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ABSTRACT 
 
INTRODUCTION: Consumer-based physical activity (PA) monitors are increasingly 
common, and must be validated against criterion measures to determine which models 
are accurate. Such studies will aid PA intervention research and individual consumers 
purchasing these devices. METHODS: Thirty participants (mean ±[plus or minus] SD; 
age, 25.5 ± 3.7 years; BMI, 24.9 ± 2.6 kg/m2[meters squared]) completed a structured 
PA routine including 11 activities ranging from sedentary behaviors to vigorous 
intensities. During the routine participants wore an Oxycon portable calorimeter 
(criterion measure of energy expenditure (EE)), a Basis Peak and Garmin Vivofit on the 
non-dominant wrist, and three Withings Pulse devices (right hip, shirt collar, dominant 
wrist). Two repeated measures ANOVAs were used to examine differences between the 
Oxycon and predicted EE from each monitor, and also examine differences between 
three Withings placements. Intraclass correlation coefficients (ICC) was calculated to 
determine reliability of EE predictions between Withings placement sites. Paired 
samples T-tests were used to determine mean differences between directly observed 
minutes of structured walking, running, and cycling compared to Basis Band predictions. 
RESULTS: The Basis Peak was the only device not significantly different from 
measured gross EE for the entire PA routine (P>[is greater than]0.05), however it had 
large individual error (95% prediction interval, -290.4 to +233.1 kilocalories (kcals)). All 
devices were significantly different from measured EE for at least eight individual 
activities (P<[is less than]0.05); Basis (mean error range: 0.4-24.9 kcals, 3.1%-92.8%), 
Garmin (0.65-32.5 kcals, 4.3%-78.4%), Withings wrist (0.8-34.7 kcals, 5.4%-69.8%), 
Withings collar (0.6-29.0 kcals, 4.6%-69.9%), and Withings hip (0.9-29.0 kcals, 6.5%-
69.9%). Withings ICC ranged from 0.085-0.558. The Basis Peak correctly identified ≥[is 
greater than or equal to] 92% of directly observed minutes during treadmill walking, 
over-ground walking, and over-ground running (P>0.05). However, only 40.4% of over-
ground cycling minutes were correctly identified and no stationary cycling minutes were 
identified (P<0.001). CONCLUSION: The Basis Peak had the most accurate EE 
predictions, on average, for the entire PA routine. The Withings Pulse hip and shirt 
collar predictions are most similar, but inaccurate compared to the criterion. The Basis 
Peak activity identification function accurately predicts minutes spent walking and 
running, but not cycling. 

 
Key Words: Accelerometer; Physical Activity; Objective Monitoring; Indirect 
Calorimetry; Validation, Activity Recognition   
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CHAPTER I: INTRODUCTION 
 

Physical activity (PA) is an important component of health. It is well documented 

that PA decreases risk of developing cardiovascular and metabolic disease (1, 4), and 

increasing daily PA reduces the risk of chronic disease (38). The 2003-2004 National 

Health and Nutrition Examination Survey indicates that less than 5% of adults in the 

United States are obtaining the recommended amount of PA (as assessed by 

accelerometry) (64). When this was reported in 2007, the CDC and ACSM PA public 

health recommendations were to accumulate at least 30 minutes of moderate intensity 

PA on at least five days a week (43). 

The study of PA in large populations has historically used subjective self-report 

measures (18). Such studies have provided valuable information to public health 

researchers, assessed compliance with PA recommendations, and informed the 

development of current PA guidelines (25, 60). Investigators have shown less than 

acceptable validity and reliability (<0.50 correlation with objective measures) across 

many different self-report measures (33, 54). Advances in technology have allowed 

researchers to rely less on self-report in favor of objective monitoring (e.g. 

accelerometers) to assess PA. Prediction equations associated with research 

accelerometers are extensively validated in the literature, and are used to track time 

spent in light, moderate, and vigorous PA intensities, as well as total daily energy 

expenditure (EE) (13, 20, 28, 35, 48, 65). Validation studies often include structured 

activity and predominantly use gas exchange analysis as the criterion measure of EE. 

Validation of prediction formulas have been conducted with the ActiGraph (13, 48), 

GENEActiv (20), Actical (28), and Tritrac RT3 (65) accelerometers.  
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When combining goals and PA log, consumer-based monitors can help produce 

increases in PA for previously sedentary adults. The device itself does not cause an 

increase in PA, but could be used as a tool for PA-based prevention of chronic disease 

(39). These devices have been included in recent PA research (2, 8, 12, 21, 30, 31, 58, 

63), and have become common in the market. Given their increasing use, validation of 

these devices is essential to ensure researchers are obtaining accurate and reliable PA 

data.  

Various methods have been used to validate PA monitors. Some research 

protocols use structured activity bouts with standardized work rates and intensities for 

all participants. These methods accommodate laboratory-based criterion measures of 

EE such as direct calorimetry (whole-room calorimetry) and indirect calorimetry (gas 

exchange analysis), but are less representative of normal daily activity. Other validation 

methods use unstructured activity bouts where participants self-select work rates and 

intensities, which resembles normal daily activity more than structured protocols. 

Validation using free-living activity involves the least amount of researcher intervention, 

and most closely represents normal daily activity. Common criterion measures of EE 

include portable indirect calorimetry, doubly labeled water, and direct observation. While 

doubly labeled water is very accurate, it cannot measure intensity or duration of activity, 

and data must be collected for weeks at a time. Portable indirect calorimetry is a 

validated measure of EE (19, 37, 44, 46) that can measure PA intensity. These devices 

allow participants to move about with minimal restriction, and data can be collected over 

a short (<1 day) period of time.  
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Noah and colleagues (41) conducted a validation study assessing predicted EE 

of the Fitbit Tracker, Fitbit Ultra, and Actical activity monitors, using portable calorimetry 

as a criterion measure. This study had five structured activity bouts, each six minutes in 

length, consisting of one seated resting measure, three treadmill activity bouts (3.5 mph, 

0% incline; 3.5 mph, 5% incline; 5.5 mph, 0% incline), and a bout of stair stepping. The 

findings indicate that all devices had significant differences in mean estimated 

kilocalories (kcals) (P<0.006); mean error ranging from 8.9% - 48.6% across all devices 

(41). Dannecker and colleagues (17) conducted a validation study of several devices 

using whole-room calorimetry as an EE criterion measure, and found that during both 

structured and various unstructured activities the Fitbit Tracker underestimated EE, on 

average, by 136.2 kcals ( 27.3%) compared to whole room calorimetry (P<0.001). 

These study results suggest that some consumer-based PA monitors may 

underestimate EE as compared to criterion measures. 

The Basis Band is a consumer-based activity monitor that has been included in 

only one validation study. Lee and colleagues (32) found the first generation of this 

device (Basis B1) underestimated EE, on average, by 24% when compared to portable 

indirect calorimetry. During a 69 minute PA routine the B1 estimated 271.1 kcals for 

total EE, while the portable indirect calorimeter measured 356.9 kcals total EE, a mean 

difference of 85.5 kcals. The BodyMedia FIT, Philips DirectLife, Fitbit One, Jawbone 

UP, NikeFuel Band, and ActiGraph GT3X+ underestimated EE, on average (1.9% - 

10.2%). The Fitbit Zip was the only device that overestimated EE (3.7%). In this study, 

the Basis B1 was placed on the right wrist for all participants, while the two other wrist-

worn monitors (DirectLife and Jawbone UP) were placed on the left wrist. The Basis B1 
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manufacturers state that their monitor should be worn on the non-dominant wrist; since 

the majority of individuals are right-handed, the placement of this device was likely 

inconsistent with manufacturer specifications for a majority of participants. This may 

have been a source of error in the Basis Band estimates obtained by Lee and 

colleagues. Additionally this device has a novel activity identification function that was 

not validated by Lee and colleagues; it can identify minutes spent walking, minutes 

spent running, and minutes spent cycling. 

The Garmin VivoFit and Withings Pulse are new activity monitors that have been 

included in few, if any, validation studies. The VivoFit is a wrist-worn device, and the 

Pulse can be worn on a hip, a wrist, or clipped to a shirt collar. The VivoFit and Pulse 

both display a cumulative EE value and do not report minute-by-minute data, in contrast 

to the Basis Band and research accelerometers. As many consumer-based devices are 

unable to report minute-by-minute data, validation studies must be designed to 

accommodate this limitation. Given these limitations, a validation study of the VivoFit 

and Pulse is not feasible with traditional methods that use minute-by-minute data to 

calculate point estimates of steady state EE. However, a feasible method is to subtract 

cumulative EE values displayed at the end of an activity bout from values reported at 

the beginning of a bout.  

In the time since Lee et al. (32) examined the Basis B1, a second generation 

model has been released (Basis Peak) and the previous model is no longer 

manufactured. No published study to date has included the second generation Basis 

Peak. Further studies are needed to establish the accuracy of the Basis Band EE 

estimation function, and to examine the Basis Band’s activity identification function that 
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was not included in the previous validation study (32). The Withings Pulse has been 

included in only one validation study to date (21), and the Garmin VivoFit has not been 

included in any studies to date. Therefore, a study validating EE estimates provided by 

the Basis, VivoFit, and Pulse could provide useful information to both researchers and 

consumers.  

Statement of the Problem 

Validation studies of research accelerometers have traditionally used structured 

activity bouts and point estimates of steady state EE data to validate prediction formulas 

associated with the devices. Although many consumer-based PA monitors update EE 

estimates every minute, most do not provide access to minute-by-minute data, and thus 

a validation study must be designed to accommodate this limitation. Previous validation 

studies have found that most consumer-based monitors underestimate EE, and these 

inaccuracies can mislead consumers who wish to use such devices for EE estimation. 

Currently there is very little research on the validity of EE estimates provided by 

consumer-based PA monitors, meaning there is a lack of information available for those 

choosing a PA monitor for research studies or individual consumer use. Therefore, both 

researchers and consumers can benefit from a validation of the newest consumer-

based monitors.  

