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Abstract 

Pedestrians and bicyclists are a class of vulnerable road users that are often over-represented in 

incapacitating injury or fatal crash statistics. Because non-motorized trips are vital to many urban and 

rural residents for utility or recreation and exercise, it is essential to identify safety deficiencies in our 

existing transportation infrastructure to address rising injuries and fatalities among this group of road 

users. As the economy continues to struggle and fuel prices remain high, many cities and rural 

transportation agencies are seeing large increases in bicycling, walking, and transit ridership. While 

passenger car fatalities have shown sharp declines in the last decade in Tennessee, pedestrian and bike 

fatalities have remained relatively constant, about 100 per year (about 8%). Most of these deaths are 

avoidable. As such it is very important to address bicycle and pedestrian safety and prioritize funding. 

The goal of this project is to develop a framework to identify pedestrian and bicycle high crash locations 

for investment prioritization of Highway Safety Improvement Program funds to maximize the reduction 

in state-wide severe pedestrian and bicycle crashes. The final result combined two statistical models, 

crash count and injury severity, into one pedestrian harm model to target roadway segments in Tennessee 

that increase harm for pedestrian incapacitating injuries and fatalities if struck by a vehicle. Factors that 

influence pedestrian harm are increasing speed limits; number of lanes; total population density; AADT; 

and Central Business District, commercial, fringe, industrial, residential, and public land use.  
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CHAPTER I INTRODUCTION 

The population of Tennessee is increasing with projections indicating that by the year 2030 the 

number of people living in the state will grow by nearly 33 percent [1]. A press release from the U.S. 

Census Bureau ranked Tennessee among one of the top 15 fastest growing states [1]. This projected 

increase in population may lead to congestion on roadways throughout Tennessee. Many residents are 

interested in walking and bicycling as a mode of transportation and recreation. Walking and bicycling 

promote livable communities, which are communities that provide safe and convenient transportation for 

all modes of transportation, and are a high priority for the United States Department of Transportation 

(DOT) and Obama Administration [2]. Walking and bicycling have several benefits, including healthy 

lifestyles, low cost, zero emissions, easy and convenient, and relatively zero noise pollution compared to 

one’s personal automobile .Walking and bicycling make up about 1.7% of the work-related trips in 

Tennessee as of 2000, making them the second most popular forms of travel after driving [1]. Even with 

this small percentage, pedestrian and bicyclist present conflicts when combing these sustainable modes of 

transportation with automobiles in our transportation network. However, pedestrians and bicyclists are a 

class of vulnerable road users that are often over-represented in incapacitating injury or fatal crash 

statistics. While passenger car fatalities have shown sharp declines in the last decade in Tennessee, 

pedestrian and bike fatalities have remained relatively constant, about 100 per year (about 8%). Most of 

these deaths are avoidable. It is very important to address pedestrian and bicycle safety and prioritize 

funding towards walking and bicycling modes of transportation. The purpose of this framework is to 

develop a proactive method to identify pedestrian high crash locations along with high injury severity 

levels, such as incapacitating injury and fatalities, for prioritizing investments from the Highway Safety 

Improvement Program (HSIP) to maximize the reduction in state-wide severe pedestrian crashes.  

 

In order to develop this framework, the research involved several preliminary tasks. Two 

literature reviews were conducted; one was to review statistical modeling for pedestrian and bicycle 

crashes, and the second was to synthesize best-practices in other states on how they are prioritizing 

pedestrian and bicycle projects with HSIP funds. Study data was gathered including information about 

roadway geometrics, socio-economic demographics, traffic volumes, and crash information which was 

used for the statistical data analysis. Statistical data analysis of crash count and injury severity was 

conducted to identify factors that significantly affect crashes. Results from the statistical data analysis 

were combined to develop a framework using Microsoft Excel and GIS software to identify harmful road 

segments to pedestrians.  
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CHAPTER II LITERATURE REVIEW 

2.1 Introduction 

A literature review was conducted to understand pedestrian and bicycle safety using statistical 

modelling and the factors that influence crash county and injury severity. Also, the review consists of 

what other states are doing to prioritize pedestrian and bicycle projects with HSIP funding.  

2.2 Review of Statistical Modeling of Pedestrian and Bicyclist Crashes 

There have been numerous studies in the past that examine the causes affecting crash counts 

between pedestrian and vehicles [3-7]. These studies use police recorded crash data with at least three 

years of data to try and account for randomization of crash locations [3-7]. Using descriptive statistical 

analysis, Garder [3] used 1,589 police reported pedestrian crashes from 1994-1998 in Maine. Using 

descriptive statistical analysis, his findings indicate that more pedestrian crashes occur on Saturday, 

during the afternoon between 4:00 pm and 7:00 pm, 68% of crashes occur during clear weather, 71% of 

crashes occur on level straight roads, and 65% of crashes occur on roads with no traffic control device or 

signage. Other studies that have examined pedestrian crash counts use multivariate statistical crash count 

models such as, the Negative Binomial (NB) Regression Model or Poisson Distribution Model [4-6]. The 

NB model is used more often because it allows for overdispersion and relaxes the mean-variance 

constraint, which allows the variance of the variable in question to be greater than the mean. Few studies 

have joined crash data with census tracts, road geometrics, and traffic counts using GIS software [4-6]. 

Hashimoto [4] used the NB model with pedestrian crash data from 1999 to 2001 with 1,648 pedestrian 

crashes in Hillsborough County, Florida, and census data, Average Annual Daily Traffic (AADT) counts, 

and roadway data from the Florida Geographic Data Library. Hashimoto’s findings indicate crash counts 

increase with commercial and service land use and residential land use, while average household income 

and residents 65 years and older decrease the number of pedestrian crashes. By examining police recorded 

crash data with 7,345 pedestrian  crashes from 2002 to 2006 and census data in New York City, Ukkusuri 

[5] found that the likelihood of pedestrian crashes increase in black and Hispanic neighborhoods, on 

commercial and industrial land use, in school zones, and at intersections with increased number of lanes 

with using a NB model. Lee and Abdel-Aty [6] used the NB model over the Poisson Distribution Model 

for 247 crashes at intersections throughout Florida from 1999 to 2002. Their findings indicate that the 

likelihood of pedestrian crashes increased at intersections with higher average traffic volume and in urban 

areas, while results show a decrease in pedestrian crashes at intersections during daylight hours. Another 

study, in Florida looked at 247 pedestrian crashes on state roads in Orange County, Florida from 1999 to 

2003 and used log-linear models and found that driver age, number of lanes, median type, pedestrian age, 

and speed limit are critical factors influencing pedestrian crash count [7]. This study also found that more 

pedestrian and vehicle crashes occurred around middle and high schools than elementary schools and  

middle-aged alcohol impaired male drivers are more like to be involved in school-aged children crashes. 

One interesting study by Miranda-Moreno eta al. [8] proposed a framework on the standard NB model, 

the Generalized NB model, and the latent class NB model. Their results show that intersections have a 

small direct effect on pedestrian and vehicles crash counts, but indicate high pedestrian exposure.  
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There have been a multitude of statistical studies using different discrete outcome models to 

determine variables that influence injury severity of pedestrian and bicycle to vehicle crashes, such as 

Mixed Logit Model, heteroskedastic Model, Multinomial Logit (MNL) Model, Mixed Generealized 

Ordered Logit Model, and Ordered Probit Models [9-17]. The most common modeling approach to injury 

severity is the MNL model [8]. Like the crash count studies, injury severity studies use police reported 

crash data. 

 

Three studies in North Carolina used 5,808 reported pedestrian crashes and 2,834 reported 

bicyclist crashes from 1997 to 2000 to develop different types of injury severity models for pedestrians 

and bicyclist. By using a Mixed Logit Model one of the studies discovered that darkness without 

streetlights, trucks, freeways, driver speeding, and driver under the influence of alcohol doubled the 

average probability of pedestrian fatalities [9]. Mixed Logit Models eliminate possible random variations 

in the data.   Another study using the same crash data used a hetroskedasticity model and found that 

increasing pedestrian age, male drivers, intoxicated driver, traffic signs, commercial areas, and darkness 

with or without streetlights increased the probability of pedestrian fatalities [10]. This study also found 

that increasing driver age, during the PM traffic peak, inclement weather, curved roadway, at a crosswalk, 

and when walking along a roadway decreased the probability of a fatality. The heteroskedaticity model in 

this study makes the assumption that the probability of pedestrians past the age of 65 are weaker and more 

prone to fatalities. The last study in North Carolina used the 2,834 reported bicyclist crashes and used a 

MNL model with the following injury severity outcomes for bicyclist: fatal, incapacitating, non-

incapacitating, and possible or no injury [11]. Findings from this study indicate that factors that increase 

the likelihood of a fatality are inclement weather, darkness with no street lights, a.m. peak  (06:00 to 

09:59), head on collisions,  vehicle speeds above 30 mph, heavy truck, intoxicated driver, bicyclist age 55 

and over, and intoxicated bicyclist. The MNL model allows flexibility and an unbiased approach to 

observe the maximum likelihood for all variables in the model. 

 

 Another study that used a MNL  model was in South Korea and examined 48,381 pedestrian and 

vehicle crashes in 2006 [12]. Crashes with heavy vehicles, intoxicated drivers, male drivers, drivers under 

the age of 65, pedestrians over the age of 65, female pedestrians, pedestrians hit in the middle of the road, 

road with high speeds, inclement weather (cloud, rain, and fog), and at night increased the likelihood of 

fatal and severe injury crashes compared to minor injury related crashes. Harruff et al. [13] undertook a 

descriptive analysis of 217 pedestrian traffic fatalities in Seattle, Washington using medical records for 

over a  6 year time period. His finding indicate that male pedestrians are 50% more likely to be involved 

in a fatal crash than females, 66% of fatalities occurred on city or residential streets, 29% of fatalities 

occurred on major thoroughfares, 12% of fatalities occurred on single urban highways. The Mixed 

Generalized Ordered Response Logit Model was developed in a different study to examine injury severity 

using 3,200 non-motorist crashes from the 2004 General Estimates System database obtained from the 

National Highway Traffic Safety Administration’s National center for Statistics and Analysis [14]. The 

analysis suggested that higher speed limits and later time-of-day leads to higher injury severity levels, 

whereas crashes at signalized intersections result with a less severe injury. Multinomial models are used 

when wanting to find the significance of multiple variables with respect to one variable. Ordered models 

may be used when you want find the significance of the overall model by listing variables in order with 

affects from least to greatest, such as no injury to fatality. 

 



 

4 

Several studies have been conducted on modeling injury severity for bicycle and vehicle crashes. 

