hydrology (Rains et al. 2005; Deane et al. 2012) and contributes to less 

variability in soil moisture conditions. This supports the idea that greater frequency and 

magnitude of changes in soil moisture content at the intermittent wetland, where both wetland 

experienced the same periods of wet and dry conditions, is likely the expression of the different 

soil hydrologic properties and responses between the two wetland sites.  

In general, the temporal trends in soil moisture and soil CO2 flux for both wetlands 

shown in Figure 4-3 corresponds to interactions reported in previous studies (Moore and Dalva 

1993; Komulainen et al. 1999; Blodau et al. 2004). The rise and fall of soil CO2 flux has been 

shown to be the result of biological respiration responses to soil moisture shifts between aerobic 

and anaerobic conditions, where other environmental conditions are held constant (Linn and 

Doran 1984; Moore and Dalva 1993). Our results show similar patterns in soil CO2 flux rates in 

response to variation in soil moisture content when soil temperature is greater than 15°C, which 

has been shown to be a thermal biological threshold for soil microbial activity (Richards et al. 

1952). The rapid increase in soil CO2 flux rates at the beginning of the season corresponds to the 

increase in soil temperature as the seasons shifted from winter to spring. This observation 

indicates a clear response of soil CO2 flux rates to thermal thresholds. The trends shown in 

Figure 4-3, at soil temperatures above 15°C (or later than Julian Day 127), however, are similar 

to those described with respect to microbial activity response to soil moisture content. The 

sensitivity of biological activity to change in soil moisture could explain the greater intensity of 

soil CO2 flux response to soil moisture changes that shift around 35% volumetric soil moisture 

content. This is because, for both LRU wetland sites, 35% volumetric soil moisture is estimated 

to correspond to the 60% water-filled pore space aerobic-anaerobic threshold defined by Linn 

and Doran (1984). It is important to note that observed wetting and drying cycles in the LRU 

wetlands in this study were determined on the basis of weekly sampling. As soil CO2 respiration 

can respond to changes in soil moisture within hours to days, a weekly sampling period is a 
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coarse representation of these events. Consequently, the time scale used in this study may 

underestimate the frequency of wetting-drying events in soils as well as soil CO2 flux rate 

responses, especially at the intermittent wetland. These data are sufficient, however, as a proof of 

concept that soil hydrological responses at the perennial and intermittent wetland at the LRU site 

are different and are associated with fluctuations of soil CO2 flux rates (Hypotheses 1 and 4).  

The non-linear relationship between soil moisture and soil CO2 content can be attributed 

to the wide range of soil moisture captured in this study. Although significant linear relationships 

have been described for the interaction between soil moisture and soil CO2 flux (Lee et al. 2007; 

Sainju et al. 2010), these linear responses are generally constrained to aerobic or anaerobic 

ranges of soil moisture content. In 1984, Linn and Doran showed that soil microbial respiration 

of CO2 in aerobic conditions is positively correlated with changes in soil moisture. Conversely, 

they also showed that in anaerobic conditions, soil microbial CO2 respiration decreases as soil 

moisture increases and approaches saturation. CO2 flux response to changes in soil moisture is a 

function of oxygen diffusion and availability at different soil moisture contents. As the majority 

of soil microbes that facilitate the breakdown of soil organic matter are aerobic organisms, soil 

CO2 respiration, a measure of soil microbial activity, decreases once soil moisture surpasses a 

certain level. This threshold has been estimated to be at approximately 60% water-filled pore 

space for soil microbial activity (Linn and Doran 1984). The equivalent of 60% soil WFPS in 

terms of volumetric soil moisture content is estimated to be approximately 30–35% for the LRU 

wetland soils in this study. The polynomial relationship described here shows soil CO2 flux 

response to aerobic and anaerobic conditions, which further supports the fluctuation of soil CO2 

flux with variable soil moisture content at the LRU sites. Still, although the polynomial 

relationship between soil moisture and soil CO2 flux was significant (p <0.01), soil moisture only 

explained 10% and 16% of CO2 flux variation in the perennial and intermittent wetlands, 

respectively. This suggests that other factors, environmental or biological, also play important 

roles in soil CO2 fluxes in the LRU wetlands.  