Statement of Purpose 

The first purpose of this study is to examine the accuracy of EE estimates 

provided by consumer-based activity monitors during a structured PA routine. Devices 

will include the wrist-worn Basis Band and Garmin VivoFit, as well as three Withings 

Pulses worn on the wrist, shirt collar, and right hip. The second purpose is to investigate 
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the relationship of Withings Pulse EE estimates between three placement sites. The 

third purpose is to determine whether the Basis Band correctly identifies the number of 

minutes spent in structured walking activity, running activity, and cycling activity. 

Research Questions 

Question 1: During a structured activity routine, are EE estimates from the Basis Band, 

Garmin VivoFit, and Withings Pulse valid compared to a criterion measure of 

EE? 

Hypothesis 1: Compared to portable indirect calorimetry, all consumer-based monitors 

will provide statistically significant mean differences in EE estimates during a 

structured activity routine. 

Question 2: Does the Withings Pulse provide different EE predictions among three 

placement sites? 

Hypothesis 2: The Withings Pulse will provide statistically significant differences among 

three placement sites. 

Question 3: Does the Basis Band correctly identify minutes spent in structured walking 

activity, structured running activity, and structured cycling activity during the PA 

routine? 

Hypothesis 3a: The Basis Band will not correctly identify all minutes spent in walking 

activity. 

Hypothesis 3b: The Basis Band will not correctly identify all minutes spent in running 

activity. 

Hypothesis 3c: The Basis Band will not correctly identify all minutes spent in cycling 

activity. 



 

 7 

Delimitations 

1. Participants shall be between 18-65 years  

2. Participants must be able to answer “No” to all questions on a PAR-Q.  

3. Participants will be excluded if they are obese, pregnant, or have orthopedic or 

musculoskeletal issues that would limit activity.  

4. Participants must be able to run at five miles per hour on a treadmill for five 

minutes.  

5. Participants will be asked to abstain from alcohol and vigorous exercise for 24 

hours prior to lab visits, and will be asked to abstain from eating and caffeine 

consumption in the four hours preceding lab visits.  

Limitations 

1. It is assumed that participants will follow guidelines for alcohol, exercise, eating, 

and caffeine consumption guidelines, though some participants may not follow all 

guidelines and could therefore affect EE measurement.  

2. Participants will be exposed to some risk inherent to vigorous intensity PA, and 

are expected to answer the PAR-Q truthfully.  

3. Weather and campus events may interfere with outdoor activities.  

4. Reasonable time commitment for participants will limit the total duration of data 

collection; data should be collected within one hour and thirty minutes.  
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CHAPTER II: REVIEW OF LITERATURE 

Introduction 

 PA is any body movement that requires skeletal muscles to contract, therefore 

increasing EE above resting value (3). Physiologists and epidemiologists measure PA 

and EE in research, and find important relationships between low levels of PA and 

chronic disease. Sesso et al. (53) found that total PA and vigorous PA offer a significant 

reduction in risk of coronary heart disease in middle-aged and older men. The 

importance of PA is well documented, however decreases in total PA have been 

observed, driven by decreases in  work-related PA, transportation-related PA, and PA in 

the home (7). At the same time, obesity rates have risen in all segments of the 

American population (42). Troiano and colleagues examined PA in a probability sample 

of 6,329 Americans, and found less than 5% of adults accumulate 30 minutes of 

moderate intensity PA on at least five days a week (64).  

Troiano and other researchers use both subjective and objective methods to 

estimate PA and EE. These methods are validated against criterion measures such as 

doubly labeled water and calorimetry. The most common objective estimates of PA and 

EE use accelerometer based PA monitors. Most research-grade activity monitors are 

not suitable for the average individual; they are marketed to research professionals, 

provide data that is not as useful to an individual consumer, and require software that is 

often prohibitively expensive for consumers. Consumer-based devices are marketed to 

the public for personal PA tracking, and have recently appeared in PA studies (39), 

though there is limited research available examining the validity of such devices. The 

purpose of this literature review is to examine various methods of PA and EE 
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measurement, validation of these methods, and the role of consumer-based devices in 

research and consumer use.  

Measurement of Energy Expenditure 

Doubly Labeled Water 

 The doubly labeled water method is the gold standard for measurement of free-

living EE. Doubly labeled water was originally developed for use in animals, and in the 

past 50 years has been adapted for use in humans. In this method, the 2H18O form of 

water is administered in a loading dose that comes to equilibrium with normal water in 

the body. Fluid, most commonly urine, is periodically sampled to determine the 

excretion rates of each isotope of the 2H18O. The 2H isotope is excreted only in water, 

while the 18O isotope is excreted in water and carbon dioxide (CO2). The difference in 

excretion rates between the two isotopes can be used to measure the amount of CO2 

produced, which is directly related to EE.  

The doubly labeled water measure is typically used over a period of one to three 

weeks, and is used to measure EE during free-living activity. The accuracy of this 

measure is within 2%-8% of actual EE (kcals), and depends on dose, number of 

samples, and length of data collection (52). Doubly labeled water cannot provide a 

measure over intervals of a few days or hours or be used to measure intensity, and only 

total daily EE can be reported. In order to measure EE over a shorter period of time, 

other methods such as direct and indirect calorimetry must be used. 

Room Calorimetry 

 Room calorimetry measures a participant’s EE in a closed system. This method 

uses an insulated room equipped with an isothermal, heat sink, convection, or indirect 
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gas measurement system. Data from these systems are used in prediction equations to 

calculate EE from a measure of heat energy produced, or oxygen (O2) consumption and 

CO2 production. This method is very accurate but can be expensive, costing upwards of 

$1,000,000, and they require a full-time technician to maintain and operate the system 

(34). Sampling periods vary, less than five minutes is needed with isothermal systems, 

and ten to twenty minutes is required for heat sink and convection systems (34). Room 

calorimetry has been used as a criterion measure of EE in validation studies of 

accelerometer prediction equations, but is limited by physical confinement of 

participants to a small room. 

Indirect Calorimetry  

 This method measures inspired and expired O2 and CO2, giving a value for 

oxygen consumption and CO2 production. From the ratio of O2 consumption to CO2 

production (41), stoichiometric calculations are applied to the oxidation reactions of 

each substrate, from which rate of energy production can be calculated (22). Metabolic 

carts are common in exercise testing and EE measurement of PA, but are not portable 

thus limiting their use to the laboratory. Some portable devices that use indirect 

calorimetry, such as the Cosmed K4b2 and Oxycon Mobile, have been validated as a 

method of EE measurement (19, 37, 44, 46). Portable devices offer the advantage of 

moving about with minimal restriction. These devices use a facemask with tubes 

connected to a small gas analyzer strapped to a participant’s torso, and can be used to 

collect EE data in free-living situations. 
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Oxycon Mobile 

The Oxycon Mobile (CareFusion Corp, San Diego, CA) is a portable indirect 

calorimeter that provides measures of oxygen consumption (VO2) and carbon dioxide 

production (VCO2). The device has two units measuring 126 x 96 x 41 mm each, and a 

total weight of 950 grams (including backpack, battery, and mask). Gas measurement 

from the unit has ≤3% error for VO2 and VCO2, with a sensor range of 0-7 L/min. It uses 

a compact volume sensor that is insensitive to humidity, is guaranteed to be precise 

between -10 and +50 degrees C, and has ≤2% error. Breath-by-breath data are 

collected, and can be summed to intervals ranging from five seconds to one minute. 

VO2 and VCO2 are used to calculate respiratory exchange ratio (RER), from which EE 

(kcals) can be determined. EE is calculated by multiplying VO2 (L/min), the RER caloric 

equivalent value, and time. Referent RER caloric equivalence tables are widely 

available in published textbooks. This device has been shown to be valid compared to 

the Douglas Bag method (44) and a lab-based metabolic cart (42). 

Measurement of Physical Activity 

Self-Reporting Methods 

  Self-report measures have historically been used in PA studies, though these 

measures are subjective. Relying on personal recall can result in reporting error, which 

could affect study outcomes. Lee and colleagues (33) conducted a systematic review of 

validation studies on a widely used self-reporting measure, the International Physical 

Activity Questionnaire short form (IPAQ-SF). The researchers sought studies comparing 

the IPAQ-SF to objective measures such as accelerometers, doubly labeled water, and 

absolute fitness measures. They found varying but similar results across studies, with 
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correlations to objective measures of total PA ranging from 0.09 up to 0.39. The IPAQ-

SF mostly overestimated PA level, in the range of 36% to 173%. These results indicate 

the IPAQ-SF is a weak indicator of both absolute and relative PA (33). 

 R. J. Shephard (54) conducted a thorough review examining the limits of many 

questionnaires that are used to assess PA. Questionnaires were qualitatively analyzed 

based on primary elements of assessment such as activity type, intensity, frequency, 

duration, and aerobic vs. resistance activities. Other elements examined include level of 

detail in questionnaires, length of assessed period, respondent classification or 

categorization, and respondent supervision during surveys. Reliability is reported as 

test-retest correlation, ranging from 0.3 to 0.88 across various studies, and trended 

towards lower correlation as time between test and retest increases. This research also 

reports validity of many questionnaires in a variety of populations; Pearson correlations 

(R) with doubly labeled water ranged from R=0.57 to R=0.79 and correlations with 

accelerometers or pedometers ranged from R=0.22 to R=0.78. The author conclusively 

notes that quantitatively interpreting data from questionnaires is not advisable (54).  

Accelerometer Methods 

 Accelerometer-based activity monitors are now a common objective measure of 

PA in research. Raw acceleration data collected by an accelerometer is interpreted 

using prediction equations, and provides researchers with data related to EE and time 

spent in sedentary behaviors and light, moderate, and vigorous PA. These devices are 

prevalent in PA studies and there is much research supporting the validity of associated 

prediction equations for PA and EE.  
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Accelerometer-based activity monitors consist of a micro electro mechanical 

system (MEMS) that senses the energy of motion and converts it to another measure 

(voltage) which is then stored as a raw acceleration data in the device’s memory (10). 

Raw data is filtered with frequency parameters, then prediction equations are applied to 

provide meaningful data on PA and EE. The newest devices use piezoresistive MEMS 

that exhibit an electrical charge differential in response to mechanical deformation from 

acceleration, which is detected by a differential capacitance sensor, then recorded as 

raw data (10). Most current activity monitors incorporate three accelerometer MEMS 

orthogonally oriented to provide data in three exes. Post-processed data is almost 

universally reported as counts per epoch (e.g. counts per minute), though differences in 

proprietary frequency filtering can lead to different counts between devices given the 

same raw acceleration signal (10). These differences prevent researchers from 

comparing counts from studies using different devices.  

