
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

5-2003

A Coarse-Grain Parallel Implementation of the
Block Tridiagonal Divide and Conquer Algorithm
for Symmetric Eigenproblems.
Robert M. Day
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Day, Robert M., "A Coarse-Grain Parallel Implementation of the Block Tridiagonal Divide and Conquer Algorithm for Symmetric
Eigenproblems.. " Master's Thesis, University of Tennessee, 2003.
http://trace.tennessee.edu/utk_gradthes/1932

http://trace.tennessee.edu
http://trace.tennessee.edu
http://trace.tennessee.edu/utk_gradthes
http://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Robert M. Day entitled "A Coarse-Grain Parallel
Implementation of the Block Tridiagonal Divide and Conquer Algorithm for Symmetric
Eigenproblems.." I have examined the final electronic copy of this thesis for form and content and
recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of
Science, with a major in Computer Science.

Robert C. Ward, Major Professor

We have read this thesis and recommend its acceptance:

Michael W. Berry, Jian Huang

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Robert M. Day entitled “A Coarse-Grain Paral-
lel Implementation of the Block Tridiagonal Divide and Conquer Algorithm for Symmetric
Eigenproblems.” I have examined the final electronic copy of this thesis for form and con-
tent and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Master of Science, with a major in Computer Science.

Robert C. Ward

Major Professor

We have read this thesis
and recommend its acceptance:

Michael W. Berry

Jian Huang

Acceptance for the Council:

Anne Mayhew

Vice Provost and Dean of
Graduate Studies

(Original signatures are on file with official student records.)

A Coarse-Grain Parallel
Implementation of the Block Tridiagonal

Divide and Conquer Algorithm for
Symmetric Eigenproblems

A Thesis
Presented for the

Master of Science Degree
The University of Tennessee, Knoxville

Robert Michael Day
May 2003

Dedication

This thesis is dedicated first and foremost to my wife Sunhee and daughter Ashley for

their love and support. Also to my parents Michael and Ethel Day, for their love, guidance,

and support. And of course my second parents, Mr. and Mrs. Youngkil Im.

Finally, I give thanks to God for the many, many blessings in my life.

ii

Acknowledgments

I wish to thank all those who helped and guided me in the completion of my Master

of Science in Computer Science. My first thanks goes to Dr. Ward for his guidance in

this project and help in the preparation of this thesis. I thank Dr. Berry and Dr. Huang

for serving on my committee. I would also like to thank Dr. Wilfried Gansterer, Research

Associate, University of Tennessee, for the many answered questions about Divide and

Conquer and help with Fortran and LATEX, and Richard P. Muller, Director, Quantum Simu-

lations, Materials and Process Simulation Center, Beckman Institute, California Institute of

Technology 139-74, Pasadena, CA 91125, for providing test cases and helpful discussions.

This work was partially supported by the Academic Strategic Alliances Program of

the Accelerated Strategic Computing Initiative (ASCI/ASAP) under subcontract number

B341492 of DOE contract W-7405-ENG-48.

Additionally, this research uses resources of the Scalable Intracampus Research Grid

(SInRG) Project at the University of Tennessee, supported by the National Science Foun-

dation CISE Research Infrastructure Award EIA-9972889.

iii

Abstract

Cuppen’s divide and conquer technique for symmetric tridiagonal eigenproblems, along

with Gu and Eisenstat’s modification for improvement of the eigenvector computation,

has yielded a stable, efficient, and widely-used algorithm. This algorithm has now been

extended to a larger class of matrices, namely symmetric block tridiagonal eigenproblems.

The Block Tridiagonal Divide and Conquer algorithm has shown several characteristics that

make it suitable for a number of applications, such as the Self-Consistent-Field procedure

in quantum chemistry.

This thesis discusses the steps taken to implement a coarse-grain parallel version of

the Block Tridiagonal Divide and Conquer algorithm, suitable for a parallel supercomputer

or a cluster of machines. The parallel version relies on components of the ScaLAPACK

parallel linear algebra library and follows the same model as the serial code, including the

implementation of full deflation.