Extensive research has demonstrated that soil respiration rates are positively correlated 

with temperature (e.g. Raich and Schlesinger 1992; Dornbush and Raich 2006) and soil moisture 

(e.g. Raich and Potter 1995; Bauer et al. 2008; Hernandez-Ramirez et al. 2009; Sainju et al., 

2010). Soil temperature and the interaction between soil temperature and soil moisture content 

have been shown to explain approximately 80% of soil CO2 flux variability in agricultural 
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croplands in East Tennessee during the growing season (Soro 2011). Due to the dynamic role of 

soil moisture content in wetland carbon processes, however, variation in soil moisture with 

fluctuating water tables was expected to significantly influence soil CO2 flux rates in soils of 

constructed wetland in East Tennessee. Results from the incubation study supported this 

hypothesis, as the addition of water to dried soil samples corresponded to significant increases in 

soil CO2 emissions with temperature held constant.  

These findings are consistent with those of other studies that show pulses of soil CO2 

emissions from agricultural landscapes with water addition through irrigation (Sainju et al. 

2010). The high CO2 flux response measured for the 66% and 100% soil moisture treatments do 

not agree with the Linn and Doran (1984) model, in which CO2 flux is expected to decrease in 

high moisture, anaerobic conditions. However, large increases of CO2 flux have been observed in 

soils that have been dried and rewetted, as soil organisms respond disproportionately to the 

sudden presence of a limiting resource, which, in this case of dried soils, is water. High CO2 

respiration rates have been measured for weeks after a flooding event in dried soils (Blodau and 

Moore 2003). Blodau and Moore (2003) suggested that soil CO2 response to flooded conditions 

is a function of the magnitude and frequency of drying and rewetting events, and reported a 5-

fold increase in anaerobic CO2 production when soils were saturated following a dry period. In 

the present study, the only two treatments with no significant increase of soil CO2 respiration in 

the incubation study were the only two treatments that did not receive a water addition (i.e. the 

dry and ambient-control treatments). Further, the concentration of CO2 in the incubation chamber 

headspace for the dry treatment remained close to zero for most of the experiment. This sugests 

that drying events that result in very low soil moisture contents (<20% volumetric soil moisture) 

can cause soil CO2 flux to significantly decrease. The significant increase in soil CO2 flux within 

five days of water addition treatments highlights the sensitivity of CO2-producing soil microbes 

in the LRU wetland soils to changes in soil moisture. 

5. Conclusion 

The results of this study suggest that hydrologic characteristics of constructed agricultural 

wetlands play important roles in soil CO2 flux rate. More frequent and intense wetting and drying 

events can elicit microbial biological responses that result in pulses of elevated soil CO2 flux 

rates. In contrast, a perennially (permanently) inundated wetland with more stable water levels 

appears to be more resistant to the effects of wetting and drying events on rates of soil CO2 flux. 
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Mean soil CO2 flux rates are thus likely to be higher in intermittent versus perennial constructed 

wetland conditions. Soil CO2 flux rates reported here are similar to those reported in laboratory 

and mesocosm studies simulating constructed temperate wetlands. However, this is the first 

study investigating soil CO2 flux in constructed wetlands with different hydrologic regimes in 

east Tennessee agricultural landscapes. Further, this is the first study to report soil CO2 flux rates 

for constructed wetlands integrated into agricultural landscapes in East Tennessee.  

This study supports the application of laboratory-based observations of soil moisture and 

soil CO2 flux interactions to inform the design of constructed wetlands. However, this study also 

demonstrates the complexities of soil carbon processes and their interaction with soil moisture 

fluctuations. The results of the incubation experiment suggest that soils from the LRU wetland 

are sensitive to drying and rewetting cycles and that CO2 production is possible for at least 5 

days following a flooding event, even where anaerobic conditions are present. Wetland 

hydrology thus has bearing on the role of a constructed wetland as a carbon sink or source. This 

has implications for constructed wetland design where the reduction of greenhouse gas emissions 

is a desired ecosystem service. A wetland with a water table that is stable at a greater depth, to 

minimize anaerobic conditions, and constructed with a gradient to allow for continuous, slow 

flowing water export could facilitate the capture of runoff for nutrient and erosion filtration but 

also mitigate emissions of both methane and carbon dioxide. Future studies assessing wetland 

carbon budgets that provide insight into net emissions and sequestration of atmospheric carbon 

are recommended. 
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Table 4-2 Absolute values of change (Δ) in soil CO2 flux and % volumetric soil moisture 

between weekly field measurements. The sum of all of changes is provided for comparison of 

total changes in CO2 flux and soil moisture for the whole study period.  