One study in North Carolina used the Ordered Probit Model with 1,025 bicycle crashes on two-lane 

roadways from 1990 to 1993 and concluded that the variables that significantly increase injury severity 

for bicyclist are presence of fog, dark unlighted sections, high speed limits, on road sections with an 

upgrade or downgrade [15]. They also found a decrease in injury severity on roadways with increasing 

Average Annual Daily Traffic (AADT), street lighting, and an interaction of the shoulder width and speed 

limit.  While another study in Ohio developed separate standard MNL and Mixed Logit models to 

independently assess the impacts of various factors on the degree of bicyclist injury severity in Ohio from 

10,029 bicycle and vehicle crashes from 2002 to 2008 [16]. The results indicate that the potential for 

severe bicyclist injuries is highest when the bicyclist is female, the driver of the vehicle is intoxicated, the 

vehicle is a commercial motor vehicle, the front of the vehicle impacts the side of the bicycle, and the 

roadway surface is dry. A study in Edmonton, Canada examined 571 bicycle to vehicle crashes at 

intersections and mid-block along the roadway from 2006 to 2009 [17].  The results of the mixed logit 

model are female bicyclist are more prone to injury than males bicyclist, older bicyclist are more involved 

in injuries than younger cyclist at intersections, younger drivers are more prone to hit bicyclist at mid-

block, and a decrease in bicyclist collisions at mid-block with parking only one one-side of the street.  

  

In conclusion, five general observations may be made from this literature review. First, the field 

is seeing a movement toward multivariate analysis and away from the descriptive analysis used in past 

studies. Second, the most commonly used approach to model crash counts is using the NB or Poisson 

distribution. Third,  the multinomial and ordered response models have been widely used when the injury 

severity is represented in  multiple categories, such as property damage only, no visible injury but pain, 

non-incapacitating injury, incapacitating injury, and fatal injury for multivariate modeling. In injury 

severity modeling, there are not many studies that have combined census data, road geometric, and traffic 

counts. Fourth, all earlier studies have used pedestrian and bicycle crash data along with census data, 

traffic history, and road geometrics to perform crash count statistical analyses but not injury severity 

analyses. Fifth, there are any studies in the past that have combined crash count and injury severity 

models into one model. 

2.3 Synthesis of Funding Best Practices for Bicycle and Pedestrian Projects 

On August 10, 2005, Safe, Accountable, Flexible, Efficient Transportation Act: A Legacy for 

Users (SAFETEA-LU) was established by the Federal Highway Administration (FHWA) to reduce traffic 

fatalities and injuries on all public roads by improving highway safety infrastructure [18]. Section 1401 of 

SAFETEA-LU entails the HSIP, which provides funding for states to improve the safety of all public 

roadways. The reauthorization, Moving Ahead for Progress in the 21
st
 Century (MAP-21), extends the 

HSIP program. HSIP includes bicyclist and pedestrians as a mode because they are placed at  high risk for 

fatalities and injuries on or along roadways because of their vulnerable exposure to sever injury. 

However, allocating HSIP funding to bicycle and pedestrian modes is difficult because comparative 

safety analysis for these modes are challenging. Although there is a limited amount of information 

available, this section synthesizes how other states are using HSIP funding for pedestrian and bicycle 

safety projects by conducting a literature review and phone call survey to other state DOTs.  
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Virginia was one of the most prominent states for allocating HSIP funds for pedestrian and 

bicycle projects. For FY2012-2013, Virginia has set aside 10% of HSIP funding from FHWA for the 

Virginia DOT bicycle and pedestrian program [19]. Virginia DOT decided to use 10% simply because 

pedestrian and bicycle fatalities account for 10% of traffic related deaths in Virginia [20]. Virginia DOT 

has listed projects that are eligible for HSIP funding, including but not limited to, are on-street facilities; 

shared-use paths; treatments for intersections; mid-block crossings; crosswalks, signs, and pavement 

markings; accessibility features; and traffic calming measures [19]. Several other states mentioned how 

much funding that they are using for bicycle and pedestrian projects as a policy, but do not list any 

allocation details in published reports. Connecticut is using 1% of their HSIP funds for bicycle and 

pedestrian safety [21]. For FY2012, California used 3% of total federal funds (not just HSIP funds) for 

bicycle and pedestrian projects [22]. This article also stated that 15% of trips made are by bicyclist and 

pedestrians and make-up 27% of transportation related fatalities in California. Florida has one of the 

highest pedestrian and bicycle crash rates in the US. From 2006-2012, Florida used 13% of total federal 

funds towards pedestrian and bicycle projects [23]. 

 

A survey questionnaire was conducted to examine what other states are doing for pedestrian and 

bicycle projects. Nineteen out of 47 state DOTs (includes all states except Tennessee, Hawaii, and 

Alaska) have been contacted via telephone to get an understanding of how they are spending HSIP and 

other federal funding for pedestrian and bicycle projects. The four questions that were asked were as 

followed:  

Question 1: Does your state use HSIP funding for pedestrian and bicycle projects? 

Question 2: If the answer is yes to “Question 1”, what percentage is used for pedestrian  and bicycle 

funding? If the answer is no to “Question 1”, skip to “Question 3”.  

Question 3: What other types of federal funds does your state use for pedestrian and bicycle projects? 

Question 4: Does your program invest more funding on infrastructure improvements or educational 

campaigns?  

Table 1 provides a summary of the states, contacts, and the answers to the 4 questions
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 Table 1. Survey Questionnaire Responses. 

  

State Contact  Question 1 Question 2 Question 3 Question 4 

Alabama Mary Lou 

Crenshaw 

Yes Unsure Unsure Education  

Arizona Mark Poppe Yes Unsure Transportation Enhancement and 

Safe Routes to School (SRTS) 

Infrastructure uses HSIP; 

education and infrastructure 

uses SRTS 

Arkansas Kim Sanders No N/A None None 

Colorado Betsy Jacobsen Yes 1% N/A Education 

Idaho Maureen 

Gresham 

Yes 3% N/A Infrastructure 

Indiana Jay Mitchell Yes Unsure N/A Infrastructure 

Massachusetts John Lehman No N/A High Priority, Congestion 

Mitigation Air Quality (CMAQ), 

Transportation Enhancement, 

Federal Transit, Safe Routes to 

School 

Infrastructure receives majority 

of funding and Education 

receives a small portion 

Michigan Josh DeBruyn Some years, 

but not on a 

routine basis 

every year 

Varies from year to 

year 

MAP-21 Infrastructure  

Nebraska Dave 

Schoenmaker 

No N/A Surface Transportation Program-

1%, Transportation 

Enhancement-3%, State Planning 

and Research funds-1% 

Infrastructure receives majority 

of funding and Education 

receives a small portion 

New Hampshire Larry Keniston No N/A Transportation Enhancement Infrastructure 

New York Eric Ophardt No Well under 10%, 1-

2% of federal 

funding is used 

toward bike/ped 

Transportation Enhancement and 

Safe Routes to School 

Infrastructure 
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Table 1. Continued. 

. 

 

 

 

 

 

North Carolina Lauren 

Blackburn 

No N/A A very small amount from MAP-

21 

Infrastructure 

North Dakota Bennett 

Kubishta 

No N/A Transportation Enhancement and 

Surface Transportation Program 

Infrastructure 

South Carolina Tom Dodds Yes only in 

2012 

Unsure CMAQ Infrastructure (provide wider 

paved shoulders, streetscape, 

sidewalks, ADA curb ramps 

Texas Charles Riou Yes Unsure Transportation Enhancement 

(TE) and Safe Routes to School 

(SRTS) 

Infrastructure uses HSIP and 

TE; Education uses SRTS 

Utah Evelyn 

Tuddenham 

Yes Unsure Transportation Enhancement Infrastructure 

Vermont Jon Kaplan No N/A Surface Transportation Program 

and Transportation Enhancement 

Infrastructure 

Virginia John Bolecek Yes 10% CMAQ, Surface Transportation 

Program, Transportation 

Enhancement, Safe Routes to 

School 

Infrastructure 

Washington Ian Macek Yes Varies from year to 

year 

Surface Transportation Program, 

Transportation Enhancement, 

Safe Routes to School(SRTS) 

Majority goes to infrastructure 

and SRTS goes to education 

and infrastructure.  
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In conclusion, the few states that said they were using HSIP funding for pedestrian and bicycle 

projects are using a very small portion of the total HISP funding available for their state. The states that 

are using HSIP funding pedestrian and bicycle projects are using the funding towards improving 

transportation infrastructure. Pedestrian and bicycle have to use funding from other sources than HSIP.  

This addresses the need that states need a fixed methodology for how to appropriate HSIP funding for 

pedestrian and bicycle projects to improve transportation safety for pedestrians and bicyclists.



 

 

9 

CHAPTER III PROJECT DATA 

3.1 Crash Data 

The data used for this study was pedestrian crash data obtained from Tennessee Roadway 

Information Management System (TRIMS) database maintained by Tennessee Department of 

Transportation (TDOT). Initially, Pedestrian and bicyclist crash data was downloaded from TRIMS 

database for years 1999 to 2010 and was later cut to use only years 2003-2009 because data before 2003 

was incomplete, and the accuracy of the data after 2009 was questionable because of a new system to 

record crash data was being developed. 

 

The TRIMS database contained some micro-level information about pedestrian and vehicle 

crashes, such as beginning log mile, case number, person type, injury type, county, route, location, type of 

crash, year of crash, time of crash, total killed, total incapacitating injuries, manner of first collision, total 

injured, first harmful event, light conditions, weather conditions, relation to first junction, relation to first 

roadway, urban or rural, hit and run, hwy construction zone, age, alcohol, alcohol determination, drug 

type, pedestrian age, and gender.  

3.2 Geospatial Road Data 

In order to locate individual crash incidents on a map, geospatial data was requested from TDOT. 

TDOT provided the following separate geospatial data files in shapefile format: TDOT road geometrics, 

Tennessee Information for Public Safety (TIPS) for Tennesse Roads, Tennessee block level data for 2010, 

Tennessee block group level data for 2010, Tennessee secondary school district for 2010, and Tennessee 

unified school district for 2010. A shapefile is data file containing geospatial vector data for Geographic 

Information Systems (GIS) software. Each of these shapefiles consisted of different features and 

attributes. The TDOT road geometrics shapefile consisted of spatial data of the entire road network of 

Tennessee which contains information including the route number, begin log mile, and end log mile. The 

Tennessee Road TIPS shapefile also consisted of spatial data of the entire road network of Tennessee but 

with more detailed information, including the road name, speed limit, land use, number of lanes, location, 

terrain, and presence of school zone. All variables are listed in Appendix A. In addition to the shapefiles 

provided by TDOT, a Tennessee census tract shapefile was downloaded from the TIGER webpage of the 

US census website[24]. A census tract is composed of census blocks, which are the smallest geographic 

area for which the U.S. Census Bureau collects and tabulates decennial census data. 

3.3 Demographic and Socioeconomic Data 

US census demographic and socioeconomic data was downloaded from the US census website at 

census tract level from the 2010 census [25]. The downloaded demographic data consists of counts of 

population, housing, race, and age distribution while the socioeconomic data consists of income, vehicle 
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ownership, employment rate, commuting to work, occupations, poverty status data. All variables are 

listed in Appendix A. 

3.4 Traffic Count Data 

A shapefile of traffic history data containing AADT count along specific locations on Tennessee's 

road network were downloaded from the TDOT website [26] and integrated into the GIS roadway map. 

3.5 Crash Data Preparation 

The pedestrian crash data for this project from TRIMS consisted of 5,587 pedestrian crashes from 

2003 to 2009. In general, injury severity is listed in four categories, such as Property Damage Only 

(PDO), non-incapacitating injury, incapacitating injury, and fatality. Figure 1 shows the number of 

crashes with respect to injury severity level.  