A modest speedup (2 to 3) was achieved using a few processors (4 and 16). Increas-

ing the number of processors from 4 to 16 produced only slightly better speedup. This

implementation was not competitive with the standard ScaLAPACK symmetric eigenvalue

routine. Analysis shows that the distribution scheme chosen for the eigenvector storage re-

quires n � O
�
p2 � function calls to the ScaLAPACK matrix multiplication routine, where n

is the matrix size and p is the number of blocks. The matrix multiplications are responsible

for the majority of the computational cost; therefore, the associated overhead needs to be

reduced in order to make this implementation more competitive.

iv

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 2

1.3 Overview of Thesis . 3

1.4 Definitions and Notations . 3

2 Divide and Conquer Algorithm for Symmetric Block Tridiagonal Matrices 5

2.1 Concept . 5

2.2 The Divide and Conquer Algorithm . 6

2.2.1 Subdivision . 6

2.2.2 Solution of Subproblems . 8

2.2.3 Synthesis of Subproblems . 9

2.2.4 Eigen-decomposition of the Synthesis Matrix 10

2.3 Reduced Accuracy Ability . 11

2.4 Deflation . 11

3 Approach and Issues of Parallelization 13

3.1 General Issues in Parallelization . 13

3.2 Data Distribution . 15

3.3 Processor Load Balancing . 20

3.4 Eigenvector Storage and Computation . 21

v

3.5 Deflation . 23

4 Computational Results 24

4.1 Specifications . 24

4.2 Matrices . 25

4.3 Timings . 25

4.3.1 Matrices with 10 Diagonal Blocks 25

4.3.2 Matrices with 4 Diagonal Blocks 27

4.3.3 Reduced Rank Subdiagonal Block Experiments 28

4.3.4 Comparison with ScaLAPACK Eigenvalue Routine 28

4.4 Other Results . 29

5 Conclusion 31

5.1 Summary . 31

5.2 Future Work . 31

Bibliography 33

Vita 36

vi

List of Tables

4.1 Timings on a 2x2 processor grid for matrices with 10 equal size diagonal

blocks . 26

4.2 Matrix multiplication counts for matrices with 10 equal size diagonal blocks 26

4.3 Timings on a 2x2 processor grid for matrices with 10 unequal size diagonal

blocks . 27

4.4 Timings on a 2x2 processor grid for matrices with 4 equal size diagonal

blocks . 27

4.5 Timings on a 4x4 processor grid for matrices with 4 equal size diagonal

blocks . 28

4.6 Matrix multiplication counts for matrices with 4 equal size diagonal blocks 28

4.7 Timings on a 2x2 processor grid for matrices with 4 equal size diagonal

blocks and reduced rank subdiagonal blocks 29

4.8 Timings compared with ScaLAPACK PDSYEV routine 29

vii

List of Figures

3.1 A simple distribution of equal size block matrices 15

3.2 An unbalanced distribution of unequal block sizes 16

3.3 2-dimensional block cyclic distribution of a matrix 18

3.4 Individual block cyclic distribution of the blocks of a block tridiagonal matrix 19

3.5 Independent block cyclic distribution of the imposed blocks of the eigen-

vector storage matrix . 22

viii

Chapter 1

Introduction

In the book Matrix Computations [6], Golub and Van Loan state that the symmetric eigen-

value problem

with its rich mathematical structure is one of the most aesthetically pleasing

problems in numerical linear algebra.

The symmetric eigenvalue problem arises in many areas of mathematics, science, and en-

gineering. Several methods have been developed and improved through the years for com-

puting the eigenvalues and eigenvectors of symmetric matrices. Over the last twenty years,

Cuppen’s divide-and-conquer algorithm for the tridiagonal symmetric eigenproblem [3]

has become widely used and, with Gu and Eisenstat’s modification [7] for improved eigen-

vector computation, has become the most efficient and stable method for such problems.

Any general symmetric matrix can be reduced to tridiagonal form and then decomposed by

divide-and-conquer. This algorithm has been implemented in both serial [8] and parallel

[10] versions.

More recently, the divide-and-conquer paradigm has been extended from tridiagonal to

block tridiagonal symmetric matrices [5]. This new algorithm has shown several advan-

tages over other symmetric eigensolvers, which make it more suitable for some applica-

tions. However, a parallel version has not yet been implemented. The goal of this thesis is

1

to develop a coarse-grained parallel implementation of the Block Tridiagonal Divide-and-

Conquer algorithm, and discuss the implementation issues and resulting performance.