  Perennial Wetland  Intermittent Wetland  

Julian Day 
Δ Soil CO2 Flux 

(µmol m
-2

 s
-1

) 

Δ Volumetric Soil 

Moisture (%) 

Δ Soil CO2 Flux 

(µmol m
-2

 s
-1

) 

Δ Volumetric Soil 

Moisture (%) 

76 - - - - 

91 0.25 0.70 1.10 3.36 

106 1.74 4.73 1.07 4.39 

113 1.22 3.67 0.28 0.08 

121 3.37 1.83 5.31 1.45 

127 1.15 4.98 1.25 10.42 

134 0.72 1.20 2.97 10.77 

141 0.61 14.77 1.96 16.83 

155 0.03 0.50 0.67 9.82 

162 1.64 7.77 2.32 17.48 

169 2.13 12.46 0.78 14.07 

176 0.39 18.98 0.68 15.62 

184 0.37 1.18 0.56 3.98 

190 0.44 3.88 2.47 0.57 

197 1.52 4.38 5.56 7.07 

204 3.02 6.32 1.25 5.48 

211 1.51 1.62 5.09 3.88 

218 1.99 6.86 6.91 9.68 

225 1.34 8.68 4.50 5.98 

232 0.78 2.07 2.68 1.34 

239 0.95 2.09 1.12 4.46 

246 3.57 2.01 5.33 9.10 

253 3.08 3.24 3.50 5.93 

260 0.79 1.24 0.20 5.10 

267 0.44 2.26 2.96 5.02 

274 0.58 13.07 0.57 8.05 

281 1.91 14.95 1.96 14.45 

Sum of 

Changes 
35.60 145.54 63.24 194.81 
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Table 4-3 Mean daily values used for time series plot. 

 

  Perennial Wetland  (N=5 per day) Intermittent Wetland (N=6 per day) 

Julian 

Day 

CO2 Flux  

(µmol m
-2

 s
-1

) 

Volumetric Soil 

Moisture (%) 

CO2 Flux  

(µmol m
-2

 s
-1

) 

Volumetric Soil 

Moisture (%) 

76 1.01 43.6 0.88 47.4 

91 0.77 42.9 1.99 44.1 

106 2.50 38.2 3.05 39.7 

113 1.28 41.8 2.77 39.8 

121 4.65 40.0 8.08 41.2 

127 5.79 35.0 6.83 30.8 

134 6.52 33.8 9.80 41.6 

141 5.91 19.1 7.84 24.7 

155 5.88 18.6 7.17 14.9 

162 4.24 26.3 9.49 32.4 

169 6.37 13.9 10.27 18.3 

176 6.76 32.8 9.59 33.9 

184 6.39 34.0 10.14 30.0 

190 6.83 30.1 12.61 29.4 

197 8.34 34.5 7.05 36.5 

204 5.32 40.8 8.30 41.9 

211 3.81 39.2 3.21 45.8 

218 5.81 32.4 10.12 36.1 

225 4.46 41.0 5.62 42.1 

232 5.24 39.0 8.31 40.8 

239 6.19 41.1 9.43 36.3 

246 2.63 43.1 4.10 45.4 

253 5.70 39.8 7.60 39.5 

260 4.91 41.1 7.79 34.4 

267 5.35 38.8 4.84 29.4 

274 4.77 25.8 4.26 21.3 

281 2.86 40.7 6.22 35.8 
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Chapter 5 Conclusion 