 

 

 

 

 
Figure 1. Number of Crashes Vs. Injury Type.  
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Out of the 5,5,87 crashes for this study, the crash distribution is 367 PDO, 3,694 non-incapacitating 

injuries, 1,083 incapacitating injuries, and 443 fatal crashes. An attempt was made to use bicycle crashes 

for this study but there was not enough crash data available for the 7 year period. From this point on, this 

study focuses only on pedestrian crashes.  

3.6 Geo-Mapping of Crash Data 

Geocoding of state highway incidents was undertaken using the linear referencing function of 

ArcGIS. ArcGIS is a mapping and spatial analysis software. Linear referencing is a method of 

determining geographic locations using relative positions along a linear feature. If location values are 

known for points A and B, the value for any point between them can be determined. The TDOT road 

geometric shapefile was used as a reference layer for mapping post mile location incidents because it has 

unique field, such as road number, beginning log mile and ending log mile which are required to identify 

the location of an incident along a highway. Post mile-coded incidents were then geocoded using the 

ArcGIS linear referencing tools. Each pedestrian crash is represented by a single dot on the map in Figure 

2. 

 

 

 

 
Figure 2. Pedestrian Crash Locations. 

 

3.7 Integrating Statewide Data into a GIS Model 

In order to integrate crash data, geospatial road data, demographic and socioeconomic census 

data, and traffic data, the “spatial join” feature in ArcGIS was used to populate an attribute table to list all 

of the data for each of the 5,587 crashes that was needed to develop the crash count and injury severity 

models. After the crash count and injury severity models were developed, the “spatial join” feature was 

used again to gather geospatial road data, demographic and socioeconomic census data, and traffic data in 

order to develop a final model to target harmful road segments. 
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CHAPTER IV CRASH COUNT MODELING 

4.1 Introduction 

Crash data were integrated by road segments to develop a statistical crash count model to predict 

the number of crashes with influence to road geometrics, traffic count, and census data that were 

mentioned in the previous section. This model will provide insight to what variables increase the 

likelihood of a crash to occur. Summarized in Table 2 is the number of observations, mean, standard 

deviation, and range for the number of crashes, segment length, road geometrics, traffic count, and census 

data, which were used as either the independent or dependent variable in the crash count model. 

Independent variables that were removed from the model because they had no statistical impact on the 

model were total population, and population below poverty level. All crashes from 2003 to 2009 were 

merged on 168,920 uniform non-freeway roadway segments throughout the stat with each segment 

averaging 0.5 miles and 0.034 crashes. 

 

 

Table 2. Summary Statistics of Data Used for Pedestrian Crash Count. 

Variable Observations Mean Std. Dev. Min Max 

By Road Segment           

Number of crashes (n) 168920 0.034 0.411 0 48 

Segment Length in miles (n) 168920 0.498 0.898 0 29.430 

By Road Geometrics 

     Number of lanes in both directions 

(n) 168920 1.941 0.680 1 10 

Speed limit 30 to35 mph (1/0) 168920 0.115 0.319 0 1 

speed limit 40 to 55 mph (1/0) 168920 0.087 0.281 0 1 

Presence of school zone (1/0) 168920 0.019 0.137 0 1 

Central Business District (CBD), 

Commercial, Fringe, or Industrial 

Land Use (%) 168920 0.095 0.293 0 1 

Residential or Public Land Use (%) 168920 0.436 0.496 0 1 

By Traffic Count 

     Average AADT (n) 168920 7712.960 14148.340 0 170740 

By Census Tract           

Total Population (n) 168920 4837.961 1962.759 0 21763 

White Population (%) 168920 0.860 0.186 0 1 

Black Population (%) 168920 0.091 0.170 0 1 

Hispanic Population (%) 168920 0.037 0.044 0 0.528 

Population below poverty level (%) 168920 0.149 0.091 0 0.796 

Population under 20 years old (%) 168920 0.253 0.045 0 0.612 

Population 20 to 64 years old (%) 168920 0.595 0.052 0 1 
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Table 2. Continued. 

Population above 65 years old (%) 168920 0.150 0.053 0 0.567 

Average Household Income (n) 168920 56,058.18 24,714.76 0 247,239 

Population in civilian labor force (%) 168920 0.605 0.096 0 0.888 

Housing units with No vehicle (%) 168920 0.057 0.059 0 0.733 

Housing units with 1 vehicle (%) 168920 0.300 0.101 0 1 

Housing units with 2 or more 

vehicles (%) 168920 0.640 0.140 0 0.962 

 

4.2 Criteria for Modeling Crash Count 

From the literature review, the Negative Binomial (NB) and Poisson distribution models were 

used most often when modeling pedestrian crash count data. The NB model was the preferred model to 

use for this study because of overdispersion, where the variance is much larger than the mean. The 

general form of the NB model is expressed as [27]: 

 

                                                                                                       

Where; 

λ is crash count 

X is a vector of independent variables 

β is a vector of estimated coefficients  

i is a potential outcome. 

4.3 Model Results  

The purpose of the NB crash count model was to evaluate the impact of different variables with 

respect to crash count. Crash count is defined as the number of total crashes along a road segment and is 

the dependent variable. Independent variables that were left in the models with a significant impact of less 

than 90% were average AADT and percent of black population. Average AADT  was left in the model 

because it has a significance greater than 80% and was an important factor that measures vehicle 

exposure. The impact and significance of each of the variables that influences pedestrian crash counts 

greater than 90% (except average AADT and percent of black population) are summarized in Table 3. 

Independent variables are listed under the variable column. A coefficient determines a percent an increase 

or decrease on the likelihood of a pedestrian crash to occur. A p-value less than 0.10 means that the 

independent variable is significant greater than 90%. The marginal effect indicates the influence that the 

independent variable has on the dependent variable by 1.000%. A large marginal effect means that the 

independent variable has a substantial effect towards the dependent variable compared to other 

independent variables in the model. For example, population 20 to 64 years old has a larger effect on 

crash count than any of the other variables in the models. All models have a p-value equal to 0.0000, 

which means that the overall model is statistically significant.  
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Table 3. Pedestrian Crash Count Model with AADT Results. 

Variable Coefficient. P-value Marginal Effect 

Segment length in miles  (n) 0.511 0.000 1.667 

Average AADT (n) -0.00000224 0.145 1.000 

Number of lanes (n) 0.584 0.000 1.794 

Speed limit 30 to35 mph (1/0) 2.065 0.000 7.889 

Speed limit 40 to 55 mph (1/0) 2.142 0.000 8.513 

Presence of school zone (1/0) 0.166 0.078 1.180 

Central Business District (CBD), Commercial, 

Fringe, or Industrial Land Use (%) 1.307 0.000 3.695 

Residential or Public Land Use (%) 0.645 0.000 1.905 

Population 20 to 64 years old (%) 2.573 0.000 13.102 

Average Household Income (n) 0.00000678 0.000 1.000 

White Population (%) -1.102 0.026 0.332 

Black Population (%) 0.0907 0.852 1.095 

Hispanic Population (%) 1.846 0.000 6.337 

Housing units with No vehicle (%) 1.167 0.003 3.212 

Housing units with 1 vehicle (%) 1.183 0.000 3.264 

Housing units with 2 or more vehicles (%) -1.947 0.000 0.143 

Constant -7.846 0.000   

Summary Results 

  

 

Number of observation = 168,920 

  

 

P-value = 0.0000 

  

 

LR chi
2
 (16) = 11865.34 

  

 

Pseudo R
2
 = 0.3032 

  

 

 

 

 

 

Since there is not AADT for local roadways another crash count model was designed without AADT and 

results are summarized in Table 4. The results are similar to the crash count model in Table 3. 
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Table 4. Pedestrian Crash Count Model without AADT Results. 

Variable Coefficient. P-value Marginal Effect 

Segment length in miles (n) 0.511 0.000 1.667 

Number of lanes (n) 0.585 0.000 1.795 

Speed limit 30 to35 mph (1/0) 2.0661 0.000 7.894 

Speed limit 40 to 55 mph (1/0) 2.143 0.000 8.523 

Presence of school zone (1/0) 0.167 0.075 1.182 
Central Business District (CBD), Commercial, 

Fringe, or Industrial Land Use (%) 1.306 0.000 3.691 

Residential or Public Land Use (%) 0.644 0.000 1.903 
Population 20 to 64 years old (%) 2.584 0.000 13.244 

Average Household Income (n) 0.00000672 0.000 1.000 

White Population (%) -1.108 0.025 0.330 

Black Population (%) 0.0864 0.859 1.090 

Hispanic Population (%) 1.838 0.000 6.287 

Housing units with No vehicle (%) 1.178 0.002 3.248 

Housing units with 1 vehicle (%) 1.177 0.000 3.246 

Housing units with 2 or more vehicles (%) -1.943 0.000 0.143 

Constant -7.865 0.000   

Summary Results 

  

 

Number of observation = 168,920 

  

 

P-value = 0.0000 

  

 

LR chi
2
 (15) = 11863.16 

  

 

Pseudo R
2
 = 0.3032 

  

 

 

 

 

 

In both models, most of the variables have a positive coefficient and are highly significant greater 

than 90% significance. A positive coefficient indicates variables that increase the likelihood of a 

pedestrian crash, while a negative coefficient decreases the likelihood of a pedestrian crash. Variables that 

increase the likelihood of crashes are segment length; number of lanes; speed limit; presence of school 

zones; CBD, commercial, fringe (mixed residential and commercial land use), residential, public (parks) 

land use; population between 20 to 64 years old; average household income, Hispanic population, 

housing units with 0 and 1 vehicle available. As lanes increase, the likelihood of a pedestrian crash 

increases too, which states that multilane highways are more likely have a pedestrian crash to occur than 

two or fewer lanes. Areas with a high percentage of housing units with no or 1 vehicle available indicate 

high pedestrian exposure that increases the likelihood of a pedestrian crash. Variables that decrease the 

likelihood of a pedestrian crash are AADT with greater than 85% significance and white population, and 

housing units with 2 or move vehicles available with greater than 90% significance. As AADT decreases, 

the likelihood of a pedestrian crash decreases, which states that pedestrian crashes are more likely to 

occur on roads with lower than average AADT (7,713 vehicles per day)  with only 85% significance. As 

segment lengths increase in the model, the likelihood of a pedestrian crash increases. Speed limits, 

population between 20 to 64 years old, and vehicle availability have the largest marginal effect signifying 
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that have a greater impact over other variables in the model. Average AADT has a marginal effect equal 

to 1.0 indicating a neutral response to the overall model.  