1.1 Motivation

In quantum chemistry, the Self-Consistent-Field, or SCF, procedure is a computational

method used to obtain certain values and quantities of interest associated with a given

material [9]. It is an iterative procedure that computes the coefficients of a basis function

expansion of the molecular orbitals in the composite of the material. One of the steps

within an iteration is to diagonalize a real, symmetric matrix by computing its eigenvalues

and eigenvectors. This step is also one of the most computationally expensive. Reducing

the time for diagonalization will significantly reduce the overall time for SCF.

Several aspects of the SCF procedure make the Block Tridiagonal Divide and Conquer

algorithm an attractive choice for diagonalizing the matrix. For one, the matrix has the

characteristic that the magnitude of the elements decreases significantly the farther they

are from the main diagonal. The matrix can therefore be closely approximated by a block

tridiagonal matrix. Another aspect is that the procedure does not require a high accuracy

eigen-decomposition for the early iterations. As will be discussed later, this algorithm

optionally allows the eigenvalues and eigenvectors to be computed at a lower accuracy,

with a reduction in the required computational time.

In order for computational chemists to solve larger, more complex problems, the time

for the computation of the eigen-decomposition must be reduced significantly. One way to

do this is by parallelizing the algorithm.

1.2 Objectives

The main objectives of this thesis are to improve computational performance of the Block

Tridiagonal Divide and Conquer algorithm by modifying the algorithm to utilize parallel

2

processing, and to investigate the resulting implementation issues. The algorithm will be

implemented in a way suitable for distributed memory parallel architectures, such as a

cluster of workstations or a parallel supercomputer. The goal is to be able to compute the

eigen-decomposition of larger matrices that could not be contained in the main memory of

a single workstation or that would otherwise require more time to compute serially than is

desired.

1.3 Overview of Thesis

The next chapter will discuss the main details of the block tridiagonal divide-and-conquer

algorithm. Special emphasis will be given to those aspects that have the most effect on

parallelization. In Chapter 3, working details of the parallelization of the algorithm will

be shown, along with the issues that arose and how they were addressed. Timings and

other results from experimentation, along with analysis, will be given in Chapter 4. Finally,

Chapter 5 will conclude the paper and discuss possible future work in relation to this thesis.

1.4 Definitions and Notations

This section discusses several notations and definitions used throughout this thesis. When

stating that A and B are equal,

A � B

is used. When defining A to be equal to B,

A : � B

is used.

The set of real numbers is denoted by � .

3

A matrix M ��� m � n is an array of real numbers with m rows and n columns (usually

called an m � n matrix). The element in the ith row and jth column of M is referenced by

the lower-case of the matrix name mi � j or by 	M
 i � j.
The transpose of a matrix M ��� m � n is an n � m matrix denoted by MT , and is defined

by 	MT
 i � j : ��	M
 j � i for i � 1
 2
�������
 n and j � 1
 2
�������
 m �
A matrix M is said to be symmetric if and only if it is equal to its transpose, i.e.

M � MT
 or

	M
 i � j ��	MT
 i � j for i � 1
 2
�������
 m
 and j � 1
 2
�������
 n �
Other matrix operations, such as multiplication, are described in [6, §1.1].

The main algorithm discussed in this thesis (the Block Tridiagonal Divide and Conquer

algorithm) will often be referred to as the BD&C algorithm.

4

Chapter 2

Divide and Conquer Algorithm for

Symmetric Block Tridiagonal Matrices

2.1 Concept

Cuppen’s popular divide and conquer algorithm for symmetric tridiagonal matrices [3]

has been extended to a larger class of matrices [5], namely symmetric block tridiagonal

matrices.

Let T ��� n � n be a symmetric block tridiagonal matrix,

T : �
������������

B1 CT
1

C1 B2 CT
2

C2 B3
. . .

. CT
p � 1

Cp � 1 Bp

������������� (2.1)

where p � 1, Bi ��� ki � ki is symmetric for i � 1
 2
������ p, and Ci ��� ki � 1 � ki is arbitrary for

i � 1
 2
������ p � 1. The block sizes ki must satisfy 1 ki ! n and ∑p
i " 1 ki � n.