The impetus for this research was the global concern for shifts in hydrologic cycles and 

distributions of soil carbon storage pools caused by human-landscape interactions and a changing 

climate. A better understanding of soil-water interactions and associated feedbacks in carbon-

cycle processes is crucial to the development of comprehensive carbon budgets and predictive 

models. Additionally, a better understanding of understudied ecosystems is needed to account for 

the transfer and variability of carbon-cycle processes. Much focus in terrestrial carbon research 

has been given to ecosystems that are recognized as globally significant carbon sinks and are 

most sensitive to global climate change. However, the exclusion of carbon-cycle processes in 

ecosystems that account for less of the global terrestrial carbon, but are sensitive to changes in 

land use and land cover, can result in inaccurate estimations of terrestrial carbon flux at regional 

and global scales. To account for the complexity and connectivity of ecosystem processes across 

spatial scales, a more detailed account of adjacent and understudied ecosystems is necessary. 

This doctoral dissertation research focused on two ecosystems, Ecuadorian páramo grasslands 

and constructed agricultural wetlands, each of which represents a fraction of the larger landscape 

in which it occurs, yet has the potential to play a significant role in landscape-scale carbon-cycle 

processes.   

5.1 Soil Carbon Ddioxide Flux and Soil Moisture in Ecuadorian Páramo Landscapes  

In the páramos of the Mazar Wildlife Reserve in the Ecuadorian Andes, soil CO2 flux 

rates are susceptible to increase where land-use change involves a transition from páramo 

grassland to tree cover. In this study, soil CO2 flux rates were higher at sites with tree cover 

(native forest or pine plantation) than in páramo grassland. The significant difference in soil CO2 

flux between the two grassland sites was unexpected. Soil CO2 flux at the grass páramo site was 

higher than at a recently burned grass páramo site. Though we hypothesized that soil CO2 flux 

would decrease as soils became anaerobic (water-filled pore space greater than 60%), our data 

did not unequivocally support this hypothesis. A polynomial regression showed a significant, but 

weak, relationship between soil moisture and soil CO2 flux. The regression line shows that the 

range of CO2 flux is notably smaller between 55–60% WFPS, with no flux rates measured below 

3.7 g CO2-C m
-2

 d
-1

 at that point. Thus, with respect to the response of soil CO2 flux to soil 

moisture differences across types of land use, flux appeared to respond to the biological soil 



133 

 

moisture threshold (~60% WFPS) expected with a transition between aerobic and anaerobic soil 

moisture conditions, but there was no clear trend between CO2 flux and soil moisture within 

aerobic and anaerobic soil moisture gradients.  

A better understanding of the mechanisms driving fluxes of soil carbon in Ecuadorian 

páramos is crucial to predicting shifts in terrestrial carbon pools and integrating carbon budgets 

into land-management decisions. Future research is recommended to investigate potential 

changes in soil microbial communities and microbial activity among sites of different land uses 

because such changes may correspond to changes in rates of microbial soil carbon uptake and of 

soil CO2 flux. A controlled laboratory study is recommended to test the effects of different 

ranges of soil moisture on soil CO2 flux both within and between the four types of land use. This 

would provide new information about soil moisture and soil CO2 flux interactions under ideal 

conditions in páramo soils and help determine whether (or how) the long-term changes in soil 

moisture content associated with land-use change alter that interaction. A long-term, field-based 

study is also recommended to assess annual and seasonal variations of soil CO2 flux within and 

among types of land use, and to better understand the response of flux rates to in situ variation of 

soil moisture. Lastly, we recommend a study that monitors and assesses soil microbial activity, 

microbial community composition, soil CO2 flux, and alterations to soil carbon type and 

distribution prior to and following a controlled burn. Such a study would provide new 

information about the effect of burning on soil microbial activity under grass páramo. 

This study provides a first view of the role of soil CO2 flux as a mechanism for soil 

carbon loss in Ecuadorian páramos and of the interaction between soil moisture and CO2 flux 

rates in anthropogenically altered páramo landscapes. In terms of soil moisture variation with 

land use change, this research supports the finding of previous studies that show lower soil 

moisture content under pine plantation; however, this study also shows that soil moisture can be 

significantly lower under native forest cover than under páramo grassland in some páramo 

landscapes. Since two primary ecosystem services provided by Ecuadorian páramo grasslands 

are water provision and soil carbon sequestration, these findings have significant implications for 

land management decisions. Based on our results, which show that, under the non-native pines, 

soil moisture is lower and soil CO2 flux is higher than at sites with other land uses, we do not 
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recommend pine plantations as a land management strategy in central Ecuador, especially when 

water provision or carbon sequestration are land management priorities.  