Many early studies of activity monitors yielded EE prediction equations (14, 23, 

61). Linear approaches have used the correlation coefficient between counts per epoch 

and EE measured by calorimetry, whereas nonlinear approaches have been developed 

using power parameters or logarithmic function. Nonlinear regression could possibly be 

more accurate for activities that have been shown to have nonlinear correlation between 

EE and intensity (9, 11). 

 Machine learning algorithms have also been developed to predict EE from 

activity monitors. Computer-based pattern recognition uses computers in statistical, 

syntactic, or neural approaches to classify data (5). Machine learning algorithms can 

classify continuous outcome variables (e.g. EE) with regression analysis, as well as 
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categorical classification using statistical clustering (e.g. time spent in sedentary, light, 

moderate, and vigorous PA) (49, 57). 

Validation of Activity Monitors 

 Validation methods vary greatly in criterion measures and activity protocols used. 

Indirect calorimetry is a commonly used criterion method in validation studies as it can 

provide minute-by-minute measures of EE as well as time spent in sedentary behavior 

and light, moderate, and vigorous PA intensity. For longer duration measurements of 

one to three weeks, the gold standard of doubly labeled water is used for a precise 

criterion measurement of total EE.  

 In a review paper on research-based devices, Plasqui and colleagues (45) 

focused on free-living studies that used doubly labeled water as a criterion measure of 

EE. The researchers limited to studies conducted since 2007, 25 articles were chosen 

for final inclusion in their review. Eighteen accelerometers were identified: BioTel 3dNX, 

Accusplit AX-120, ActiGraph models 7164 and GT1M, Dynastream AMP-331, Actiheart, 

ActiReg, BodyMedia SenseWear Pro and Mini, ActivPAL, GENEActiv, Suzuken 

Lifecorder, Minisun IDEEA, New Lifestyles NL-2000, Tritrac and Tritrac RT3, Tracmor 

and TracmorD. Diverse population samples were represented in these studies and 

included healthy adults of various nationalities, normal and overweight youth, clinical 

patients, pregnant and non-pregnant women, monozygotic twins, and critically ill 

children.  

Plasqui et al. found wide variability in correlation of EE and PA level derived from 

doubly labeled water with corresponding estimates from activity monitors. R-values 

ranged from 0.17 to 0.91.  The Actiheart total EE estimates demonstrated high 
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correlation to doubly labeled water in normal and overweight youth age five to eighteen 

years, with  R=0.86–0.91. The ActivPAL also demonstrated activity EE estimates that 

were highly correlated to doubly labeled water in cancer patients and healthy controls, 

with R=0.72–0.89. The Sensewear Pro3 and Mini provided total EE and activity EE 

estimates that were moderately to highly correlated with doubly labeled water in 30 

healthy adults, with R=0.71–0.82 and 0.69–0.84, respectively. The Tracmor activity EE 

estimates also demonstrated high correlation to doubly labeled water in seven critically 

ill children, with R=0.85. The authors acknowledge that several factors that could affect 

the validity of a device, including research goals, population to be studied, outcome 

variables desired, budget concerns, and activity patterns of participant populations. This 

diversity of factors affecting validity helps explain why activity monitors are often 

validated for specific populations, and in certain PA situations such as structured, 

unstructured, or free-living activity.  

ActiGraph 

 The most current ActiGraph device is a small, lightweight (14 grams), and water 

resistant model called the ActiGraph GT9X Link. It can record and store raw 

acceleration data at a frequency ranging from 30-100 Hz, and has  gigabytes of 

memory. To initialize or download data from an ActiGraph, the manufacturer provided 

Actilife software is required. The ActiGraph and its associated cut-points or prediction 

formulas are the most heavily validated of research-based activity monitors, with 

application in a variety of populations (45). 

 Crouter, Churilla, Bassett (13) conducted a study on validity of select published 

EE prediction equations related to three research-based accelerometers (ActiGraph, 
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Actical, and AMP-331). This study had 48 participants, included three structured activity 

routines for data collection, and used a criterion measure of portable indirect calorimetry 

(Cosmed K4b2). Activity routines consisted of six bouts, each ten minutes long, with a 

one or two minute break between bouts. Most participants completed only one routine, 

and each routine was completed by at least 20 participants. Multivariate analyses were 

conducted to compare measured EE to predictions given by each equation. 

Comparisons were conducted on EE predictions from each activity bout, as well as 

predicted EE over the entire activity routine. No prediction equation was found to 

accurately predict EE in all activities; furthermore all equations provided significant 

underestimations of time spent doing vigorous intensity activities. (P<0.05). Some 

prediction equations provided close estimates for certain activities, with over- or 

underestimates for other activities. For example, the Freedson 1998 equation (23) was 

developed using walking and jogging activities, and it predicts those activities well, 

however it tends to underestimate other activities. The authors note that prediction 

equations are valid during activities they were developed with (13). 

Rothney and colleagues (48) validated the 2006 Crouter 2-regression hip model 

(C2RM) (13) for predicting EE with the ActiGraph GT1M; criterion measures included 

whole room indirect calorimetry and doubly labeled water. This study collected data on 

34 healthy adults aged 20-67 years for the room calorimetry analysis, and a subset of 

22 participants were used for the doubly labeled water analysis. Data was collected 

during free-living activities lasting about 24 hours in the room calorimeter, with 14 days 

of data collection for the doubly labeled water protocol during which participants also 

wore the ActiGraph. Results indicated that during waking hours spent in the room 
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calorimeter C2RM significantly overestimated (P<0.001) total metabolic equivalents 

(METs; 1 MET=3.5 ml/kg/min VO2), but applying a low pass five point median filter 

altered C2RM estimates to a non-significant difference (P=0.419). Results showed that 

applying the low pass filter to C2RM predictions provided significantly lower mean 

differences from doubly labeled water values (P<0.001) compared to unfiltered 

predictions (48). 

Accelerometers are used to assess sedentary behavior, an important outcome 

measure in PA research. Certain aspects of sedentary behavior can be difficult to 

assess with self-reporting; short (i.e. less than five minutes) breaks in sedentary time 

are more easily tracked with activity monitors. Kozey-Keadle and others (29) compared 

the ActiGraph GT3X predictions of sedentary time, using the low frequency extension 

filter and one second epochs, to a criterion of direct observation. ActiGraph sedentary 

cut-points of less than 50, 100, 150, 200, and 250 vertical axis counts per minute were 

examined in order to determine which had the highest validity for assessing time spent 

in sedentary behavior. Researchers recruited twenty (five male and fifteen female) 

overweight and obese (more than 25 kg/m2) participants who were at least 25 years of 

age. Two conditions (one week each) were assessed: first a baseline measure during 

which participants were asked not to change current PA level, then a measure during 

which participants were advised of daily sitting time reduction strategies. During one day 

of each condition, trained research assistants conducted direct observation at the 

participants’ place of work, each measure lasting six continuous hours. Results 

indicated the 150 counts per minute cut-point was most valid for predicting sedentary 
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minutes when compared to direct observation, with a 1.8% bias (-0.9 minutes) and a 

95% confidence interval ranging from 14.1 to 15.9 minutes (29). 

In a recent validation study, Lyden and colleagues (35) evaluated nine published 

EE prediction equations for the ActiGraph and Actical, as well as two proprietary 

equations for the Tritrac RT3. The researchers recruited 277 participants with a mean ± 

standard deviation (SD) age of 38.3 ± 12.4 years and a BMI of 24.8 ± 4.2 kg/m2. Each 

participant completed a two-part activity protocol consisting of activity bouts lasting 

seven minutes, with four minutes of rest in between. The first part of the protocol was 

treadmill activities at 1.34, 1.56, and 2.23 meters per second; participants completed 

seven minutes of each speed at both 0% and 3% grade, in a randomized order. The 

second part included activities of daily living conducted at a self-selected pace; all 

participants ascended and descended stairs, and moved a six kilogram box, while two 

other activities were selected at random from a list of 14 activities that included cleaning 

a room, dusting, laundry, mopping, sweeping, vacuuming, washing dishes, painting 

gardening, mowing, raking, trimming, basketball, and tennis (35).  

The findings of Lyden et al. (35) agreed with their previously conducted research, 

which indicated the ActiGraph, Actical, and Tritrac RT3 cannot provide accurate EE 

predictions across a wide array of activities (35). It was shown that no prediction 

equation could accurately classify activities across the entire intensity spectrum (light, 

moderate, and vigorous). ActiGraph equations used in this analysis included the 

Freedson 1998 MET equation (23) and kcal equation, the Swartz 2000 equation (61), 

and the Crouter 2006 C2RM equation (13). The Freedson MET equation provided 

underestimations of EE for all activities of daily living, with a bias of -2.0 METs and a 
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95% confidence interval ranging from -0.8 to -0.7. The Swartz equation provides 

overestimates of EE for light intensity activities and underestimates of vigorous 

activities, and the C2RM most accurately predicted EE for activities in the 2.5-8.3 MET 

range. Findings from this study indicated linear regression modeling is most appropriate 

for predicting EE during activities they were developed with, and accuracy is lost when 

equations are used to predict EE during dissimilar activities. Importantly, the authors 

note the nonlinear C2RM has promising potential for discriminating locomotion from 

activities of daily life, and predicting EE accurately across the spectrum of PA intensity 

(35). 

 Sasaki and fellows (51) conducted a study to compare the older ActiGraph GT1M 

model to the newer GT3X model; 50 participants (28 men, 22 women; mean ± SD age 

26.9 ± 7.7 years; BMI ) in good health were recruited to complete walking and running 

activities on a treadmill. An Oxycon Mobile portable calorimeter was used as the 

criterion measure. Participants were asked to complete four stages; a 4.8 and 6.4 

kilometer per hour walk, as well as a 9.7 and 12 kilometer per hour run, with five 

minutes of rest between these stages. Data was excluded if the participant was unable 

to complete at least one minute of a treadmill stage, and stages with more than one 

whole minute of data were averaged for a mean counts per minute during the stage. 