5

The goal is to find the spectral decomposition

T � QDQT

where Q ��� n � n is the orthogonal eigenvector matrix, and D ��� n � n is a diagonal matrix

containing the corresponding eigenvalues. The symmetry of T guarantees that all eigenval-

ues are real and the eigenvector matrix is orthogonal [6, §8.1.1].

2.2 The Divide and Conquer Algorithm

The eigenvalues and eigenvectors of the matrix T can be computed in a divide and conquer

fashion, described in the following sections.

2.2.1 Subdivision

First, the singular value decomposition, or SVD [6, §2.5.3], of each subdiagonal block is

computed:

Ci � UiΣiV
T
i (2.2)

Each matrix Σi �#� ki � 1 � ki for i � 1
 2
������ p � 1 is a diagonal matrix containing the sin-

gular values of Ci, and Ui �$� ki � 1 � ki � 1 and Vi �%� ki � ki contain (as columns) the left and

right singular vectors, respectively. Ci can then be written as a sum of rank-1 matrices,

Ci � ri

∑
j " 1

u jσ jv j � ri

∑
j " 1

σ ju jv j

where ri � rank

�
Ci
� The diagonal blocks are modified using the SVDs of the subdiagonal

blocks as follows:

6

B̃1 : � B1 � V1Σ1V T
1

B̃i : � Bi � ViΣiV T
i � Ui � 1Σi � 1UT

i � 1 for i � 2
 3
������ p � 1

B̃p : � Bp � Up � 1Σp � 1UT
p � 1

Then let T̃ be a block diagonal matrix containing the modified diagonal blocks from T ,

T̃ : �
���������

B̃1

B̃2

. . .

B̃p

����������
Now we have

T �
���������

B1 V1Σ1UT
1 0

U1Σ1V T
1 B2

. . .

. Vp � 1Σp � 1UT
p � 1

0 Up � 1Σp � 1V T
p � 1 Bp

� ��������
� T̃ &

���������
V1Σ1V T

1 V1Σ1UT
1 0 '�'�'

U1Σ1V T
1 U1Σ1UT

1 0 '�'�'
0 0 0 '�'�'
...

...
...

. . .

���������� &(�����

'�'�'�&
���������

. . .
...

...
...'�'�' 0 0 0'�'�' 0 Vp � 1Σp � 1V T

p � 1 Vp � 1Σp � 1UT
p � 1'�'�' 0 Up � 1Σp � 1V T

p � 1 Up � 1Σp � 1UT
p � 1

����������
7

The sum involving the sparse block matrices can be written more simply as

T � T̃ & W1W T
1 &('�'�'�& Wp � 1W T

p � 1� T̃ & p � 1

∑
i " 1

WiW
T
i

where

W1 : �
������������

V1Σ1) 2
1

U1Σ1) 2
1

0
...

0

�������������
 W2 : �
����������������

0

V2Σ1) 2
2

U2Σ1) 2
2

0
...

0

�����������������

������ Wp � 1 : �

������������
0
...

0

Vp � 1Σ1) 2
p � 1

Up � 1Σ1) 2
p � 1

�������������
So the original matrix T can be written as

T � T̃ & p � 1

∑
i " 1

WiW
T
i (2.3)

2.2.2 Solution of Subproblems

The next step of the algorithm is to find the spectral decompositions of the modified diag-

onal blocks B̃i. Let B̃i � Q̃iD̃iQ̃T
i be the decompositions for i � 1
 2
������ p , and let

D̃ : �
���������

D̃1

D̃2

. . .

D̃p

� �������� and Q̃ : �
���������

Q̃1

Q̃2

. . .

Q̃p

� ��������

8

so that T̃ � Q̃D̃Q̃T . Note that D̃ is a diagonal real matrix and Q̃ is a block diagonal real

matrix. Then from (2.3),

T � T̃ & p � 1

∑
i " 1

WiW
T
i� Q̃D̃Q̃T & p � 1

∑
i " 1

WiW
T
i� Q̃ * D̃ & p � 1

∑
i " 1

Q̃TWiW
T
i Q̃ + Q̃T

� Q̃ * D̃ & p � 1

∑
i " 1

YiY
T
i + Q̃T

where Yi : � Q̃TWi.