Whether the practice of burning the páramo should be recommended depends on land 

management goals. Burning is a common strategy that benefits grazing animals and prevents loss 

of grass páramo area to native forest encroachment. Although soil within the first 10 cm at the 

recently burned site in this study contained less carbon than soil at the three other sites, this may 

be due to differences in the individual site histories of disturbance rather than to the time since 

burning. It is likely that soil carbon pools recuperate as the vegetation recovers after a burn and 

plant-microbial interactions equilibrate. Suppression of anthropogenic burning, and the 

subsequent encroachment of native forest, may result in soil carbon loss; however, increased 

aboveground carbon stores associated with woody vegetation may balance this loss and maintain 

the potential value of the land as a carbon sink. Still, the lower moisture content of soil under 

native forest than under grass páramo indicates a potential decrease in soil water yield with 

conversion of grassland to native forest cover, which may occur in the absence of burning, 

especially at lower elevations of páramo. This information can be used by land managers to 

inform decisions regarding land management objectives, whether the management objectives are 

water provision, carbon sequestration, or balancing these ecosystem services with consideration 

for human livelihoods. 

5.2 Extracellular Enzyme Activity in Ecuadorian Páramo Landscapes 

We investigated differences in soil carbon-acquisition activity, as measured by 

extracellular enzyme (EE) activity, and the distribution of acquisition activity for carbon, 

nitrogen, and phosphorus for four different types of land use in the páramos of the Mazar 

Wildlife Reserve in Eucador: native forest, grass páramo, recently burned grass páramo (< 6 

months), and pine plantation. Our results showed differences in soil extracellular enzyme activity 

among land uses in the Mazar Wildlife Reserve páramo landscapes. Although carbon-acquisition 

EE activity was high at the pine and grass páramo sites, soil carbon stocks were much lower at 

the pine site. High carbon-acquisition EE activity at the pine plantation site suggests that less soil 

carbon is available at this site than at the native forest and grass páramo sites. In contrast, high 

carbon-acquisition activity at the grass páramo site may be due to the development of pyrogenic 

organic material, which is more resistant to microbial decomposition, as result of a site history of 
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burning at intervals of approximately 4–6 years for at least the last 25 years. The ratio of carbon, 

nitrogen, and phosphorus EE activities showed that soils in the native forest and both grassland 

sites were phosphorus-limited. However, higher nitrogen-acquisition activity at the pine site 

indicates a shift to nitrogen-limited soil stoichiometric conditions after páramo grassland is 

converted to non-native pine cover.  

As this study provides a first exploration of soil carbon-acquisition EE activity in 

Ecuadorian páramo landscapes, it contributes new information to help fill significant gaps in 

knowledge about soil carbon-cycle processes in Ecuadorian grass páramo ecosystems. 

Differences in soil carbon-EE acquisition activity under different types of land use can be related 

to changes in soil environmental conditions that affect soil microbial activity. The results of this 

study highlight the potential for changes in soil microbial activity as a mechanism for soil carbon 

loss, via soil CO2 flux, associated with land-use and land-cover type. Stoichiometry of EE 

activity can show shifts in nutrient availability and deficiency. For example, because soil in 

much of the Ecuadorian páramo landscape is phosphorus-limited, pasture management includes 

the application of phosphorus fertilizer. Our results suggest, however, that soil stoichiometry can 

shift from a phosphorus- to a nitrogen-limited soil conditions under non-native pine plantations. 

With this information, land managers who wish to cultivate or rehabilitate areas planted with 

pine trees for more than 25 years can adjust their soil management strategy.  

To test the response of EE activity to different soil moisture contents along moisture 

gradients within the aerobic and anaerobic ranges of soil water-filled pore space in páramo soils, 

we recommend a controlled, laboratory study. Such a study would provide information to 

determine whether the sensitivity of soil EE activity to soil moisture gradients is different among 

land uses. This study would also contribute to a better understanding of EE activity in response 

to changes in soil moisture within each type of land use. This information has implications for 

understanding the response of soil EE activity to changes in precipitation due to seasonal 

variations or longer term changes in the climate of the region. A second laboratory study is also 

recommended to test the response of carbon-acquisition EE activity to different types of soil 

organic matter, soil organic carbon contents, and water-extractable organic matter contents. 