4.4 Conclusion 

Overall, both crash count models were developed to identify variables that influence pedestrian 

crash counts. Crashes increase in areas with high pedestrian exposure such as, school zones; CBD, 

commercial, fringe, residential, and public land use; and areas with a high percentage of households with 

no vehicles present. AADT and number of lanes provide insight to information about areas with high 

vehicle exposure. By looking at the marginal effect, posted speed limits are very significant to pedestrian 

crashes. As speed limits increases, crossing the street or walking along the street becomes more 

dangerous and becomes a visibility problem for vehicle drivers to see pedestrians, which increases the 

likelihood of a pedestrian crash. These models will be used again in the development of the pedestrian 

harm model.
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CHAPTER V INJURY SEVERITY MODELING 

5.1 Introduction 

Pedestrian crash injury severity modelling was used to identify design mitigation issues, such as 

AADT, roadway geometrics, and socioeconomic and demographic factors that influenced the outcome of 

pedestrian and vehicle crashes. Severity models also provided additional insight into pedestrian behavior 

(e.g. impairment by alcohol or drugs,) that contributed to the likelihood of an incapacitating injury or fatal 

crash. A total of four models were constructed, a preliminary model and final model, with and without 

AADT. The preliminary models were constructed first to capture all of the significant variables 

mentioned above. The final models were constructed with all of the significant variables from the 

preliminary model except pedestrian behavior. The final models were used to create the pedestrian harm 

model in Chapter 6. The decision to make separate models with and without AADT was because there are 

not any traffic count data for local roadways. Summarized in Table 5 is the number of observations, 

mean, standard deviation, and range for type of injury, traffic count, road geometrics, and census data, 

which were used as either the independent or depending variable in the injury severity model. For all 

crashes from 2003 to 2009, there were 4,061 (72.75%) PDO or non-incapacitating injuries, 1,083 (19.4%) 

incapacitating injuries, and 443 (7.9%) fatalities. PDO and non-incapacitating injuries were combined to 

focus on the two most severe levels of injury - incapacitating injury and fatality. Variables that were 

tested and proven to be statistically insignificant were type of terrain; access control; TDOT region -- 

east, middle, or west Tennessee; mode of commuting to work; census tract average population age; 

weather at time of crash; and roadways where commercial vehicle speed limit is posted. 

 

 

 

Table 5. Summary Statistics of Data Used for Preliminary Injury Severity Models. 

Variable Observations Mean Std. Dev. Min Max 

By Injury Type      

PDO & Non-Incapacitating Injury 

(0/1) 5587 0.727 0.446 0 1 

Incapacitating Injury (0/1) 5587 0.194 0.395 0 1 

Fatality (0/1) 5587 0.079 0.270 0 1 

By Traffic Count      

AADT less than 20,000 (0/1) 3265 0.567 0.496 0 1 

AADT 20,000 to 40,000 (0/1) 3265 0.342 0.475 0 1 

AADT 40,001 to 60,000 (0/1) 3265 0.058 0.235 0 1 

AADT greater than 60,000 (0/1) 3265 0.032 0.176 0 1 

By Road Geometrics      

Rural Land Use (0/1) 5574 0.170 0.376 0 1 

Central Business District (CBD) Land 

Use (0/1) 5574 0.007 0.082 0 1 
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Table 5. Continued. 

Commercial Land Use (0/1) 5574 0.435 0.496 0 1 

Fringe Land Use (0/1) 5574 0.135 0.342 0 1 

Industrial Land Use (0/1) 5574 0.006 0.079 0 1 

Residential Land Use (0/1) 5574 0.230 0.421 0 1 

Public Land Use (0/1) 5574 0.017 0.129 0 1 

Presence of school zone (0/1) 5587 0.042 0.202 0 1 

Speed Limit Unknown (0/1) 5579 0.148 0.355 0 1 

Speed Limit 5 to 30 mph (0/1) 5579 0.180 0.384 0 1 

Speed Limit 35 to 60 mph (0/1) 5579 0.639 0.480 0 1 

Speed limit 65 mph or greater (0/1) 5579 0.034 0.180 0 1 

Number of lanes in both directions (n) 5580 3.388 1.459 1 10 

By Police Report      

Pedestrian Male Gender (0/1) 5587 0.633 0.482 0 1 

Pedestrian Female Gender (0/1) 5587 0.350 0.477 0 1 

Pedestrian Unknown Gender (0/1) 5587 0.017 0.129 0 1 

Pedestrian Alcohol Present (0/1) 5587 0.013 0.113 0 1 

Pedestrian Alcohol Not Present (0/1) 5587 0.035 0.183 0 1 

Pedestrian Alcohol Unknown (0/1) 5587 0.952 0.213 0 1 

Pedestrian Drug Present (0/1) 5587 0.009 0.097 0 1 

Pedestrian Drug Not Present (0/1) 5587 0.400 0.490 0 1 

Pedestrian Drug Unknown (0/1) 5587 0.591 0.492 0 1 

Crash occurs during weekend (0/1) 5587 0.228 0.420 0 1 

Crash occurs during weekday (0/1) 5587 0.728 0.445 0 1 

Day of crash unknown (0/1) 5587 0.044 0.205 0 1 

Pedestrian Age Under 20 (0/1) 5587 0.266 0.442 0 1 

Pedestrian Age 21 to 40 (0/1) 5587 0.308 0.462 0 1 

Pedestrian Age 41 to 60 (0/1) 5587 0.300 0.458 0 1 

Pedestrian Age 61 to 80 (0/1) 5587 0.081 0.273 0 1 

Pedestrian Age 81 and older (0/1) 5587 0.010 0.098 0 1 

Pedestrian Age Unknown (0/1) 5587 0.036 0.185 0 1 

Crash occurs along roadway (0/1) 5587 0.378 0.485 0 1 

Crash occurs at intersection (0/1) 5587 0.609 0.488 0 1 

Crash occurs at other location (e.g. 

bridge, railroad grade crossing, ramp, 

underpass) (0/1) 5587 0.013 0.115 0 1 

AM Peak Time (07:01-10:00) (0/1) 5572 0.101 0.301 0 1 

Day Time (10:01-17:00) (0/1) 5572 0.369 0.483 0 1 

PM Peak Time (17:01-20:00) (0/1) 5572 0.225 0.418 0 1 

Night Time (20:01-07:01) (0/1) 5572 0.305 0.460 0 1 

By Census Tract      

Housing units with no vehicles (%) 5587 0.137 0.128 0 0.73 

Housing units with 1 vehicle (%) 5587 0.414 0.132 0 1 

Housing units with 2 vehicles (%) 5587 0.297 0.120 0 0.70 

Housing units with 3 or more vehicles 

(%) 5587 0.143 0.100 0 0.50 

Average Household Income (n) 5576 48732 24,627.77 0 247,329 

Total Population Density (n) 5587 516.423 578.701 0 5108.46 
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5.2 Criteria for Modelling Injury Severity 

From the literature review, the Multinomial Logistic (MNL) regression model was used because 

it can assess the significance of each injury severity level (i.e. property damage and non-incapacitating 

injury, incapacitating injury, and fatal). Also, the MNL model allows flexibility and an unbiased approach 

to observe the maximum likelihood for all variables in the model. The general equation of the MNL 

regression is expressed as [27]:  

     
      

        
   

 

 

 

Where; 

P is probability of injury type 

X is a vector of independent variables 

β is a vector of estimated coefficients  

i is a potential outcome. 

5.3 Model Results 

The purpose of the MNL models was to evaluate the impact of different variables with respect to 

a crashes injury severity level. In all models, there are three injury severity classifications: PDO and non-

incapacitating injury, incapacitating injury, and fatal crashes. The models predict the probability of the 

three injury classifications as a function of independent variables. The preliminary models sets a threshold 

value of P-value less than 0.20, indicating that the variable is different than zero with 80% confidence.  

The final models sets a threshold value of P-Value less than 0.10, indicating that the variable is different 

than zero with 90% confidence, like the crash count model.  A coefficient puts a percent an increase or 

decrease on the likelihood of a pedestrian crash to have an incapacitating injury or fatality compared to a 

pedestrian crash with PDO & non-incapacitating injury. The marginal effect indicates the influence that 

the independent variable has on the dependent variable by 1.00%. A large marginal effect means that the 

independent variable has a substantial effect towards the dependent variable. There are two separate 

models for the preliminary and final models, one with AADT and one without AADT, to scale the impact 

of AADT because there is not any traffic count data for local roadways. Therefore, the number of crashes 

able to be observed for the models with AADT is 2,269 (69.5%) PDO & non-incapacitating injuries, 655 

(21.0%) incapacitating injuries, and 311 (9.5%) fatalities. A P-Value closer 0.000 indicates that the 

independent variable has a higher significance with its respective injury severity category. All models 

have a p-value equal to 0.0000, which means that the overall model is statistically significant. 

5.3.1 Preliminary Model Results 

The preliminary models set the three injury severity categories as the dependent variables, and the 

traffic count, road geometrics, police report, and census tract as the independent variables. All variables in 
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the preliminary models have at least one variable that is more than 80% significant to either incapacitating 

injury or fatality. Variables that were removed from the model because they had no statistical impact on 

the model were AADT below 40,001; CBD, commercial, fringe, industrial (only in the model with 

AADT), residential, and public (only in the model with AADT) land use; speed limit below 65 mph; 

pedestrians below 41 years old; at intersections and other locations; time from 07:01 to 17:01; and 

housing units with 3 or more vehicles. Other locations are defined as bridges, railroad grade crossing, 

ramps, and underpasses.  The impact and significance of each of the variables that influences pedestrian 

crash injury severity are summarized in Table 6. The model in Table 6 observes 3, 253 crash records that 

involve crashes classified on freeway, arterial, and collector roads.  

 

Table 6. Preliminary MNL Regression Model for Pedestrian Injury Severity with AADT. 

Variable Coefficient P-Value Marginal Effect 

Property Damage & Non-incapacitating Injury (base outcome) 

 

 

   

 

Incapacitating Injury 

  

 

AADT 40,001 to 60,000 (0/1) 0.232 0.217 1.261 

AADT greater than 60,000 (0/1) -0.0955 0.737 0.909 

Rural Land Use (0/1) 0.031 0.810 1.032 

Presence of school zone (0/1) -0.0498 0.831 0.951 

Pedestrian Male Gender (0/1) 0.114 0.233 1.120 

Pedestrian Alcohol Present (0/1) -0.316 0.584 0.729 

Pedestrian Drug Present (0/1) -0.682 0.280 0.506 

Crash occurs during weekend (0/1) 0.0497 0.641 1.051 

Pedestrian Age 41 to 60 (0/1) 0.107 0.286 1.113 

Pedestrian Age 61 to 80 (0/1) 0.288 0.083 1.334 

Pedestrian Age 81 and older (0/1) 0.845 0.048 2.328 

Speed limit 65 mph or greater (0/1) 0.531 0.028 1.700 

Crash occurs along roadway (0/1) 0.199 0.039 1.220 

PM Peak Time (17:01-20:00) (0/1) 0.114 0.341 1.120 

Night Time (20:01-07:01) (0/1) 0.736 0.000 2.088 

Housing units with no vehicles (%) -0.580 0.340 0.560 

Housing units with 1 vehicle (%) -0.727 0.122 0.483 

Housing units with 2 vehicles (%) 0.667 0.340 1.947 

Average Household Income (n) -0.00000520 0.025 1.000 

Total Population Density (n) -0.000275 0.017 1.000 

Constant -1.208 0.004  

   

 

 



 

 

21 

Table 6. Continued. 