2.2.3 Synthesis of Subproblems

The matrix

S : � D̃ & p � 1

∑
i " 1

YiY
T
i (2.4)

is called the synthesis matrix. The matrix T is orthogonally similar to the synthesis matrix,

and therefore has the same eigenvalues. The eigenvector matrix of T can be found by mul-

tiplying Q̃ by the eigenvector matrix of S, as follows. Assume that the eigen-decomposition

of the synthesis matrix is S � ZDZT . Then

T � Q̃ZDZT Q̃T (2.5)� QDQT

where Q � Q̃Z. The problem of finding the eigen-decomposition of T is now reduced to

finding the eigen-decomposition of S. Fortunately, there are good methods for doing this.

The right-hand side of (2.4) can be viewed as a series of rank-1 updates of D̃, a diagonal

9

matrix. This is important because an accurate, efficient method for computing the eigen-

system of a rank-1 updated diagonal matrix already exists, and can be separately applied

to each rank-1 modification in (2.4). The mathematics of the method will be discussed

in the next section. For each subdiagonal block Ci, ri rank-1 modifications are performed,

where ri � rank
�
Ci
� . The computation of all rank-1 modifications corresponding to a single

subdiagonal block is referred to as a merge, since it combines the eigensystems of the two

related diagonal blocks.

2.2.4 Eigen-decomposition of the Synthesis Matrix

Given a matrix D � diag
�
d1
 d2
������ dn

� �$� n � n such that d1 � d2 ��'�'�',� dn, ρ -� 0, and

a vector z ��� n such that no element of z is zero, the eigenvalues and eigenvectors of the

matrix
�
D & ρzzT � can be found as follows [6, §8.5.3]. The eigenvalues . λi / n

i " 1 are the

roots of the secular equation

f
�
λ � : � 1 & ρzT � D � λI � � 1z� 1 & ρ

n

∑
i " 1

z2
i

di � λ
(2.6)

The eigenvalues can be computed by an efficient, specialized version of Newton’s method

[8]. The corresponding eigenvector vi is given by

vi � �
D � λiI � � 1z � (2.7)

However, the direct implementation of (2.7) to compute the eigenvectors suffers from

numerical instability, due to the matrix D � λiI being close to singular. Gu and Eisenstat

developed an algorithm to compute the eigenvectors which guarantees numerical stability

and orthogonality [7].

10

2.3 Reduced Accuracy Ability

One advantage of the design of this algorithm is that it is possible to compute the entire

spectrum of eigenvalues at an accuracy much less than machine precision and reducing the

time required for these computations. As noted earlier, the SCF procedure is an iterative

process in which one step of an iteration involves computing the eigenvalues and eigenvec-

tors of a symmetric matrix. Earlier iterations of the procedure can accept approximations

of the eigensystem without significantly affecting the convergence of the solution. Com-

puting these eigen-decompositions at a reduced accuracy can eliminate many unnecessary

floating point operations.

A reduced accuracy approximation of the eigensystem can be accomplished in several

ways. For one, when computing the SVDs of the subdiagonal blocks (2.2), the rank-1 up-

dates corresponding to singular values less than a certain parameter (directly related to the

desired accuracy) can be omitted. This reduces the accuracy of the eigensystem resulting

from the merging of the corresponding diagonal blocks. However, this also reduces the

floating point operations required for the merging.

Another way to reduce accuracy is in the deflation step of the algorithm.

2.4 Deflation

An important aspect of the BD&C algorithm that can significantly reduce computation time

is deflation. Deflation allows the algorithm to reduce the size of two subproblems that are

being merged. There are two ways for deflation to occur.

Recall that Equation (2.6) requires that the eigenvalues of the diagonal matrix being

updated must be ordered and unequal. If there are equal eigenvalues, a Givens rotation can

be used to eliminate one of the values and reduce the number of eigenvalues and eigenvec-

tors that need to be computed. Another requirement is that no element of the vector z can

be zero. If either of these occur, a permutation is used to move the eigenvalue and corre-

11

sponding element of z to the end of the array in order to reduce the size of the problem.

If such deflations occur, it introduces a special block structure into the eigenvector matrix

that allows more efficient computation.