Between the two ActiGraph models, researchers compared counts from the vertical 

axis, antero-posterior axis (62), and the vector magnitude of these axes (51).  

 The findings of Sasaki et al. (51) revealed significant differences in vector 

magnitude and vertical axis counts per minute between the two ActiGraph models 

(P<0.0125). The GT1M vector magnitude counts were significantly higher than GT3X 
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vertical axis counts, with a mean percent difference of 21% at 4.8 kilometers per hour, 

38% at 9.7 kilometers per hour, and 45% at 12 kilometers per hour. The authors 

mention that differences between GT1M and GT3X firmware could have contributed to 

differences in vector magnitude counts. Consistent with previous research, there were 

no significant differences found for vertical axis counts (51). This study illustrates the 

challenges one might face when trying to compare data between studies that use 

different ActiGraph models, and the authors suggest such comparisons be made only 

with vertical axis counts. 

Santos-Lozano and colleagues (50) conducted a validation study of existing 

ActiGraph prediction formulas and PA intensity cut-points, using a lab-based indirect 

calorimeter (Oxycon Pro metabolic cart) as the criterion measure. This study used a 

sample of 97 participants divided into three groups: youth, adults, and older adults. 

Each participant performed a structured PA routine during data collection. The PA 

routine began with ten minutes of rest, followed by four treadmill bouts (ten minutes 

each; three, five, seven, and nine kilometers per hour) with five minutes of rest in 

between, then ten minutes of a sit-stand-sit activity. The researchers examined 

accelerometer predictions of MET level during each activity as determined by the 

Sasaki equation (51), the work-energy theorem provided by Actilife software, and a 

model that combined the Freedson equation with the work-energy model. A repeated 

measures ANOVA was used to find within group differences in calorimeter and 

accelerometer derived METs during each activity, and BIAS was calculated as 

measured METs minus predicted METs, ± standard deviation. The results of the study 

indicated that the least accurate prediction formula was the work-energy theorem 
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applied to adults, with a BIAS of -1.856 ± 2.848. Results further indicated the most 

accurate prediction formula was the combined Freedson/work-energy theorem applied 

to children, with a BIAS of -0.053 ± 1.776. 

Swartz et al. (61) conducted a free-living validation of the CSA accelerometer 

using activity domains such as yardwork, family care, housework, recreation, 

occupation, and conditioning. Seventy participants were recruited, mean ± SD age 41 ± 

15 years, BMI 26.0 ± 5.4 kg/m2. A wrist-worn and a hip-worn CSA accelerometer were 

worn by each participant as they completed at least one, and up to six activities within 

each domain. Each domain had at least three individual activities, and researchers 

collected data for five to 12 participants per individual activity. The Cosmed K4b2 was 

used as a criterion measure of EE, and accelerometers were calibrated at the start, 

middle, and end of data collection. The purpose of the study was to calculate prediction 

algorithms and examine whether combining data from wrist and hip placements into a 

bivariate regression increases accuracy of EE predictions for the CSA accelerometer. 

Researchers found statistically significant improvement when analyzing data combined 

from both hip and wrist placements (hip, R=0.563, P<0.001; wrist R=0.181, P=0.003; 

both, R=0.586, P<0.001). However, it was concluded that the improvement was not 

great enough to warrant the additional time required for analysis and the added cost of 

one additional accelerometer. The authors also noted limitations to accelerometer use; 

they cannot identify different walking surfaces and cannot account for additional EE 

from walking with a load, pushing a weighted object, or ascending stairs.  

Strath and colleagues (59) examined the accuracy of five published prediction 

equations in a study of EE during free-living activity. Ten participants were recruited 
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(mean ± SD age 26 ± 3 years, BMI 24.4 ± 5.0 kg/m2) to complete a variety of free-living 

activities at work or home, with no intervention from the researchers present during data 

collection. Five to six hours of data were collected for each participant, and breaks were 

taken every two hours to change the Cosmed battery and allow participants to drink 

water. EE was converted to METs and each minute was classified by PA intensity; 

resting/light activity (<3 METs), moderate activity (3-6 METs), or hard activity (>6 

METs). Equations examined in this study include the Freedson 1998 equation (23), the 

Hendelman 2000 equations (walking only, all activities) (27), the Swartz 2000 equation 

(61), and the Nichols 2000 equation (40).  

Strath et al. (59) found the Freedson, Hendelman walking, and Nichols equations 

overestimated resting/light intensity (13%, 14%, 12%, respectively), and underestimated 

moderate intensity (60%, 60%, 55%, respectively). The Hendelman equation (all 

activities) underestimated resting/light intensity (29%), and overestimated moderate 

(120%). The Swartz equation had no significant mean differences for any PA intensity, 

but large individual error. These results indicate that no single prediction equation 

accurately predicted time spent in PA across all levels of intensity, and the authors 

noted large individual error for each equation examined.  

Another validation study of free-living EE (15) was conducted using the 

ActiGraph GT1M and the Cosmed K4b2 portable calorimeter. Twelve male and 17 

female participants (group mean ± SD; age 25 ± 4.6 years, BMI 25.0 ± 4.6 kg/m2) were 

asked to wear the ActiGraph and the Cosmed as a researcher followed them for five to 

six hours of either work and/or leisure-time apart from work. Activities included 

sedentary behavior, activities of daily living, recreational activities, and manual labor. 
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Breaks in data collection were required every two hours in order to change the battery 

on the Cosmed unit and to allow participants to drink water. The purpose of this study 

was to compare the Crouter 2006 C2RM equation (13), the Crouter 2010 equation (16) 

and the NHANES (64) and Matthews (36) cut-points with a gold-standard criterion 

measure of EE and time spent in sedentary behaviors, and light (1.5-2.9 MET), 

moderate (3-5.9 METs), and vigorous (≥6 METs) PA.  

Crouter et al. (15) found no significant differences for mean EE (METs) between 

the Cosmed and the Crouter 2010 equation during the entire six hours of measurement 

(P>0.05). The Cosmed measured a mean EE of 1.90 ± 0.68 METs and the Crouter 

2010 equation predicted 2.08 ± 0.77 METs. The Crouter 2006 equation predicted 2.32 ± 

0.84 METs, a 22% overestimation compared to the Cosmed. Predictions from the 2006 

equation were significantly different from both the 2010 equation and the criterion 

measure (P<0.05). The 2010 equation significantly underestimated time spent in 

sedentary behaviors by 20.8% (P<0.05), while it increasingly overestimated time spend 

in light, moderate, and vigorous PA by 9.5%-62.4% (P>0.05). The 2006 equation did not 

have significantly different estimates of time spent in sedentary behaviors and vigorous 

activity (P>0.05), but significantly underestimated light PA and overestimated moderate 

PA (34.4%, 76.5%, respectively; P<0.05). There were also significant differences 

observed between the two Crouter equations for light and moderate PA (P<0.05). Both 

NHANES and Matthews cut-points overestimated time spend in sedentary behaviors 

(9.9%, P>0.05; both) and underestimated time spent in vigorous PA (56.7%, P>0.05; 

both). These cut-points were also both significantly different from the Crouter 2010 

equation for time spent in sedentary behavior (P<0.05). A finding of practical importance 
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is the large underestimation of moderate PA by the NHANES cut-points. This means 

that previous work (64) may have underestimated the percent of Americans who meet 

the 2007 guidelines for moderate PA. Additionally, it was noted that the Crouter 2010 

equation may not have been a significant improvement of the 2006 equation, as the 

newer equation overestimated moderate PA by 44%. 

Consumer-Based Activity Monitors 

With an increasing number of consumer devices becoming commercially 

available (31), there is a need for researchers to provide information about their validity. 

Examples of these activity monitors will be listed and described below, concluding in a 

review of current validation studies examining selected devices.  

Basis Band 

 The Basis Band is a wrist-worn personal activity monitor with a digital readout. It 

weighs 44 g, measures 3.6 x 2.7 cm (W x H), and is 27.3 cm long. It has a triaxial 

accelerometer, an optical blood-flow sensor, two thermometers, and a galvanic skin 

response sensor. Data from these sensors are used to estimate non-activity heart rate, 

count steps per day, and predict EE. This device has a touchscreen surface that 

displays current time by default. Users can swipe the touchscreen in each direction to 

access watch functions and view data on heart rate and EE. Additionally this device is 

able to identify three activities: walking, running, and cycling. However, the 

manufacturer does not explain how these activities are identified. The original model is 

called the Basis B1 Band, and is no longer in production. The most current model is 

named Basis Peak, and has not yet been included in any published research.  



 

 25 

 After this device is charged for the first time, it must be initialized with a 

smartphone via Bluetooth in order to update firmware on the device. Users must create 

a profile within the application, and data is stored on the manufacturer’s server. 

Gender, age, height, and weight must be input when creating a profile, and each can 

be changed at a later time. Data syncing is possible with a computer via the USB 

docking station, or with a smartphone via freely available iPhone or android 

applications. The application provides minute-by-minute data on measures such as EE, 

heart rate, and steps. When using the device, the EE value displayed reflects the total 

daily EE value up to the current point in time. The touchscreen does not display minute-

by-minute data, so a researcher recorded EE values on a data sheet before and after 

each activity.  

Garmin VivoFit 

The VivoFit is a novel accelerometer based wrist-worn activity monitor that has 

not yet been included in any published validation research. It has a digital readout, is 

water resistant, and uses replaceable coin cell batteries for a one year battery life. It 

weighs 25.5 g, measures 2.1 cm x 1.05 cm, and comes with two options for wristband 

size (small, fits 12 to 17.5 cm wrist; large, fits 15.2 to 21 cm wrist). It estimates steps per 

day, combined distance walking and running per day, and EE. It is unclear if the device 

predicts distance separate from other activities, and the manufacturer does not release 

any information explaining how steps, distance, or EE are predicted.  

The software interface provided for use with the device is called Garmin Connect, 

a free application that can be downloaded to a computer or compatible smartphone 

(android, iPhone). An account must be created within the Garmin Connect application 
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and a user must input gender, age, height, and weight (each can be changed at a later 

time). The VivoFit has one physical button that scrolls through each measure (steps, 

distance, EE) and establishes a Bluetooth connection. To establish this connection, the 

Garmin Connect application must be installed on the phone or computer, the device 

must be within one foot of the phone or USB stick, and the button on the wristband must 

be held down for three seconds. When this device is charged for the first time, it must 

be initialized via Bluetooth to either a smartphone or a computer that has the provided 

Bluetooth USB stick plugged in. When using the device, the EE value displayed reflects 

the total daily EE value up to the current point in time. 