These two recommended laboratory studies will increase knowledge of the effects of land-use 

decisions on carbon-acquisition EE activity by simulating different types of organic matter input 
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from different plant communities associated with the native forest, grass páramo, and pine 

plantation. Results of these laboratory studies should increase understanding of the relationship 

between soil EE activity and differences in soil carbon stocks under different types of land use. 

5.3 Effects of Constructed Wetland Hydrology on Soil Moisture and Soil CO2 Flux   

The objective of the final portion of this study was to assess differences in soil moisture 

and soil CO2 flux in two constructed agricultural wetlands in East Tennessee, one with a 

perennial hydrology and one with an intermittent hydrology. Although mean soil moisture was 

similar between the two nearby wetlands during the field season, more variability in soil 

moisture content and soil CO2 flux was measured in the intermittent wetland. The greater 

magnitude of CO2 flux response to pulsing events contributed to a significantly (p<0.05) higher 

CO2 flux rate for the intermittent wetland during the 2014 field season. An incubation study, 

which tested the response of soil CO2 flux to different soil moisture treatments while holding soil 

temperature constant, supported the hypothesis that an increase in soil moisture following a dry 

period (air dried) stimulates CO2 respiration and CO2 flux rate.  

We recommend long-term monitoring studies that assess both CO2 and CH4 emissions to 

create a more complete carbon flux budget for different hydrologic conditions in constructed 

wetlands. We also recommend future studies that assess gas fluxes at the water-

surface/atmosphere interface to create a flux budget that is more representative of the total area 

of a wetland. Our data provide baseline measurements for CO2 flux in the early stages of 

development of the Little River Unit constructed wetlands. This creates an opportunity for 

continued measurements of soil carbon content and flux to contribute to a better understanding of 

how these soil properties and processes change from the early to late stages of constructed 

wetland development.  

This research has implications for the design and integration of constructed wetlands into 

agricultural landscapes in East Tennessee. If soil carbon sequestration is a desired outcome for 

the construction of a wetland, we recommend implementing a slowly flowing wetland with a 

stable, but not perched, water table. This approach will reduce soil CO2 emissions associated 

with periods of wetting and drying, mitigate methane emissions by creating more aerobic 
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wetland conditions, and maintain nutrient removal and other water-quality oriented ecosystem 

services provided by constructed wetlands. 

5.4 Concluding Remarks 

The results of the three studies presented in this dissertation demonstrate the importance 

of taking into account the diversity and complexity of the natural world when assessing 

terrestrial carbon fluxes. Controlled laboratory studies provide valuable insight into various 

aspects of soil carbon processes and provide a framework for the development of carbon flux 

prediction models. However, there is a crucial need to link empirical information with field-

based studies that incorporate the complexities of the natural world to reconcile differences in 

biogeochemical processes observed in controlled and natural system studies. In this dissertation 

research, the selection of field sites at the Mazar Wildlife Reserve provided a space-for-time 

representation of the potential effects of different types of land-use change on the interaction 

between soil moisture and soil carbon-cycle processes. Modern technology and the rapidly 

growing human population continue to drive accelerated rates of land-use change. Through a 

space-for-time approach, the effects of rapidly changing land uses on ecosystem processes can be 

assessed to predict the effects of plans for future land-use change. In this capacity, the space-for-

time approach can be useful for land management decision-making without long-term, field-

based studies, which require substantial resources, both in terms of equipment and time. The 

space-for-time substitution strategy used here has allowed for the identification and prioritization 

of meaningful lines of long-term research to better understand the interaction between soil 

moisture and soil carbon processes in Ecuadorian páramo grasslands. In a very different 

environment, the collection of soil moisture and soil-carbon-related data during the first few 

years of the Little River Unit constructed agricultural wetlands development laid a foundation for 

a long-term study that could provide a better understanding of soil carbon processes over time in 

constructed agricultural wetlands.  
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