Fatal 

  

 

AADT 40,001 to 60,000 (0/1) 0.302 0.249 1.353 

AADT greater than 60,000 (0/1) 0.645 0.037 1.907 

Rural Land Use (0/1) 0.543 0.002 1.721 

Presence of school zone (0/1) -1.568 0.033 0.209 

Pedestrian Male Gender (0/1) 0.222 0.135 1.248 

Pedestrian Alcohol Present (0/1) 1.951 0.000 7.039 

Pedestrian Drug Present (0/1) 1.166 0.013 3.208 

Crash occurs during weekend (0/1) 0.229 0.129 1.258 

Pedestrian Age 41 to 60 (0/1) 0.984 0.000 2.675 

Pedestrian Age 61 to 80 (0/1) 1.405 0.000 4.075 

Pedestrian Age 81 and older (0/1) 2.533 0.000 12.597 

Speed limit 65 mph or greater (0/1) 0.881 0.001 2.414 

Crash occurs along roadway (0/1) 0.628 0.000 1.874 

PM Peak Time (17:01-20:00) (0/1) 0.660 0.000 1.935 

Night Time (20:01-07:01) (0/1) 1.242 0.000 3.462 

Housing units with no vehicles (%) -0.289 0.749 0.749 

Housing units with 1 vehicle (%) -1.147 0.090 0.318 

Housing units with 2 vehicles (%) 1.828 0.056 6.222 

Average Household Income (n) -0.0000141 0.000 1.000 

Total Population Density (n) -0.000193 0.282 1.000 

Constant -3.384 0.000  

Summary Results 

  

 

Number of observations = 3253 

  

 

LR chi
2
(40) = 484.22 

  

 

P-value = 0.0000 

  

 

Pseudo R
2
 = 0.0926 

  

 

 

 

 

 

Most of the independent variables from the preliminary injury severity model with AADT (Table 

6) have a positive coefficient. A positive coefficient indicates variables that increase the likelihood of a 

crash and a negative coefficient indicates variables that decrease the likelihood of a crash with either 

incapacitating injury or fatality. Variables that are significant and increase the likelihood for 

incapacitating injury and fatality with a significance greater than 90% are roads with speed limit 65 mph 

and greater and crashes occurring along a roadway, as opposed to at intersection or other location, and 

pedestrians greater than 60 years old, and housing units with 1 vehicle available. The only variable that is 

significant and decreases the likelihood of an incapacitating injury and fatality with significance greater 

than 90% is average household income. Total population density is significantly greater than 90% and 

decreases the likelihood of an incapacitating injury. Presence of school zones is significantly greater than 
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90% and decreases the likelihood of a fatal crash. Crashes involving males and occurring on the 

weekends increase the likelihood of a fatal crash with 85% significance. Significant variables greater than 

90% that increase the likelihood of a crash with a fatality are roadways with AADT greater than 60,000, 

rural land use, pedestrians under influence of alcohol and/or drugs, pedestrians 41 to 60 years old, crashes 

occurring during PM peak hours, and housing units with 2 vehicles. AADT from 40,001 to 60,000 is not 

statistically significant to the 80% level but shows that AADT increases greater than 60,000 the likelihood 

of a fatality increases.  

 

The model in Table 7 removes AADT in order to observe all roadway classifications. STATA, 

the statistical software package used for this study, removes all incomplete rows of data with respect to 

the crash being observed. Therefore, this model observes 5,554 crashes out of the total 5,587 crashes.  

 

 

Table 7. Preliminary MNL Regression Model for Pedestrian Injury Severity without AADT. 

Variable Coefficient P-Value Marginal Effect 

Property Damage & Non-incapacitating Injury (base outcome) 

 

 

   

 

Incapacitating Injury 

  

 

Rural Land Use (0/1) 0.0395 0.699 1.040 

Industrial Land Use (0/1) -1.079 0.081 0.340 

Presence of school zone (0/1) -0.0194 0.915 0.981 

Pedestrian Male Gender (0/1) 0.145 0.053 1.156 

Pedestrian Alcohol Present (0/1) -0.0305 0.935 0.970 

Pedestrian Drug Present (0/1) -0.534 0.280 0.586 

Crash occurs during weekend (0/1) -0.00501 0.953 0.995 

Pedestrian Age 41 to 60 (0/1) 0.187 0.018 1.206 

Pedestrian Age 61 to 80 (0/1) 0.483 0.000 1.621 

Pedestrian Age 81 and older (0/1) 0.798 0.027 2.221 

Speed limit 65 mph or greater (0/1) 0.391 0.047 1.478 

Crash occurs along roadway (0/1) 0.235 0.002 1.265 

PM Peak Time (17:01-20:00) (0/1) 0.179 0.057 1.196 

Night Time (20:01-07:01) (0/1) 0.766 0.000 2.151 

Housing units with no vehicles (%) -0.928 0.040 0.395 

Housing units with 1 vehicle (%) -1.079 0.002 0.340 

Housing units with 2 vehicles (%) 0.580 0.285 1.787 

Average Household Income (n) -0.00000490 0.006 1.000 

Total Population Density (n) -0.000204 0.010 1.000 

Constant -1.176 0.000  
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Table7. Continued. 

Fatal 

  

 

Rural Land Use (0/1) 0.468 0.001 1.596 

Industrial Land Use (0/1) 0.724 0.112 2.064 

Presence of school zone (0/1) -0.980 0.038 0.375 

Pedestrian Male Gender (0/1) 0.245 0.043 1.278 

Pedestrian Alcohol Present (0/1) 1.660 0.000 5.258 

Pedestrian Drug Present (0/1) 0.999 0.012 2.715 

Crash occurs during weekend (0/1) 0.169 0.173 1.185 

Pedestrian Age 41 to 60 (0/1) 0.957 0.000 2.604 

Pedestrian Age 61 to 80 (0/1) 1.547 0.000 4.698 

Pedestrian Age 81 and older (0/1) 2.761 0.000 15.821 

Speed limit 65 mph or greater (0/1) 0.998 0.000 2.712 

Crash occurs along roadway (0/1) 0.794 0.000 2.212 

PM Peak Time (17:01-20:00) (0/1) 0.917 0.000 2.503 

Night Time (20:01-07:01) (0/1) 1.485 0.000 4.413 

Housing units with no vehicles (%) -0.119 0.864 0.888 

Housing units with 1 vehicle (%) -1.199 0.028 0.302 

Housing units with 2 vehicles (%) 1.883 0.017 6.576 

Average Household Income (n) -0.0000123 0.000 1.000 

Total Population Density (n) -0.000164 0.188 1.000 

Constant -3.808 0.000  

Summary Results 

  

 

Number of observations = 5,554 

  

 

LR chi
2
(38) = 775.87 

  

 

P-value = 0.0000 

  

 

Pseudo R
2
 = 0.0930 

  

 

 

 

 

  

Like the preliminary injury severity model with AADT, most of variables in the preliminary 

injury severity model without AADT (Table 7) have positive coefficients. Variables that are significant 

and increase the likelihood for incapacitating injury and fatality with greater than  90% significance are 

crashes involving males, pedestrians greater than 40 years old, roads with speed limit 65 mph or greater, 

crash occurs along a roadway, occurs during PM peak hours and night time hours. Significant variables 

that decrease the likelihood of an incapacitating injury or fatal crashes at levels greater than 90% are 

housing units with 1 vehicle available and average household income. Industrial land use, total population 

density, and presence of school zones are the variable that decreases the likelihood of a crash with an 

incapacitating injury with greater than 90% significance. Significant variables that increase the likelihood 

of a crash with a fatality greater than 90% are crashes occurring on rural land use and pedestrians under 

influence of alcohol and/or drugs, while crashes occurring on industrial land use and total population 

density are statistically significant greater than 80%.   Housing units with no vehicles available is not 
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statistically significant to the 80% level but shows that as vehicle ownership increases the likelihood of an 

incapacitating injury or fatality increases. 

5.3.2 Preliminary Model Conclusion 

The preliminary injury severity models provide insight to variables that may increase or decrease 

the likelihood of an incapacitating injury or fatality for pedestrians. There are several reoccurring 

variables that increase the likelihood of a fatal pedestrian crash in both injury severity models with and 

without AADT, which were rural land use, areas with high speed limits; PM peak and night time hours; 

located along a roadway, as opposed to at an intersection; pedestrians greater than 40 years old; male 

pedestrians; pedestrians under the influence of alcohol and/or drugs; crashes occurring on the weekend. 

Pedestrians walking on high speed rural roadways at night have the highest risk of incapacitating or fatal 

injury. These areas are often areas that are not well lit. School zones were significant but with negative 

coefficients meaning these are safe areas with respect to injury severity. Pedestrians greater than 80 years 

old had the largest marginal effect because as people age they become feeble. Night time and housing 

units with 2 vehicles available also have high marginal effect compared to the rest of the model.  

5.3.3 Final Model Results 

The final models for injury severity were built using the significant variables from the 

preliminary model. All variables in the final models have at least one variable that is more than 90% 

significance to either incapacitating injury or fatal injury, like the crash count models. The final model 

contains all of the same data except pedestrian behavior (e.g. gender, pedestrian age, presence of alcohol 

and/or drugs). The purpose of the final model was to build a model with 90% significance level to use 

with the crash count models from Chapter 4 to develop the pedestrian harm models in Chapter 6. The 

final models will contain two models, one model with AADT and one model without AADT. 

Summarized in Table 9 are the impact and significance of each of the variables that influences pedestrian 

crash injury severity with AADT. Variables that were removed from the model because they had no 

statistical impact on the model were AADT below 60,001; CBD, commercial, fringe, industrial (only in 

the model with AADT), residential, and public (only in the model with AADT) land use; and speed limit 

less than 35 mph. 
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Table 8. Final MNL Regression Model for Pedestrian Injury Severity with AADT. 

Variable Coefficient 

P-

Value 

Marginal 

Effect 

Property Damage & Non-incapacitating Injury 

(base 

outcome)   

 

       

Incapacitating Injury      

AADT greater than 60,000 (0/1) -0.145 0.622 0.865 

Rural Land Use (1/0) 0.163 0.225 1.177 

Presence of school zone (1/0) -0.118 0.607 0.888 

Speed limit 35 to 60 mph (1/0) 0.0646 0.577 1.067 

Speed limit 65 mph or greater (0/1) (1/0) 0.531 0.045 1.701 

Housing units with no vehicles (%) -0.830 0.162 0.436 

Housing units with 1 vehicle (%) -0.939 0.041 0.391 

Housing units with 2 vehicles (%) 0.743 0.277 2.102 

Average Household Income (n) -0.00000588 0.010 1.000 

Total Population Density (n) -0.000338 0.004 1.000 

Number of lanes (n) 0.0825 0.036 1.086 

Constant -0.893 0.027  

    

 

  

Fatal   

 

  

AADT greater than 60,000 (0/1) 0.560 0.082 1.751 

Rural Land Use (1/0) 0.737 0.000 2.090 

Presence of school zone (1/0) -1.649 0.022 0.192 

Speed limit 35 to 60 mph (1/0) 0.471 0.010 1.602 

Speed limit 65 mph or greater (0/1) (1/0) 1.174 0.000 3.235 

Housing units with no vehicles (%) -0.686 0.413 0.503 

Housing units with 1 vehicle (%) -1.289 0.041 0.275 

Housing units with 2 vehicles (%) 2.202 0.014 9.041 

Average Household Income (n) -0.0000154 0.000 1.000 

Total Population Density (n) -0.000438 0.018 1.000 

Number of lanes (n) 0.122 0.033 1.130 

Constant -2.237 0.000  

Summary Statistics    

Number of observations = 3,262    

LR chi
2
(22) = 229.23    

P-value = 0.0000    

Pseudo R
2
 = 0.0437    
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The final injury severity model with AADT (Table 8) has a distribution of positive and negative 

coefficients with variables greater than 90% significance. Variables that are significant and increase the 

likelihood for incapacitating injury and fatality with greater than 90% significance are roads with speed 

limits greater than 65 mph. Significant variables that decrease the likelihood of an incapacitating injury or 

fatal crash with 90% significance levels are average household income, total population density, and 

households with 1 vehicle available. The only variables that increases the likelihood of a crash with an 

incapacitating injury is crashes occurring on roadways with speed limits greater than 65 mph. Significant 

variables that increase the likelihood of a crash with a fatality with greater than 90% significance are 

roadways with AADT greater than 60,000, rural land use, and roadways with speed limits 35 to 60 mph. 