Withings Pulse 

 This accelerometer based activity tracker has been included in one validation 

study to date (21). It can be worn in a clip on either the hip or the collar area of clothing, 

on the upper arm, wrist, or placed in a pocket. The Pulse is small (4.3 x 2.2 x 0.8 cm), 

lightweight (8 g), uses an accelerometer to track EE, and has a fingertip heart rate and 

SpO2 sensor. This Withings Pulse estimates steps per day, elevation or distance 

ascended during hiking and walking up stairs, combined walking and running distance 

per day, net EE and heart rate. The software interface provided by the manufacturer is 

called Withings Health Mate, and it is freely available for android and iPhone.  

The Withings pulse has one physical button that scrolls through each measure 

(steps, elevation, distance, EE) and establishes a Bluetooth connection. To establish 

this connection, the Garmin Connect application must be installed on an iPhone or 

android smartphone and the device must be within a few inches of the phone. The user 

holds down the button for three seconds, and the word “sync” appears as the device 
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attempts a connection. When this device is charged for the first time it must be 

initialized via Bluetooth so the device can update its software. When using the device, 

the EE value displayed reflects the activity EE (total EE minus resting EE) value up to 

the current point in time.  

Validation of Consumer-Based Activity Monitors 

In a validation study that included many consumer-based activity monitors, Lee 

and colleagues (32) examined EE estimates over a 69 minute period of activity, using 

portable indirect calorimetry as a criterion measure. The activity protocol in this study 

was labeled as “free-living”, however length of each activity and order of activities were 

both structured. PA data were collected on 60 participants with a mean ± standard 

deviation (SD) age, 28.6 ± 6.4 years; BMI, 24.3 kg/m2 ± 2.6; body fat, 17.7% ± 6.2.  All 

participants concurrently wore the Basis B1 Band, BodyMedia FIT, Philips DirectLife, 

Fitbit One, Fitbit Zip, Jawbone UP Band, NikeFuel Band, and ActiGraph GT3X+ activity 

monitors along with an Oxycon Mobile 5.0 portable calorimeter. The outcome measure 

of gross EE was expressed in kcals. The statistical analysis incorporated equivalence 

testing to determine whether each activity monitor was significantly equivalent to the 

Oxycon.  

Mean absolute percentage error for the Basis B1 was the highest at 23.5%, 

compared to 9.3% (BodyMedia FIT), 10.1% (Fitbit Zip), 10.4% (Fitbit One), 12.2% 

(Jawbone UP), 12.6% (ActiGraph GT3X+), 12.8% (Philips DirectLife), and 13% 

(NikeFuel Band) (32). A 90% confidence interval for the Basis Band estimates of EE fell 

outside of the proposed equivalence interval (criterion mean +/- 10%) (32). These 

results indicate that, on average, the Basis B1 EE predictions are not statistically 
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equivalent to the Oxycon. One important factor than may have influenced this finding 

was that participants were instructed to wear the Basis Band on the right wrist. Basis 

states their device should be worn on the non-dominant wrist, so the device placement 

was likely incorrect for a majority of people.  

Stahl and Insana (56) compared the Fitbit to a self-report assessment called 

Community Health Activities Model Program for Seniors (CHAMPS). Results 

demonstrated a significant (P<0.05) correlation (R=0.61) when examining total daily EE 

estimates between the Fitbit device and the CHAMPS. The researchers concluded the 

Fitbit is able to make predictions that are acceptably correlative to a self-report PA 

measure (56), demonstrating the concurrently validity of the Fitbit compared to 

subjective methods currently in use. 

Takacs and colleagues (62) validated the Fitbit One step and distance estimates 

during treadmill walking at different speeds. Three devices were worn simultaneously in 

three alternate placements sites: left hip, right hip, and in the front pocket of the 

dominant leg. Thirty participants volunteered for the study, and each conducted one 

session of data collection. Participants walked for five consecutive minutes at each of 

five different speeds (0.90, 1.12, 1.33, 1.54, and 1.78 meters per second). Direct 

observation was used as a criterion measure for step count; two researchers counted 

steps during each participant’s session. The distance output from the treadmill served 

as the criterion for distance. Fitbit step counts were not significantly different from either 

direct observation counts (P>0.05) with concordance correlation between 0.97 and 1.00. 

Percent relative error for distance estimations was below 1.3% at each treadmill speed. 



 

 29 

The three Fitbits in different placement sites had a high interclass correlation 

coefficients (ICC) for estimates of both speed and distance (ICC≥0.94). 

Sieverdes and colleagues (55) recruited twenty five participants (twelve male and 

thirteen female) with a mean ± SD age of 27.6 ± 4.5 years and BMI of 22.4 ± 2.5 kg/m2 

to validate the Mywellness Key during two identical treadmill protocols. Participants 

were asked to warm-up with a two minute walk at 2.25 kilometers per hour, then five 

minute stages of walking at 3.22, 5.96, and 6.44 kilometers per hour, followed by a five 

minute stage of jogging at 7.24 kilometers per hour. All trials were performed at a 0% 

grade. A ParvoMedics Cart calorimeter was used as a criterion measure of EE. 

Pearson’s correlation was used to analyze inter-device reliability; researchers found 

R=0.95–0.96 for stages one, two, and three, and  R=0.79–0.84 for stage four 

(P<0.0001). ICC were used for inter-device reliability, for stages one through four 

ICC=0.993 (95% confidence interval =0.991–0.995). Pearson’s correlation was used for 

validity analysis; VO2 from the last two minutes of each stage was compared to a 

computed VO2 based on Mywellness Key’s average counts per minute over the last two 

minutes. Researchers found R=0.895–0.902 between these two variables (P<0.0001), 

indicating acceptable validity (55).  

Ferguson et al. (21) recently conducted a cross-validation study comparing 

seven consumer-based activity monitors with two validated research-grade monitors for 

measures of step count (ActiGraph GT3X+), moderate-to-vigorous PA (MVPA) 

(ActiGraph GT3X+), and EE (BodyMedia SenseWear). Twenty-one healthy adults (10 

male, 11 female) participated in this study, wearing each activity monitor over a 48-hour 

period. For step count, strong correlations were observed  when compared to the 
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Actigraph GT3X+ (R≥0.94; Nike FuelBand, Striiv, Misfit Shine, Jawbone UP, Withings 

Pulse, Fitbit Zip, and Fitbit One). For EE predictions compared to the SenseWear, 

correlations ranged from R=0.74-0.81. These results indicate some consumer-based 

monitors can make EE predictions similar to research-grade devices, however true 

accuracy of the consumer devices could not be established. This study did not use a 

gold-standard criterion such as portable indirect calorimetry, therefore the accuracy of 

consumer devices could not be examined.  

Consumer-Based Activity Monitors in Intervention Studies 

  Consumer-based activity monitors can be a useful tool for tracking PA and EE in 

intervention studies. Many consumer-based models are cheaper than research-based 

monitors, have user-friendly digital displays, and smartphone connectivity that allows 

users to easily sync data via Bluetooth. Meyer and Hein (39) expect them to play a role 

in reducing prevalence of cardiovascular disease by facilitating behavior changes that 

lead to increases in PA, resulting in lower risk of cardiovascular disease. With the 

continual advancement in wireless data integration, these devices are becoming 

integrated in social media, user experience is improving (31), and more individuals are 

using them. 

Meyer and Hein (39) recently examined the potential role of consumer-based 

activity monitors for PA tracking, gathering qualitative data on user experience, and 

comparison to subjective methods. The authors of this study used two devices 

concurrently, the Fitbit Ultra and the Garmin Forerunner 110, to collect three weeks of 

PA data on ten participants in northwestern Germany. The Fitbit was a clip-based model 

worn in a pocket or attached to clothing, and the Garmin Forerunner 110 is a wrist-worn 
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device with an integrated GPS unit that comes with a heart rate sensor mounted on a 

chest strap. The researchers conducted meetings before and after the three weeks, with 

phone and email correspondence held during data collection. Participants were given 

simple heart-healthy guidelines such as completing three weekly exercise sessions 

each at least 30 minutes in duration, obtain six to eight hours of sleep each night, and 

monitor these habits on a regular basis. After data collection, participants were 

administered a questionnaire with items such as a system usability scale for the PA 

monitors, a section on user experience and perceived effect on behaviors, questions 

regarding future potential for use, and a section asking for self-assessment of how well 

guidelines were followed (39).  

 Objectively assessed PA from Meyer and Hein’s study was reported as group 

mean ± SD or % of data within a given range. Results indicated steps per day averaged 

10,045 ± 3,243, and active minutes per day averaged 41.4 ± 22.2. Active minutes 

comprised 22%-31% of endurance training sessions. Subjective self-report of PA was 

recorded at the end of data collection using a four-point scale that asked participants to 

classify various PA measures (e.g. steps per day, daily activity minutes, and duration of 

sleep) into a range of four quartiles. The researchers found results agreed with previous 

research in that vigorous intensity PA had strong correlation between subjective and 

objective measures, and fair to moderate correlation between subjective and objective 

measures of moderate PA (39). The authors’ qualitative assessment of participants’ 

experience indicated that there was excitement about using the Fitbit and an 

appreciation for daily feedback on PA. Overall, participants reported positive feedback; 

the system helped track their activity and provided motivation for healthier behavior.   
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CHAPTER III: MANUSCRIPT 

INTRODUCTION 

Physical inactivity is detrimental to health, and in the U.S. it is considered the 

largest public health issue of the 21st century (5). Based upon objective measurement of 

physical activity (PA), it is estimated that less than 5% of U.S. adults meet the guideline 

of 30 minutes of moderate intensity PA on at least five days a week (64). Regular PA 

has been shown to reduce the risk of type II diabetes, heart disease, certain types of 

cancer, and even delay age-related decline in cognition and functional physical capacity 

(5). 