In [5], deflation is extended further by considering “almost equal” elements instead

of equal. If two eigenvalues are within a certain tolerance (greater than machine preci-

sion but based on the desired accuracy), then they are treated as if they were equal, and

a Givens rotation is applied. This tolerance is called a relaxed tolerance. If an element

of the z vector is within this relaxed tolerance of zero (close to zero), then deflation of

the element is performed. Experimentation has shown that relaxing the deflation tolerance

significantly reduced floating point operations, and analysis has shown that the entire spec-

trum of eigenvalues and eigenvectors are found at a specified accuracy greater than machine

precision. This often requires many permutations of the eigenvector matrices, which on a

serial machine is compensated for by the savings in floating point operations. In the parallel

implementation, however, this will be one of the major issues.

12

Chapter 3

Approach and Issues of Parallelization

The goals of this project are to create a coarse-grained parallelization of the Block Tridi-

agonal Divide and Conquer algorithm, and to investigate the implementation issues. The

resulting algorithm will be suitable for distributed memory architectures, such as a parallel

cluster environment or parallel supercomputer. The design of the algorithm and issues that

had to be overcome are discussed in this chapter.

3.1 General Issues in Parallelization

Parallelization is generally utilized to overcome issues in two aspects of computation: data

storage and processing time. As the size of a problem becomes large, there is a correspond-

ing increase in the data storage needed and the processing cycles spent. However, it is these

large problems that are of most interest to computational scientists. This holds true in prob-

lems where the SCF procedure is used, as well. More complex materials are represented

by larger matrices, and as a result require more storage space and more processing power.

To overcome the limitations imposed by using a single processor, an obvious approach

would be to use multiple processors working together to compute the solution of a prob-

lem. In general, these processors may have separate (distributed) memory storage or shared

memory. For this project, only distributed memory designs are considered, although stan-

13

dard message-passing to shared-memory methods could be utilized to convert the resulting

code to one for a shared-memory environment.

Ideally, the data for the problem and the work required to solve it would be divided

among the processors. This distribution of data and work are the main considerations when

parallelizing an algorithm. The even distribution of processing work is called load balance.

It is important that all processors perform approximately the same amount of work on in-

dependent tasks, in order to minimize the overall running time of the algorithm. However,

another important consideration (which does not arise in serial computing) is communica-

tion. In general, the processors may need to communicate for various reasons, such as data

sharing or synchronization. Programmers generally try to minimize communication in a

parallel algorithm, since it can be a major cost in terms of performance.

Parallel algorithms can generally be divided into two groups (with a gray area in be-

tween) according to data dependence. If all processors can work without knowledge of

the other processors’ work and results, and with very little or no synchronization, then the

algorithm is said to be pleasingly parallel (formerly termed embarrassingly parallel) [4].

In this case, the communication between processors is very low. Unfortunately, eigenvalue

problems in general are not pleasingly parallel. This can be seen in the fact that the entire

decomposition can be greatly affected by a small change to only one element of the matrix

being decomposed, and much synchronization is needed to efficiently divide the workload.

The last aspect of parallel computing that will be discussed in relation to this project

is the concept of fine-grain versus coarse-grain parallelism. An algorithm is fine-grain

if the solution to the problem can be broken into a large number of small pieces that are

executed simultaneously. Increasing the number of processors allocated to the problem

is typically straight-forward, since there are a larger number of tasks that can be divided

among the processors. A coarse-grain parallel algorithm has a small number of pieces that

cannot be (efficiently) divided further to exploit a large number of processors. This parallel

implementation of BD&C is coarse-grained. The reasons will be discussed in Section 3.2.

14

1

2 3

4 5

1 2

3 4

5 1

Figure 3.1: A simple distribution of
equal size block matrices. Proces-
sor 1 stores the first diagonal block,
and so on.