The presence of school zones and housing units with 1 vehicle available decrease the likelihood of a 

fatality with levels greater than 90%.    

 

 The model in Table 9 removes AADT and accounts for all roadway classification observing 

5,569 crashes. 
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Table 9. Final MNL Regression Model for Pedestrian Injury Severity without AADT. 

Variable Coefficient 

P-

Value 

Marginal 

Effect 

Property Damage & Non-incapacitating Injury 

(base 

outcome)   

 

       

Incapacitating Injury      

Rural Land Use (1/0) 0.163 0.120 1.177 

Industrial Land Use (1/0) -0.817 0.184 0.442 

Presence of school zone (1/0) -0.0911 0.611 0.913 

Speed limit 35 to 60 mph (1/0) 0.0611 0.486 1.063 

Speed limit 65 mph or greater (0/1) (1/0) 0.377 0.090 1.458 

Housing units with no vehicles (%) -1.056 0.016 0.348 

Housing units with 1 vehicle (%) -1.176 0.001 0.309 

Housing units with 2 vehicles (%) 0.761 0.146 2.141 

Average Household Income (n) -0.00000585 0.001 1.000 

Total Population Density (n) -0.000271 0.001 1.000 

Number of lanes (n) 0.0685 0.021 1.071 

Constant -0.815 0.007  

    

 

  

Fatal   

 

  

Rural Land Use (1/0) 0.736 0.000 2.087 

Industrial Land Use (1/0) 1.096 0.013 2.991 

Presence of school zone (1/0) -1.122 0.015 0.326 

Speed limit 35 to 60 mph (1/0) 0.445 0.002 1.561 

Speed limit 65 mph or greater (0/1) (1/0) 1.164 0.000 3.203 

Housing units with no vehicles (%) -0.441 0.482 0.644 

Housing units with 1 vehicle (%) -1.481 0.003 0.227 

Housing units with 2 vehicles (%) 2.315 0.001 10.123 

Average Household Income (n) -0.0000146 0.000 1.000 

Total Population Density (n) -0.000399 0.004 1.000 

Number of lanes (n) 0.160 0.000 1.173 

Constant -2.481 0.000  

Summary Statistics    

Number of observations = 5,573    

LR chi
2
(22) = 347.48    

P-value = 0.0000    

Pseudo R
2
 = 0.0415    
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Variables in the final injury severity model without AADT (Table 9) have a distribution of 

positive and negative coefficients for variables with 90% significance. Variables that are significant and 

increase the likelihood for incapacitating injury and fatalities with 90% significance are number of lanes 

and housing units with 2 vehicles available. Rural land and housing units with 2 vehicles available are 

positively significant at the 80% level for incapacitating injury and at the 90% level for fatality. Variables 

that are significant and decrease the likelihood of an incapacitating injury or fatal crash with greater than 

90% significance are housing units with 1 vehicle available, average household income, and total 

population density. Roadways with speed limits from 35 to 60 mph are significantly greater than 90% and 

increase the likelihood of a crash with a fatality. Industrial land use is significant at the 85% level for 

incapacitating injury but positively significant at the 90% level for fatality. Variables that decrease the 

likelihood of a crash with a fatality with greater than 90% significance are presence of school zones and 

industrial land use. Increasing speed and vehicle ownership have the highest marginal effect, which 

indicate that these two variables have the most influence on pedestrian incapacitating injury or fatality. 

5.3.4 Final Model Conclusion  

The final MNL model displays similar results to the preliminary models. The final MNL model gives 

key insight to roadway geometrics, traffic volumes, and socioeconomic and demographics for each 

roadway segment. Variables proven to be significant to increase the likelihood of a fatality in both MNL 

models from Table 8 and Table 9 are as areas with rural land use and roadways with posted speed limit 

greater than 35 mph, housing units with 2 vehicles available, and number of lanes. As the number of lanes 

increase, the likelihood of a pedestrian fatality increases. Presence of school zone, total population 

density, and average household income are proven statistically significant with negative coefficients in 

both models. Total population density was significant but with a negative coefficient meaning that the 

likelihood of a crash with an incapacitating injury or fatality will occur in areas with low population 

density. Housing units with 2 vehicles has the largest marginal effect indicating that the increase in 

vehicle ownership heavily increases the likelihood of a pedestrian fatality. Both models, with AADT and 

without AADT, will be used in the following chapter to calculate pedestrian harm for each road segment 

by predicting the capability of estimating the probability of severe crashes as a function of exogenous 

variables that are readily available.  

5.4 Conclusion 

In conclusion, all four models evaluate issues affecting severe crashes such as, AADT, roadway 

conditions, socioeconomic and demographic factors, land use, and pedestrian behavior. The key 

component from all four models is that severe pedestrian crashes occur on roadways with high speed, 

rural land use, and low population densities. These areas are often areas that are away from local city 

streets and not well lit.  As number of households with vehicles increases, the likelihood of a pedestrian 

incapacitating injury or fatality increases, which means pedestrian crashes with severe injuries are 

occurring on census tracts where there are more vehicles present. Also, the models with AADT show that 

roadways with high AADT increase the likelihood of a severe injury, which is opposite of the crash count 

model. All four models indicate that the presence of school zones decrease the likelihood for severe 
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injuries. This is because within school zones speed limits are generally reduced by 15 mph of the regular 

posted speed limit in Tennessee. Although MNL models cannot point at the exact location at where 

crashes with high injury severity occur, it can provide key insight to general areas that can be focused on 

safety related pedestrian projects. These models provide a predictive capability to estimate probability of 

severe crashes as a function of exogenous variables that are readily available. Some of the findings in the 

injury severity model are opposite of our findings in Chapter 4 with crash count modelling and 

demonstrates the need for a combined model to calculate pedestrian harm for all road segments (Chapter 

6) by combining crash count and injury severity. 
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CHAPTER VI PEDESTRIAN HARM MODELING 

6.1 Introduction 

The main innovative part to this study was to model pedestrian harm for each road segment in 

Tennessee from the TDOT road geometrics shapefile. To the author’s knowledge, this framework has 

never been performed. In this case, pedestrian harm is defined as a roadway that may lead to 

incapacitating injury or fatality for pedestrians if struck by a vehicle. The pedestrian harm model 

combined crash count models and injury severity models with and without AADT. There will be two 

separate models, one with AADT and one without AADT. By using two separate models, the impact of 

AADT on pedestrian harm can be addressed because the traffic count dataset does not contain AADT for 

local roadways. These models will make it possible to identify roadways with high injury severity levels 

along with high crash counts to maximize the reduction of state-wide pedestrian crashes.  

 

6.2 Criteria for Modeling Pedestrian Harm 

In order to calculate pedestrian harm, there were four parts needed: road geometrics and traffic 

count data, surrounding socioeconomic and demographics for each roadway segment used from the injury 

severity and crash count models; coefficients from the crash count models in Chapter 4; coefficients form 

the injury severity final models in Chapter 5; and lastly a relative weight factor to distinguish the 

difference between PDO and non-incapacitating injury, incapacitating injury, and fatality. To determine 

the relative weight factor, a crash cost was calculated using the 2010 Highway Safety Manual Crash Cost 

Estimates [28] guidelines, which gives four steps approach on how to calculate crash cost estimates for a 

given year. These calculations are listed in section 6.4 along with the pedestrian harm equation used for 

each road segment.  

 

Data used for the pedestrian harm model was AADT data from the TDOT website [26] and 

socioeconomic and demographics from the 2010 census [25], and TDOT road geometrics shapefile. 

AADT and census data were joined onto TDOT road geometrics using the “spatial join” feature in 

ArcGIS. These were the same datasets used for the crash count and injury severity modeling except 

without the police reported crash data. The outcome of the joined files was 193,574 road segments 

throughout Tennessee, excluding local roadways in West Tennessee. See Appendix B for a map of all 

roadways used in this study. 

6.3 Pedestrian Harm Calculation 

In order to calculate pedestrian harm for each roadway segment, several calculations had to be 

made using Microsoft Excel. The first calculation was to generate three separate equations for the 

probability of each injury severity level (PDO and non-incapacitating injury, incapacitating injury, and 

fatality) for each road segment based the coefficients from the MNL final injury severity models from 
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Chapter 5 and the road geometrics, traffic data, and socioeconomic and demographic data , which will be 

used as the independent variables. The  MNL general equation is [27]: 

 

     
      

        
   

 

 

 

Where; 

P is probability of injury type 

X is a vector of independent variables 

β is a vector of estimated coefficients  

i is a potential outcome. 

 

 The second calculation was to calculate crash count for each road segment using the coefficients from the 

NB crash count models from Chapter 4 and the road geometrics, traffic data, and socioeconomic and 

demographic data, which will be used as the independent variables. The NB general equation is [27]:  

 

                                                                                                       

Where; 

λ is crash count 

X is a vector of independent variables 

β is a vector of estimated coefficients  

i is a potential outcome. 

 

The third calculation is to determine estimated crash severity rate by combining each injury severity 

equation and crash count equations above for each road segment. The estimated crash severity rate for 

PDO and non-incapacitating injury is calculated as:  

                                                                        . 

The estimated crash severity rate for incapacitating injury is calculated as: 

                                                    . 

The estimated crash severity rate for fatalities is calculated as:  

                          . 
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Where; 

E( ) = Crash Severity Rate 

P = Probability of injury type 

λ = Crash Count. 

 

The next section provides the steps used calculate crash cost based on injury severity categories and will 

determine an equation to calculate pedestrian harm for each roadway segment.  

6.4 Adjustment of Crash Costs 

Crash costs were obtained from the Federal Highway Administration (FHWA) Crash Cost Report 

[29]. The FHWA report presents human capital crash costs and comprehensive crash costs for each 

category of injury severity for the year 2001 (Table 10) and will be the base year to adjust for crash cost 

for the year 2012. The year 2012 was chosen because it was the last full year at the time that this study 

was completed. For future pedestrian harm models, the year will need to be updated to a more current 

time frame.  

 

 

Table 10. Human and Comprehensive Crash Costs in the Year 2001. 