Objective monitoring can be a useful method to track PA and has been shown to 

help motivate sedentary individuals to increase their PA (63). Consumer-based PA 

monitors are a widely available form of objective monitoring; use of these devices is 

trending upwards, and they have been employed in a variety of research applications 

(2, 39). Different models of the Fitbit, one of the popular consumer-based monitors, 

have been included in numerous PA monitor validation studies (7, 16, 20, 23, 29, 31, 

41, 56, 58, 62). Other consumer-based devices represented in validation studies are the 

Nike FuelBand (7, 20, 23, 29, 58), Jawbone Up (7, 20, 29, 58), and Misfit Shine (20). 

Previous research finds some consumer-based activity monitors can accurately 

estimate energy expenditure (EE), with Pearson correlations (R) ranging from R=0.74-

0.81 observed between consumer monitors (Misfit Shine, Jawbone UP, Withings Pulse, 

Fitbit Zip and One) and a research-grade device (BodyMedia SenseWear) (20). EE is a 

common measure of PA provided by many consumer-based PA monitors, and there is a 

wide range of validity in EE predictions from these devices (16). For example, the Fitbit 
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and Fitbit Ultra have been shown to have high correlations to measured EE during 

walking and jogging; intraclass correlation coefficients (ICC) ranged from 0.56-0.72 and 

0.81-0.87, respectively (41). In contrast, other consumer-based monitors, such as the 

Basis B1 (first generation), have compared poorly to measured EE during 69 minutes of 

structured activities (R=0.136; mean absolute percentage error (MAPE), 23.5%) (31).  

With an increasing number of consumer-oriented monitors being released (30), it 

is important for researchers to validate these devices. To our knowledge the Basis Peak 

(second-generation) and the Garmin Vivofit have not been included in previous 

validation studies, and the Withings Pulse has only been included in one validation 

study (20). The Basis Peak has a function to identify time spent in walking, running, and 

cycling activities but this function was not examined in previous research. Additionally, 

the Withings Pulse manufacturer says their device can be worn anywhere, and previous 

research has not examined the effect of placement on EE predictions. Therefore, the 

primary purpose of this study is to examine the accuracy EE predictions from these 

consumer-based PA monitors, compared to a criterion measure of portable calorimetry, 

during structured PA. The second purpose of this study is to investigate the relationship 

of EE predictions among three placement sites for the Withings Pulse. The third 

purpose of this study is to validate the Basis Peak’s activity identification function, which 

estimates time spent walking, running, and cycling. 

METHODS 

Participants 

Twenty-eight participants (mean ± SD; age, 25.5 ± 3.7 years; BMI, 24.9 ± 2.6 

kg/m2) were recruited via word of mouth, flyers, email, and social media from The 
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University of Tennessee, Knoxville and surrounding areas. Exclusion criteria included 

pregnancy, obesity (BMI ≥ 30 kg/m2), orthopedic or musculoskeletal issues that would 

limit activity, or not being able to run on a treadmill for five minutes at 134.1 m.min-1 and 

0% incline. Upon visiting the lab, participants were given a verbal explanation of the 

study, and screened for exclusion criteria using the Physical Activity Readiness 

Questionnaire (PAR-Q). Prior to participation, participants signed an informed consent 

form. This study was conducted with approval from the University of Tennessee 

Institutional Review Board.  

Procedures 

Participants were asked to abstain from alcohol and vigorous exercise for 24 hours prior 

to data collection, and abstain from eating and caffeine consumption for four hours prior. 

Weight and height were measured in light clothing and no shoes, using a physician’s 

scale and stadiometer, respectively. Participants were fitted with a heart rate monitor, A 

Basis Peak and Garmin VivoFit on the non-dominant wrist, three Withings Pulse 

(dominant wrist, shirt collar, and right hip) and an Oxycon portable calorimeter. 

Participants were then asked to complete a structured PA routine consisting of 11 

activities that lasted a total of approximately 90 minutes. EE values from all activity 

monitors were recorded immediately before and after each activity. Participants were 

asked to complete ten minutes of supine lying rest and five minutes of the other 10 

activities, with a minimum of two minutes of transition time between activities. Activities 

were completed in the following order: 

1) Supine rest 

2) computer usage in a seated position 
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3) folding clothes in a seated position 

4) sweeping a floor 

5) treadmill walking at 80.5 m/min and 7% incline 

6) continuously ascending and descending stairs 

7) over-ground walking at a self-selected pace on a sidewalk, track, or in a gym 

8) over-ground running at a self-selected pace on a sidewalk, track, or in a gym  

9) seated rest 

10) over-ground cycling outside on a standard bicycle at a self-selected pace 

11) cycling on a Lode ergometer at 100 watts 

Devices 

Oxycon: The Oxycon Mobile (CareFusion Corp, San Diego, CA) is a portable indirect 

calorimeter that provides measures of oxygen consumption (VO2) and carbon dioxide 

production (VCO2). The device has two units measuring 126 x 96 x 41 mm each, and a 

total weight of 950 grams (including backpack, battery, and mask). Breath-by-breath 

data are collected, and can be summed to intervals ranging from five seconds to one 

minute. This device has been shown to be valid compared to the Douglas Bag method 

(46) and a lab-based metabolic cart (44). The device was calibrated before each test; 

procedures consisted of ambient air sampling, volumetric calibration with a 3 liter 

syringe, and gas calibration using a mixture of 16% O2 and 4% CO2. 

Basis Peak: The Basis Peak (Basis Science, Inc., San Francisco, CA) wrist-worn 

activity monitor is lightweight (44 grams), measures 3.6 x 2.7 cm, has a 27.3 cm 

wristband, and is water resistant up to 5 ATM. It has a battery life of 2-3 days, 

depending on use, and is charged through a docking station connected to a computer. 
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Sensors within this device include a triaxial accelerometer, two thermometers, an optical 

blood-flow sensor, and a galvanic skin response sensor. Data from these sensors are 

used to estimate heart rate, steps taken, and predict gross EE that are displayed on a 

touchscreen. Additionally, this device uses its sensors to identify how many minutes are 

spent in three activities: walking, running, and cycling. A profile was created with the 

MyBasis application using the researcher’s smartphone. The same smartphone was 

used to edit the profile for each participant; gender, age, height, and weight were 

modified, and then synced to the Basis device. All data is owned and stored on 

company servers, which was accessed via smartphone and computer-based web 

browser. 

Garmin VivoFit: The Garmin VivoFit (Garmin Ltd., Schaffhausen, Switzerland) is a 

water resistant wrist-worn activity monitor that weighs 25.5 grams and measures 2.1 cm 

x 1.05 cm. It includes two band sizes to accommodate wrist circumferences ranging 

from 12 to 21 cm, and utilizes a coin cell battery that provides up to a year of battery life. 

A digital readout displays estimates of steps taken, walking and running distance, and 

gross EE. A profile was created with the Garmin Connect application using the 

researcher’s smartphone. The same smartphone was used to edit the profile for each 

participant; gender, age, height, and weight were modified, and then synced to the 

Garmin device.  

Withings Pulse: The Withings Pulse (Withings, Issy les Moulineaux, France) is a small 

(4.3 x 2.2 x 0.8 cm), lightweight (8 grams) device that is not water resistant. Variables 

estimated include steps, walking and running distance, and net EE. This device does 



 

 37 

not require participant data to be entered prior to use, and can be worn on the hip, shirt 

collar, or either wrist.  

Data Processing 

Breath-by-breath VO2 and VCO2 from the Oxycon were used to compute EE, 

which was then averaged over a 15-sec period, and used as the criterion variable that 

the activity monitors would be compared against. EE data were analyzed for the entire 

PA routine, as well as for individual activities. Oxycon EE values were obtained for the 

entire routine (including transitions) by summing all 15-sec values. To examine EE 

during individual activities, rate of EE was calculated and presented as kilocalories 

(kcals) per minute. To calculate Oxycon kcals per minute for analysis of individual 

activities, steady-state EE data were required. Therefore, Oxycon data between minute 

2:30 to 4:30 were averaged to obtain criterion values for kcals per minute. To calculate 

consumer monitor kcals per minute, total gross EE predictions for each activity were 

divided by the activity duration.  

The activity monitor EE predictions for the entire routine were computed as the 

difference of values from the beginning of the PA routine to the end of the routine. 

Predictions for individual activities were computed by subtracting the EE value at the 

end of each activity from the EE value at the start of the activity. Since the Withings 

Pulse provides estimates of net EE while the Garmin VivoFit and Basis Peak estimate 

gross EE, we chose to convert all values to gross EE so a direct comparison could be 

made. Thus, basal metabolic rate (BMR) for each participant was calculated using the 

Harris-Benedict equation (25), which was added to the net EE value from the Withings 

Pulse for an estimate of gross EE.  
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Data for the Basis Peak identification of time spent in structured walking, running, 

and cycling minutes were obtained via the MyBasis app. The activity routine 

commenced on the minute according to the internal clock in the Basis, such that the 

Basis measures of time spent in structured activities could be compared to direct 

observation of these behaviors. All structured activity bouts were started on the minute, 

however not all bouts ended on the minute. To ensure only valid data were included, the 

first and last whole minute of each activity bout were excluded from this analysis. 

Statistical Analysis 

All analyses were conducted using IBM SPSS statistics software version 22 

(IBM, Armonk, NY). For all analyses, an alpha of 0.05 was used to denote statistical 

significance and data are presented as mean ± standard deviation. Repeated measures 

ANOVAs were used to examine differences between measured EE (Oxycon) and 

predicted EE from each consumer-based monitor. This was conducted for the entire PA 

routine, as well as for each structured activity. When necessary, within-subjects 

contrasts were used to determine where significant differences existed between 

measured and predicted EE values. Bland-Altman plots were created to show the range 

of each monitor’s individual error, using dashed lines to represent a 95% prediction 

interval (95% PI) and a solid line to represent the mean error score. Accurate devices 

will have a narrow 95% PI a mean error score close to zero. 

A separate repeated measures ANOVA was used to test for mean differences 

between the different Withings Pulse placement sites. This was completed for analyses 

of the entire activity routine. When needed, Bonferroni post-hoc testing was used to find 

which placements were significantly different. ICC was calculated to examine reliability 
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among the three Withings Pulse placements over the entire PA routine. Since any 

systematic differences between placement sites is important, all ICC tests were 

performed for absolute agreement. Excellent reliability is defined as ICC≥0.75; fair to 

good, 0.4≤ICC<0.75; and poor, ICC<0.4 (47). 