Collision Type Human Costs Comprehensive Crash Costs 

Fatality  $1,245,600 $4,008,900  

Disabling Injury  $111,400 $216,000  

Possible Injury  $28,400 $44,900  

PDO  $6,400 $7,400  

 

 

 

Step 1: Adjust Human Capital Costs Using Consumer Price Index (CPI) 

Human capital costs were multiplied by a ratio of the CPI for the year 2012 and divided by the CPI for 

2001. Based on US Bureau of Labor Statistics data [30] the average annual CPI for the South urban area 

of the United States for the year 2001 was 171.1 and for January 2012 was 220.497. 

 

                     
       

       
                                                                                                        

 

CPI = 220.497/171.1=1.29 

 

The 2012 CPI-adjusted human capital costs were estimated by multiplying the CPI ratio by the 2001 

human capital costs. For fatal crashes the CPI-Adjusted Human Capital Costs were calculated as: 

 

2012 Human Capital Cost of Fatal Crash = $1,245,600×1.29 = $1,606,824 [per fatal crash] 
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The 2012 human capital costs for all categories of injury severity are summarized in Table 11. 

 

Table 11. 2012 CPI-Adjusted Human Crash Costs. 

Collision Type 2001 Human Costs 2012CPI-Adjusted Human Costs 

Fatality   $1,245,600 $1,606,824  

Disabling Injury  $111,400 $143,706 

Possible Injury  $28,400 $36,636  

PDO  $6,400 $8,256  

 

 

 

 

Step 2: Adjust Comprehensive Costs using ECI 

To adjust the portion of the comprehensive costs that are not human capital costs, the difference between 

the comprehensive cost and the human capital cost were identified. For example, the unit crash cost 

difference in 2001 dollars for fatal crashes was calculated as: 

 

$4,008,900 - $1,245,600 = $2,763,300 [per fatal crash] 

 

The differences for each crash severity level are shown in Table 12. 

 

Step 3: Adjust the Difference Calculated in Step 2 Using the Employment Cost Index (ECI) 

The comprehensive crash cost portion that does not include human capital costs was adjusted using a ratio 

of the ECI for 2012 divided by the ECI for 2001. Based on US Bureau of Labor and Statistics data [31] 

the Employment Cost Index in March for year 2001 was 84.7 and in 2012 was 116.2. The ECI ratio was 

then be calculated as: 

 

                     
       

       
            

 

 ECI ratio =116.2/84.7=1.37 

 

This ECI ratio was then multiplied by the calculated difference between the 2001 human capital and 2001 

comprehensive cost for each injury severity category and is shown in Table 12. For example, the 2012 

ECI-adjusted difference for the fatal crash cost is  

 

1.37 × $2,763,300=$3,785,727 [per fatal crash] 
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Table 12. ECI-Adjusted Crash Costs. 

Collision Type 

2001 

Human 

Costs 

2001 

Comprehensive 

Crash Costs 

 Crash 

Cost 

Difference 

2012 ECI-Adjusted 

Crash Cost 

Difference 

Fatality  $1,245,600 $4,008,900  $2,763,300  $3,785,721  

Disabling Injury  $111,400 $216,000  $104,600  $143,302  

Possible Injury  $28,400 $44,900  $16,500  $22,605  

PDO  $6,400 $7,400  $1,000  $1,370  

 

 

 

 

Step 4: Calculate the 2012 Comprehensive Costs 

The sum of the 2012 CPI-adjusted costs (Table 11) and the 2012 ECI-adjusted cost differences (Table 12) 

was taken, as shown in Table 13, to determine the 2012 Comprehensive Costs. For example, the 2012 

Comprehensive Cost for a fatal crash was calculated as: 

 

2012 Comprehensive Fatal Crash Cost = $1,606,824 + $3,785,721= $5,392,545 [per fatal crash] 

 

 

Table 13. 2012 Societal Crash Costs. 

Collision Type 

2012 CPI-

Adjusted Human 

Costs 

2012 ECI-Adjusted 

Crash Cost 

Difference 

2012 

Comprehensive 

Crash Costs 

Fatality  $1,606,824  $3,785,721  $5,392,545  

Disabling  $143,706 $143,302  $287,008  

Possible Injury  $36,636  $22,605  $59,241  

PDO  $8,256  $1,370  $9,626  

 

 

 

 

Finally, the weight factors for each category of injury severity was calculated by expressing the 2012 

comprehensive crash cost as a ratio of the cost for non-incapacitating injury and PDO shown in Table 14 

below. Disabling injury was interpreted as incapacitating injury, and possible injury was interpreted as 

non-incapacitating injury. Since there are four types crash types and the MNL injury severity models from 

Chapter 5 only use three crash types, PDO and non-incapacitating injuries were combined used 2012 

comprehensive crash costs and the percentage of PDO and non-incapacitating injuries from the TRIMS 

crash data. Calculations are also shown in Table 14. The 2012 Comprehensive Crash Cost Ratio is:  

 

2012 Comprehensive Crash Cost Ratio = 98.48*Fatal + 5.24*Incapacitating + 1.00*Non-Incapacitating & 

PDO                          
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Table 14. Comprehensive Crash Costs Ratio for 2012. 

Collision 

Type 

2012 Comprehensive 

Crash Costs  Number of Crashes 

Weight 

Factor 

2012 

Comprehensive 

Crash Costs 

Ratio 

Fatal Injury $5,392,545 443 5,392,545 98.48 

Incapacitating 

Injury $287,008 1,083 287,008 5.24 

Non-

Incapacitating 

Injury $59,241 3,694 

54,757 1.00 PDO $9,626 367 

 

 

 

 

Finally, the pedestrian harm equation used for data on each the 193,574 road segment is:  

Pedestrian Harm = 98.48*              + 5.24*                           + 1.00*              

                      . 

Recall from the previous subsection that E    is crash severity rate for each category of injury severity 

level.  

6.5 Pedestrian Harm Model Results 

The results of the pedestrian harm models provide a pedestrian harm score based on the 

“Pedestrian Harm” equation in Section 6.4. This equation was used for all 193,574 roadway segments 

throughout Tennessee for both pedestrian harm models, with and without AADT. Roadway segments are 

divided up as geometric, traffic, and census attributes change the composition of the roadway.  

Summarized in Table 15 are the results of the pedestrian harm model with AADT, and summarized in 

Table 16 are the results of the pedestrian harm model without AADT. All interstates and State Route (SR) 

155 (Briley Parkway, Davidson County), SR 153 (Hamilton County), and SR 385 (Bill Morris Parkway, 

Shelby County) were set at a pedestrian harm score equal to 0.000000 for both models because these were 

all high speed arterials that are illegal for pedestrians to walk along and do not have any signs of high 

pedestrian exposure. For the pedestrian harm model with AADT, all roadways classified as local were 

removed from the model because the injury severity model with AADT in Chapter 5 did not have traffic 

data for local roadways. Pedestrian harm scores are summarized in Tables 15 and Table 16. By using the 

layer properties feature in ArcGIS, all roadway segments were able to be split into 10 separate 

classifications. The 10 classifications allows for variation of the variables, such as road geometrics, traffic 
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data, and socioeconomic and demographics data, to determine. The number of lanes is for both directions 

and an odd number of lanes indicate the presence of middle turn lane.  

 

Table 15. Pedestrian Harm with AADT Results. 

Pedestrian Harm with AADT Classification Attributes contributing to each classification of 

pedestrian crash 

0.000000 (155,903  roadway segments) 
Interstates; State Routes 155, 153, 385; and local 

roadways 

0.0000002 –  0.025000 (3,941 roadway segments) 
1 to 6 lanes, speed limit 15 to 70 mph, all types of 

lane use, presence of school zones 

0.025001 – 0.050000 (1,491 roadway segments) 
1 to 4 lanes, speed limit 15 to 70 mph, all types of 

lane use, presence of school zones 

0.050001 – 0.100000 (1,685 roadway segments) 
1 to 4 lanes, speed limit 15 to 70 mph, all types of 

lane use, presence of school zones 

0.100001 – 0.250000 (13,112 roadway segments) 
1 to 6 lanes, speed limit 15 to 70 mph, all types of 

lane use, presence of school zones 

0.250001 – 0.750000 (9,563 roadway segments) 
2 to 6 lanes, speed limit 20 to 70 mph, all types of 

lane use 

0.750001 – 1.000000 (1,603 roadway segments) 
2 to 6 lanes, speed limit 30 to  65 mph, all types of 

land use 

1.100001 – 3.000000 (4,174 roadway segments) 
2 to 6 lanes, speed limit 30 to 55 mph, all types of 

land use 

3.000001 – 5.000000 (960 roadway segments) 
42% of roadway segments are in Shelby County 

(19% in Davidson, 11% in Hamilton, 7% in Knox, 

and  21% in counties other than Shelby, Davidson, 

Hamilton, and Knox); 2 to 7 lanes; speed limit 30 

to 55 mph; CBD, commercial, fringe, or industrial 

land use 

5.000001 – 70.000000 (1,142 roadway segments) 
State Routes 177, 1, 175 and 176 in Shelby County 

are the roadways with the four highest pedestrian 

harm scores and have AADT volumes greater than 

25,000; 65% of roadway segments are in Shelby 

County; 3 to 8 lanes; speed limit greater than 40 

mph; CBD, commercial, fringe, industrial, 

residential, or public land use  

 



 

 

37 

The pedestrian harm model with AADT in Table 15 lists State Routes 177, 1, 175, and 6 in 

Shelby County as the four most harmful roadways segments in Tennessee, and they also have AADT 

volumes greater than 25,000. From looking at these three roadways in Google Maps, they all have 

unfinished or no sidewalks and are along a stretch of roadway designated as commercial land use [32]. As 

AADT, speed limit, and number of lanes increase, the pedestrian harm score increases as well. Land use 

marked as CBD, commercial, fringe, industrial, residential, or public have the highest pedestrian harm 

scores, while rural land use has the lowest pedestrian harm scores. Table 16 contains a detailed list of 

attributes that influence the pedestrian harm model without AADT.  
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Table 16. Pedestrian Harm without AADT Results. 