Paired samples T-tests were used to determine mean differences between 

directly observed minutes and Basis Peak identified minutes of treadmill walking, over-

ground walking, over-ground running, over-ground cycling, and stationary cycling.  

 RESULTS  

Physical characteristics of the participants are presented in Table 1. During 

analysis of individual activities, one participant’s Oxycon data was not retrievable due to 

downloading error. On some occasions, head movement during testing caused 

temporary occlusions in the Oxycon sampling line resulting in the exclusion of eight out 

of 297 individual activity bouts: over-ground running (3), seated rest (2), over-ground 

cycling (1), and stationary cycling (2) bouts. Data from the occlusions were also 

removed for analysis of the entire PA routine.  

 

Table 1. Physical characteristics of participants. Values are mean ± SD (range). 

 
Male (n = 20) Female (n = 8) All Participants (N= 28) 

Age (years) 26.3 ± 4.9 (21.5-33.8) 23.4 ± 1.9 (21.5-26.3) 25.5 ± 3.7 (21.5-33.8) 

Height (cm)   179.7 ± 5.2 (171.5-191.0)   165.9 ± 5.0 (157.5-173.0)   175.7 ± 8.1 (157.5-191.0) 

Weight (kg) 83.3 ± 8.4 (65.6-96.2) 62.3 ± 4.5 (56.2-68.8)   77.3 ± 12.2 (56.2-96.2) 

BMI (kg/m
2
) 25.8 ± 2.2 (21.2-29.9) 22.7 ± 2.5 (19.6-26.1) 24.9 ± 2.6 (19.6-29.9) 

BMI: body mass index. 

 

For the entire PA routine, there were significant differences between the 

measured EE and predicted EE from all activity monitors (P<0.05), except for the Basis 
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Peak (P=0.257; Table 2, Figure 1). On average, the Basis Peak predicted EE was 7% 

higher than measured EE. The Garmin VivoFit significantly underestimated measured 

EE by 44.8% (P<0.001) and all three Withings placement sites underestimated 

measured EE by 41.6%-64.4% (P<0.001). 

 

Table 2. Gross energy expenditure (kilocalories) and mean difference (device 
minus Oxycon) for entire physical activity routine. 
 

Device Mean ± SD Mean Difference ± SD P value 

Oxycon 407.8 ± 71.4 ― ― 

Basis Peak   436.5 ± 132.6    -28.7 ± 131.1    0.257 

Garmin VivoFit 225.0 ± 43.1 182.8 ± 44.6 < 0.001 

Withings Wrist 145.2 ± 17.4 262.7 ± 60.1 < 0.001 

Withings Shirt Collar 234.9 ± 31.6 172.0 ± 56.7 < 0.001 

Withings Hip 238.1 ± 31.3 169.8 ± 56.6 < 0.001 

 
 

Figure 1 shows the Bland-Altman plots for the gross EE during the entire PA 

routine. The Basis Peak had the lowest mean error for predicting EE (28.7 kcals), 

however it had large individual error; 95% PI, -290.4 to +233.1 kcals. Other devices had 

greater mean error (169.8-262.7 kcals), with less individual error; 95% PI, +93.8 to 

+271.8 kcals (Garmin VivoFit), +142.7 to +382.6 kcals (Withings wrist), +59.8 to +286.2 

kcals (Withings shirt collar), and +56.7 to +282.8 kcals (Withings hip).  

Table 3 shows the mean measured and predicted gross EE for all 11 individual 

activities. The Basis Peak significantly over- or under-estimated eight activities 

(P<0.05), with mean differences ranging from 0.3 to 24.9 kcals/min (38.1%-84.2%). The 

Garmin VivoFit significantly underestimated all individual activities except seated 

computer use (P>0.05), with mean differences ranging from 0.1 to 2.8 kcals/min (7%-

81%). (P<0.05). The Withings wrist placement significantly underestimated 10 individual  
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Figure 1. Bland-Altman plots of gross energy expenditure over the entire activity 
routine for A) Basis Peak, B) Gamin VivoFit, C) Withings Pulse wrist, D) Withings 
Pulse shirt collar, E) Withings Pulse hip. 
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Figure 1 continued 
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Figure 1 continued 

C 

D 



 

 44 
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Table 3. Mean ± SD measured and predicted gross energy expenditure (kcal/min) for each individual activity. 

Activity N Oxycon Basis Peak Garmin VivoFit Withings wrist Withings shirt collar Withings hip 

Supine lying rest 27  1.5 ± 0.3 1.2 ± 0.3* 1.4 ± 0.3*  1.2 ± 0.2* 1.2 ± 0.2* 1.2 ± 0.2* 

Seated computer use 27  1.8 ± 0.4 1.6 ± 0.6 1.7 ± 0.3 2.6 ± 0.4* 2.5 ± 0.3* 2.5 ± 0.3* 

Seated folding towels 27 3.1 ± 0.5 2.7 ± 0.5* 2.0 ± 0.4* 2.7 ± 0.3* 2.5 ± 0.3* 2.5 ± 0.3* 

Sweeping a floor 27  4.2 ± 0.8 2.8 ± 0.7* 2.5 ± 0.7* 2.8 ± 0.4* 2.5 ± 0.4* 2.6 ± 0.3* 

Treadmill walking 
(80.5 m/min, 7% incline) 

27  8.5 ± 1.6 10.1 ± 2.4* 4.2 ± 0.7* 3.4 ± 0.4* 5.6 ± 0.4* 5.7 ± 0.5* 

Up and down stairs 27 9.1 ± 1.3 10.3 ± 2.7* 4.1 ± 0.8* 3.9 ± 0.3* 7.2 ± 0.8* 7.3 ± 0.8* 

Over-ground walking 
(avg. speed 79 m/min) 

27  5.6 ± 1.1 10.3 ± 2.30* 4.2 ± 0.8* 3.5 ± 0.5* 5.7 ± 0.8 5.7 ± 0.8 

Over-ground running  
(avg. speed 150 m/min) 

24  13.7 ± 3.2 14.3 ± 2.6 10.8 ± 2.4* 5.2 ± 0.9* 13.5 ± 2.1 13.6 ± 2.0 

Seated rest 25 2.5 ± 0.7 2.6 ± 3.3 1.7 ± 0.3 2.4 ± 0.2 2.5 ± 0.5 2.4 ± 0.5 

Over-ground cycling 
(avg. speed 207 m/min) 

26  8.7 ± 2.6 5.4 ± 3.5* 3.2 ± 7.1* 1.2 ± 0.2*  2.8 ± 0.7* 2.8 ± 0.8* 

Stationary cycling 
(100 watts) 

25  9.2 ± 1.2 7.0 ± 5.1*  1.8 ± 0.6* 1.2 ± 0.2*  2.5 ± 0.4* 2.5 ± 0.4* 

* Significantly different from the Oxycon, P < 0.05 
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activities, with mean differences ranging from 0.8 to 8.5 kcals/min (43.2%-73.1%) 

(P<0.05). The Withings shirt collar and hip placements significantly over- or under-

estimated the same nine activities from 0.7 to 6.7 kcals/min (38%-73%). (P<0.05). 

Figure 2 shows predicted mean gross EE for each Withings Pulse placement site 

for the entire activity routine. For the entire routine, the shirt collar and hip placements 

were both significantly higher than the wrist placement (P<0.001) but not significantly 

different from each other (P>0.05). The shirt collar and hip placements had fair to good 

reliability (ICC=0.558, P<0.05). Pairs containing the wrist placement had poor reliability; 

wrist and hip ICC=0.085 and wrist and collar ICC=0.094 (P<0.05). For seated computer 

use, seated rest, and stationary cycling there were no significant differences between 

the three Withings Pulse placement locations (P>0.05). For all other individual activities, 

the shirt collar and hip placements were both significantly different from the wrist 

placement (P<0.001) but not significantly different from each other (P>0.05). 

 

Figure 2. Withings gross energy expenditure for the entire physical activity 
routine. Error bars represent standard deviation. * Denotes significant different 
from wrist location (P<0.05). 

* * 
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Figure 3 shows the percent of minutes correctly classified by the Basis Peak 

during treadmill walking, over-ground walking, over-ground running, over-ground 

cycling, and stationary cycling. For treadmill walking, over-ground walking and over- 

ground running, ≥ 92% of minutes were correctly classified (P>0.05). For over-ground 

cycling only 40.4% of minutes were correctly classified (P<0.001). Compared to direct 

observation, zero stationary cycling minutes were correctly identified (P<0.001).  

 

Figure 3. Basis Peak activity identification during structured bouts of walking, 
running, and cycling. *Denotes significant difference from measured time. 
 

 

 

 

* 

* 
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DISCUSSION 

The primary findings from this study are that: 1) The Basis Peak was the only 

monitor not significantly different from measured EE for the entire physical activity 

routine; however it had the largest 95% PI. 2) All devices performed poorly for 

estimating gross EE of individual activities. 3) For the entire routine and eight of 11 

individual activities EE predictions from the Withings Pulse wrist placement site were 

significantly different from the shirt collar and hip placement sites, while the shirt collar 

and hip placements were not different from each other. 4) The Basis Peak activity 

identification function correctly identified more than 90% of walking and running 

minutes, but could not accurately predict cycling, with zero stationary cycling minutes 

identified.  

The second-generation Basis Peak predictions of gross EE were, on average, 

similar to measured EE over the entire structured PA routine. This is a significant 

improvement compared to the first-generation Basis B1 (31). Previous findings showed 

the Basis B1 underestimated measured EE during a 69 minute PA routine by 85.8 kcals 

(MAPE=24%) and performed the worst compared to seven other devices. The best 

performers were the Bodymedia Fit (MAPE=9.3%) Fitbit Zip, (MAPE=10.1%) and Fitbit 

One (MAPE=10.4%) (31). Although improvements were observed in the current study, 

the Basis Peak EE predictions were significantly different from the Oxycon during eight 

individual activities, indicating this device does not accurately predict EE of individual 

activities. For individuals that wish to measure EE for specific activity bouts, this device 

is likely to provide over- or under-estimates.  
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The current study found that all three Withings Pulse placements and the Garmin 

VivoFit performed poorly and significantly underestimated measured EE for the entire 

activity routine, and predictions were significantly different for at least eight individual 

activities. These results indicate users of the Withings Pulse and Garmin VivoFit could 

be receiving incorrect information about their daily EE. The Basis Peak did not 

significantly under- or over-estimate EE, however it had a wide range of individual error, 

so users of this device may also be receiving incorrect information. Accurate daily EE 

estimates are required for individuals seeking weight loss through a caloric intake 

deficit. Weight loss is a common goal of many consumers who purchase PA monitors, 

and those who purchase the Basis Peak, Withings Pulse or Garmin VivoFit for this goal 

are likely recieving inaccurate daily EE estimates. Consumers should be cautious of 

using these devices for the purpose of estimating daily EE. 

The Withings Pulse device provided more consistent predictions between two of 

the three different placement sites (shirt collar, hip). The wrist placement was 

significantly different from either shirt collar or hip placements. If the same EE prediction 

algorithm is used for multiple placements of a single device on one individual, 

predictions will be different for each placement site. This effect was observed in the 

current study. The device literature did not explicitly state guidelines for placement; sites 

were chosen based on the device accessories (wristband, clip), as well as images from 

the manufacturer’s instruction booklet and website. No input of placement site was 

required for use, so the Withings Pulse could not have used a different algorithm for 

wrist, shirt collar, and hip predictions.  
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In a prior study of concurrent validity, the Withings Pulse EE predictions 

demonstrated strong correlation with a research-grade PA monitor, (20). In that study, 

the validated Bodymedia SenseWear was used as criterion to investigate EE 

predictions from five consumer-based monitors. This study found moderate to strong 

correlations with the criterion (Withings Pulse, MisFit Shine, Jawbone UP, Fitbit Zip, 

Fitbit One; R=0.74-0.81. (20). A study of concurrent validity between consumer-based 

and research-grade devices is limited because the criterion provides an estimate and 

not a measure of EE, therefore true accuracy cannot be determined for the consumer 

devices. Results from the current study indicate the Withings Pulse cannot accurately 

predict EE during many individual physical activities, when compared to indirect 

calorimetry. 

The Basis Peak accurately identified more than 92% of walking and running time, 

and could be used to help individuals estimate total weekly walking and running time. 

Such information helps individuals determine whether they meet PA guidelines. 

Accuracy of this function is limited to walking and running; the device cannot identify 

stationary cycling, and only 40% of over-ground cycling minutes were identified. This 

device could still be used to encourage individuals that enjoy walking and running to 

increase weekly activity. 

Strengths of this study include the criterion measure of EE (Oxycon) and use of 

direct observation in comparison to the Basis Peak activity identification function. There 

were also some limitations to this study. There was some data loss, and participants 

were a homogenous group of highly fit college-aged adults that consisted of mostly 

males. Future studies should include free-living activity to improve the generalizability of 
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results, providing more information about how these devices are performing in daily use. 

Such information could help researchers choose the most accurate monitors for PA 

intervention studies. 

In summary, findings suggest that the consumer-based monitors examined 

provided poor estimates for EE of individual activities and the entire physical activity 

routing. The Basis Peak was the only device to not be significantly different from 

measured EE during the entire routine; however like the other devices it had large 

individual error. Caution should be used with devices that suggest multiple placement 

sites but do not provide site specific prediction algorithms as with the Withings Pulse. 

Lastly, while the Basis Peak worked well for estimating time spent walking and running, 

caution should be used when predicting time spent cycling. Future research should 

examine a wider range of activities, as well as, free-living activity to further evaluate how 

the devices are actually used in a real-world setting.  
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INFORMED CONSENT FORM 
 

Study Title: Validation of energy expenditure predictions from consumer-based activity monitors.  
 
Principal Investigators: Andrew Woodman and Scott E. Crouter, Ph.D.  
 
Institution: The University of Tennessee, Knoxville  
 
This information is provided to tell you about the research project. Please read this form carefully and 
ask any questions you may have about this study. Your questions will be answered before we ask you 
to sign it. Also, you will be given a copy of this consent form to take home.  
 
INTRODUCTION  
The purpose of this study is to assess the validity and accuracy of various commercially available physical 
activity monitors.  
 
ELIGIBILITY  
To be in this study, you must be between 18 and 65 years of age, complete a Physical Activity Readiness 
Questionnaire (PAR-Q), and have no contraindications to moderate and vigorous physical activity.  
 
GENERAL TESTING SCHEDULE  

1. You will be given an informed consent form, the study will be described, and you will have time to ask 
questions. If you decide to continue, we require your initials, signature, and date on an informed consent.  
 
2. You will be asked to complete a Physical Activity Readiness Questionnaire (PAR-Q). This will assess your 
readiness for physical activity.  
 
3. We will measure and record on a data sheet your age, height, and weight.  
 
4. If you are female you will be asked to verbally confirm that you are not pregnant.  
 
5. If you have contraindication to exercise or do not meet eligibility requirements for BMI (based on height and 
weight), pregnancy status, age, or running ability, participation in this study will stop here.  
 
6. A researcher will help you put on a portable metabolic system (a backpack and facemask)  
 
7. You will put on two wrist-worn devices on one arm, another wrist-worn device on the other arm, one hip worn 
device attached to your waist, and another device clipped to the collar of your shirt.  
 
8. You will be asked to complete ten minutes of rest, lying on your back.  
 
9. You will be asked to complete a structured activity routine, 5 minutes each activity, with a 1-3 minutes rest in 
between. A researcher will be recording notes during this time.  
 

 quiet study or computer usage in a seated position  

 folding clothes at a table in a seated position  

 sweeping a floor  

 walking on a treadmill at three miles per hour with a 7% grade  

 continuously ascending and descending flights of stairs  

 walking at a self-selected pace in the HPER gym or on the track  

 running at a self-selected pace in the HPER gym or on the track  

 five minute rest period  

 cycling overground on a standard bicycle, at a self-selected pace  

 cycling on a Monark ergometer at 60 revolutions per minute with 2 kiloponds of resistance 

 

______ Participant’s Initials 
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RISKS  
The American College of Sports Medicine (ACSM) states that absolute contraindications to exercise 
testing include, but are not limited to, recent (within 2 days) history of acute cardiac events, arrhythmias 
that are not controlled by medication, symptoms of heart failure, or presence of acute infection (28). 
There is a very small risk of heart attack in healthy individuals performing moderate intensity activity, 
though risk increases in those with cardiovascular disease performing vigorous intensity activity (28). 
Possible risk of moderate and vigorous intensity physical activity include musculoskeletal injury, 
headaches, dizziness, abnormally high blood pressure, and a relative risk of cardiac events (28, 29).  
 
BENEFITS  
Participation in this study will help assess the validity and accuracy of consumer-based physical activity 
monitors, and contribute to future research in the field of physical activity assessment.  
 
CONFIDENTIALITY  
The information obtained from this study will be treated as confidential. Confidentiality will be maintained 
in the analysis and presentation of the data through the use of an ID number that we will assign to you. 
Your name and ID number will be recorded at the beginning of the study and this information will be 
placed in a file cabinet that will be locked and only accessible to study investigators.  
 
COMPENSATION  
There will be no compensation for participating in this research study.  
 
EMERGENCY MEDICAL TREATMENT  
The University of Tennessee does not “automatically” reimburse participants for medical claims or other 
compensation. If physical injury is suffered in the course of research, or for more information, please 
notify the student researcher Andrew Woodman at (815) 621-1730, or the faculty supervisor of this study 
Dr. Scott E. Crouter at (865) 974-1272.  
 
CONTACT INFORMATION  
If you have questions at any time about the study or the procedures, (or you experience adverse effects 
as a result of participating in this study,) you may contact the researcher Andrew Woodman by phone at 
(815) 621-1730 and by email at jwoodma1@vols.utk.edu or the faculty supervisor of the project, Dr. Scott 
E. Crouter, at 1914 Andy Holt Ave., 334 HPER Bldg., Knoxville, TN, (865) 974-1272. If you have 
questions about your rights as a participant, contact the Office of Research Compliance Officer at (865) 
974-3466.  
 
PARTICIPATION  
Your participation in this study is voluntary; you may decline to participate. If you decide to participate, 
you may withdraw from the study at any time without penalty and without loss of benefits to which you 
would otherwise be entitled. If you withdraw from the study before data collection is completed, your data 
will be returned to you or destroyed.  
 
 
CONSENT  
I have read the above information, and I have received a copy of this form. I agree to participate in this 
study.  
 
 
 
Participant’s signature: ________________________________________  Date: _________ 
 
 
 
Investigator’s signature: _______________________________________ Date: _________  
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Physical Activity Readiness Questionnaire (PARQ) 
 
Regular physical activity is fun and healthy, and increasingly more people are starting to 
become more active every day. Being more active is very safe for most people. 
However, people should check with their doctor before they start becoming much more 
physically active. 
 
If you are planning to become much more physically active than you are now, start by 
answering the seven questions in the box below. If you are between the ages of 15 and 
69, the PAR-Q will tell you if you should check with your doctor before you start. If you 
are over 69 years of age, and you are not used to being very active, check with your 
doctor. 
 
Common sense is your best guide when you answer these questions. Please read the 
questions carefully and answer each one honestly: check YES or NO. 
 
YES NO 1. Has your doctor ever said that you have a heart condition and that 
you should only do physical activity recommended by a doctor? 
 
YES NO 2. Do you feel pain in your chest when you do physical activity? 
 
YES NO 3. In the past month, have you had chest pain when you were not 
doing physical activity? 
 
YES NO 4. Do you lose your balance because of dizziness or do you ever lose 
consciousness? 
 
YES NO 5. Do you have a bone or joint problem that could be made worse by 
a change in your physical activity? 
 
YES NO 6. Do you know of any other reason why you should not be doing 
physical activity? 
 
I have read, understood and completed this questionnaire. Any questions I had were 
answered to my full satisfaction. 
 
 
 
Name (Print):                                
 
 
 
Signature:                                           Date:                
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