Pedestrian Harm without AADT Classification Attributes contributing to each 

classification of  pedestrian crashes 

0.000000 (1,402  roadway segments) 
Interstates  and State Routes 155, 153, 385 

0.0000002 –  0.025000 (123,884 roadway 

segments) 

Majority of roads are classified as local, 1 to 6 

lanes, speed limit 5 to 70 mph, all types of lane 

use, presence of school zones 

0.025001 – 0.050000 (19,114 roadway segments) 
Majority of roads are classified as local, 1 to 7 

lanes, speed limit 5 to 70 mph, all types of lane 

use, presence of school zones 

0.050001 – 0.100000 (6,860 roadway segments) 
Even distribution between state routes and 

local roadways, 1 to 4 lanes, speed limit 15 to 

40 mph, all types of lane use, presence of 

school zones 

0.100001 – 0.250000 (23,279 roadway segments) 
Even distribution between state routes and 

local roadways, 1 to 6 lanes, speed limit 10 to 

70 mph, all types of lane use, presence of 

school zones 

0.250001 – 0.750000 (10,882 roadway segments) 
State routes and local roadways; 1 to 7 lanes, 

speed limit 15 to 70 mph, all types of lane use, 

presence of school zones 

0.750001 – 1.000000 (1,702 roadway segments) 
State routes; 2 to 6 lanes, speed limit 30 to 65 

mph, all types of land use 

1.100001 – 3.000000 (4,310 roadway segments) 
State routes, 2 to 6 lanes, speed limit 30 to 55 

mph, all types of land use 

3.000001 – 5.000000 (935 roadway segments) 
State routes; 41% of roadway segments are in 

Shelby County (19% in Davidson, 11% in 

Hamilton, 7% in Knox, 22% in counties other 

than Shelby, Davidson, Hamilton, and Knox); 

2 to 7 lanes; speed limit 30 to 55 mph; CBD, 

commercial, fringe, or industrial land use 

5.000001 – 70.000000 (1,206 roadway segments) 
State Routes 177, 14, 175 and 176 in Shelby 

County are the roadways with the four highest 

pedestrian harm scores;  65% of roadway 

segments are in Shelby County (15% in 

Davidson, 8% in Hamilton, 4% in Knox, 7% in 

counties other than Shelby, Davidson, 

Hamilton, and Knox); 4 to 6 lanes; speed limit 

30 to  55 mph; CBD, commercial, fringe, 

industrial, residential, or public land use  
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The pedestrian harm model without AADT lists State Routes 177, 14, 175, and 176 in Shelby 

County as the roadway segments with the highest pedestrian harm. State Routes 177, 175, and 176 were 

also listed as the roadway segments with the highest pedestrian harm in the pedestrian harm with AADT. 

The model without AADT allows for all roadway segments (expect interstates and State Routes 155, 153, 

and 385) to be included which leads to an increased range of attributes, such as speed limit, land use, and 

number of lanes. When comparing state routes and local roadways, state routes are perceived to be more 

harmful to pedestrians than local roads.  

Overall, the pedestrian harm models with and without AADT have similar results on categorizing 

roadway segments that may be harmful to pedestrians. School zones rank in the bottom half of both 

pedestrian harm models indicating that these areas are not as harmful as expected from the crash count 

model. Land use, such as CBD, commercial, fringe, industrial, residential, or public use, have high 

pedestrian harm scores, which was found to be significant from the crash count model. Rural land use 

does not have any indication on pedestrian harm, which is opposite of findings from the injury severity 

models. An increase in total population density leads to an increase in pedestrian harm scores for both 

model. For both models, roadway segments in Shelby County are listed as the county with the highest 

pedestrian harm with 65% of roadway segments. Also, Shelby, Davidson, Hamilton, and Knox Counties 

had the most roadway segments with the highest pedestrian harm scores in both models. 

6.6 Pedestrian Harm Results in GIS 

The final part of this study was to create a GIS tool using ArcGIS. The tool can be used to locate 

pedestrian harm scores for  roadways throughout Tennessee. The final outcome gives a map of all 

roadways (except local roads in West Tennessee)  in Tennessee with their respective pedestrian harm 

score based on graduated colors  with green , yellow, orange, and red, which are in order of lowest to 

highest for pedestrian harm for their respective category from Table’s 15 and 16. The GIS map is a large 

file and has to be zoomed in to be able to see the roadways with graduated colors. Therefore, maps of 

Shelby (Memphis), Davidson (Nashville), Hamilton (Chattanooga), and Knox (Knoxville) County can be 

found in Appendix C. These counties were the four counties in both pedestrian harm models with the 

highest pedestrian harm score. Also, the complete map has a detailed attribute table that lists names of 

roadways, locations of roadways, all independent variables used in crash count and injury severity 

models, and pedestrian harm calculations. Displayed in Figure 3 is an example of pedestrian harm with 

AADT for SR 177 in Shelby County. Below Figure 4 which shows the Google Street View of the 

roadway segment from Figure 3 [32].
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Figure 3. Sample of Pedestrian Harm with AADT for SR 177 in Shelby County, Tennessee. 
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Figure 4. Google Street View of SR 177 in Shelby County, Tennessee. 
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From Figure 3, there are networks of roadways in Shelby County, Tennessee, which are shaded 

by10 different colors. The route number for this example is circled in red. Public transportation 

organizations now have the capability to use this tool to look at roadways that are potentially harmful to 

pedestrians in order to prioritize funding for pedestrian infrastructure projects. Instead of going out and 

looking at streets in person, one may use Google Street View [32] (Figure 4) to look at contributing 

attributes that may cause a roadway to be harmful for pedestrians. The example in Figures 3 and 4 is of 

SR 177 (Germantown Parkway) in Shelby County. The section of road is located in a commercial 

business district with 8 lanes of traffic and a vehicle posted speed limit of 45 mph. Sidewalk are provided 

but are located close to the roadway with no protection for the pedestrians. Also crosswalks are marked at 

signalized, but are located at distance far apart from each other, which may cause pedestrian mid-block 

crossing. This tool may be updated yearly to keep forecasting road segments that are harmful to 

pedestrians. 
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CHAPTER VII CONCLUSION 

In conclusion, this study provides a framework on where to target roadways to protect pedestrians 

from severe crashes and reduce the number of incapacitating injuries and fatalities in the future. This 

study used a total of  5,587 pedestrian crashes throughout a six year period (2003-2009) as the dataset for 

statistical modeling.The same pricipal applies when attempting to recreate this study with bicycylists. The 

two most important parts of this study are the crash count and injury severity statistical models, which 

were used to develop the pedestrin harm models.   

 

Modeling pedestrian harm is an innovative framework to predict roadways that are harmful to 

pedestrians. The decision to make two seperate models was becasuse the model with aadt does not have 

aadt for local roads and excludes all local roads which make up a large portion of roadways in the state. 

Therefore, the model with aadt uses state routes and calcuates a higher pedestrian harm  score for 

roadways with the following characteristics: multilane (3 to 8 lanes) road segments; speed limts greater 

than  40 mph; and CBD, commercial, fringe, industrial, residential, or public land use. Roadways with 

low pedestrian harm scores are often roadways with low speed limits, rural land  use, and less than 6 

lanes. These are often areas  with low populaiton density. In general, roadways with lower speed limits 

usually result in a less severe injury for pedestrians. Over 60% of the roadways in the highest category 

(0.000001 – 50.000000) of pedestrian harm are in Shelby County.  Both pedestrian harm  models 

calculate the highest scores for the same three roadways, which are SR 177 (Germantown Parkway), SR 

175 (East Shelby Drive), and SR 176 (New Getwell Road) and are all in Shelby County. Also, both 

models list the highest pedestrian harm scores for the following counites: Shelby, Davidson, Hamilton, 

and Knox Counties. Shelby, Davidson, Knox, and Hamilton Counties have the highest crash counts in in 

Tennessee from 2003 to 2009. Both models specify that rural land use and presence of school zones  have 

low pedestrian harm scores. Unlike the model with aadt, the model without aadt give pedestrian harm 

scores for a broad range of roadway classifications. Roadways with the highest pedestrian harm score are 

are state routes with 4 to 6  lanes; speed limits between 30 to 55 mph; and CBD, commercial, fringe, 

industrial, residential, or public use land uses. The model without AADT also provides high pedestrian 

harm scores for downtown areas in Shelby, Davidson, Hamilton, and Knox Counties. Downtown areas 

are often areas with with high pedestrian exposure. According to the pedestrian harm model without 

AADT, local roadways have low pedestrian harm scores. Overall, AADT has a only a maringal increase 

when comparing scores from the pedestrian harm model with AADT to the pedestrian harm model 

without AADT. This may be do the fact that in the crash count model  has no marginal effect and has a 

coefficient equal to -0.00000224. In the injury severity model, AADT does not become significant and 

increase the likelhood of a fatal crash unitil AADT is greater than 60,000. State routes usually do not have 

an AADT greater than 60,000, but in  1.2% state routes of in this study do have an AADT greater than 

60,000. These state routes are located in Shelby, Hamilton, and Rutherford County.  

By looking at Davidson, Hamilton, and  Knox Counties, the roadways with the highest pedestrian 

harm score for the model with AADT are:  SR 1 (West End Avenue), SR 6 ( Briarville Road/end of 

Ellington Parkway), and SR 24 (Lebanon Pike) in Davidson County; SR 2 (Broad Street), SR 58 (near the 

Tennessee River), and SR 389 (4
th
 Street) in Hamilton County; and SR 1 (Kingston Pike), SR 115 (Alcoa 

Highway), and SR 33 (North Broadway). The roadways with the highest pedestrian harm scores for the 
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model without AADT are: SR 12 (Ashland City Highway), SR 1 (West End Avenue), SR 6 ( Briarville 

Road/end of Ellington Parkway),  in Davidson County, SR 1 (Kingston Pike), SR 62 (Western Avenue), 

SR 33 (North Broadway) in Knox County, and SR 2 (Broad Street), SR 58 (near the Tennessee River), 

and SR 389 (4
th
 Street) Hamilton Couny. These given roadway are the roadways with the highest 

pedestrian harm score in both models. 

 

The study is useful because it provides transportation organinzaions a framwork on how to 

develop a pedestrian harm model. The pedestrian harm models are tools that identify roadways that are 

harmful  to severe injuries for pedestrian crashes. The models allow state, county, and city tranportation 

orgainzations, as well as metropolian planning orgainzaions the ability to provide a proactive framework 

on where to priortize HSIP funding for pedestrian related projects to improve pedstrian safety. 
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Appendix A – List of Data Variables 

CRASH DATA VARIABLES 

 

CENSUS DATA VARIABLES 

Person type (Ped or Bike) 

  

Total Population by Age groups 

Injury type  

  

Total Male Population by Age groups 

Crash County 

  

Total Female Population by Age groups 

Crash route 

  

Total Population by Race 

Crash location 

  

Total Population in household 

Type of crash 

  

Total Population Density 

Time of crash 

  

Total households 

Total killed in a crash 

  

Family households by Age groups 

Total incapacitated injuries 

  

Non Family households by Age groups 

Total other injuries 

  

Average household size 

Manner of first Collision 

  

Average family size  

Total injured 

  

Total housing units 

First harmful event 

  

Occupied housing units 

Total vehicles in a Crash 

  

Vacant housing units 

Lighting conditions 

  

Vacant housing units For rent 

Weather condition 

  

Vacant housing units Rented, not 

occupied 

Relation to first junction 

  

Vacant housing units For sale only 

Relation to first roadway 

  

Vacant housing units Sold, not occupied 

Urban or rural 

  

Rental vacancy rate (percent) 

Hit and run 

  

Occupied housing units 

Cons. zone 

  

Owner-occupied housing units 

Age 

  

Population in owner-occupied housing 

units 

Alcohol 

  

Household size of owner-occupied units 

Alcohol determination 

  

Renter-occupied housing units 

Gender 

  

Population in renter-occupied housing 

units 

Total vehicles 

  

Household size of renter-occupied units 

Crash city 

   

Location highway street 

  

SOCIO-ECONOMIC DATA 

VARIABLES 

Location estimate 

  

Population by Labor Force 

Location direction 

  

Population by Gender and Labor Force 

Location mile post 

  

Number of Children 

Report date 

  

Workers by Labor Force 

Manner of collision 

  

Wages and Salary 

Total persons 

  

Public or Private Worker 

Highway type 

  

Average Household income  
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Appendix B – Map of Tennessee Roadways
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Appendix C – Pedestrian Harm in GIS 
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