3.2 Data Distribution

Ideally, data should be distributed as evenly as possible across all processors for good load

balance and efficient memory utilization. For this algorithm, the data that must be divided

is the diagonal and sub-diagonal blocks of the input matrix and the eigenvectors to be com-

puted. Several methods of distribution were considered. Initially, a simple distribution

was considered in which the diagonal blocks and subdiagonal blocks themselves were dis-

tributed among the processors in a repeated fashion. Figure 3.1 shows what this distribution

might look like for a matrix with six diagonal blocks, and using five processors. (Note that

since the matrices being considered are symmetric, the upper diagonal blocks need not be

stored, and thus are shown here and in later figures as outlines only.) Recall that the SVD

for each subdiagonal block must be computed (§2.2.1), along with the eigen-decomposition

of each modified diagonal block (§2.2.2). This distribution would seem to divide the stor-

age and processing work almost evenly. However, this will not be the case for matrices

with various, and sometimes widely ranging, block sizes, such as in Figure 3.2. It can

be seen that processors 3 and 4 will store more of the data than the other processors, and

will have to do more processing to compute the SVDs and eigen-decompositions of their

15

1

2 3

4 5

1 2

3 4

5 1

Figure 3.2: An unbalanced distribution of un-
equal block sizes. The same method of distri-
bution (as Figure 3.1) for a matrix with varying
block sizes may result in unbalanced data dis-
tribution.

blocks. This method would not generally provide good load balancing, especially since

matrices with varying size blocks can occur frequently in practice. A specific example of

this is the matrix representing an alkane-160 molecule for the SCF procedure. It can be

approximated by a block tridiagonal matrix with block sizes 900, 62, 44, 75, and 853. This

poor load balancing would be magnified during the eigenvector computation. Therefore

this method of distribution was not used.

Other methods of data distribution that were considered include ones based on an “in-

telligent” routine to determine the distribution. Instead of a straight-forward, automatic dis-

tribution, this routine would consider block sizes and make processor assignments based on

how much data had already been assigned to a processor in relation to the other processors.

This routine would determine a “good” distribution of data that would (hopefully) balance

the workload among the processors. This method, however, could not make use of quality,

scalable, reusable software (such as ScaLAPACK), especially during the eigenvector com-

putations, and would require a considerable effort. Since this parallel implementation is a

16

first for the BD&C algorithm, it was decided that a simpler method would be attempted. A

future project could be to explore some sort of “intelligent” method of distribution of the

data and workload.

Instead, it was decided that a 2-dimensional block cyclic distribution would be used, as

in the parallel library ScaLAPACK [2]. The ScaLAPACK library (from Scalable LAPACK)

is a free, parallel implementation of most of the routines in the LAPACK library [1]. This

data distribution is defined as follows: given p processors, an m � n process grid is formed,

where p � m � n. A dense matrix is uniformly divided into k � k sub-blocks, where k is

usually based on characteristics of the machine architecture being used (processor cache

size, for example). The process grid is then cyclically superimposed over the sub-blocks of

the matrix. Figure 3.3 shows an example with 6 processors forming a 2 � 3 process grid,

and the sub-blocks of the matrix distributed in a block cyclic way.

For the BD&C algorithm, however, the matrix is not a general dense matrix, so the

block cyclic distribution is not applied uniformly over the entire matrix. Instead, each

diagonal block and subdiagonal block is individually distributed in this way. Figure 3.4

shows an example of how a block tridiagonal matrix is distributed.

Several issues are raised by choosing this type of data distribution. Smaller sub-block

sizes tend to require a larger number of communications, therefore increasing communica-

tion overhead, while larger sub-block sizes may not make efficient use of memory caching

on a single processor. Although the block tridiagonal matrix may be of large size, the

number of processors that can be effectively utilized is limited by the size of the diagonal

blocks, and the lower bound on sub-block distribution size. These limitations are what

classifies this parallel version the of BD&C as coarse-grained.

Also, the matrix dimensions in general are not divisible by the sub-block size k, which

results in partial sub-blocks on the “right” and the “bottom” of the matrix. However,

ScaLAPACK routines are aware of this, and compensate appropriately internally. This

distribution of data is known to be storage balancing and load balancing. All routines in

17

4 4 45 5 56 6

1 1 12 2 23 3

4 4 45 5 56 6

1 1 12 2 23 3

4 4 45 5 56 6

1 1 12 2 23 3

4 4 45 5 56 6

1 1 12 2 23 3

Figure 3.3: 2-dimensional block cyclic distribution of a matrix. In this
example, all sub-blocks of this general dense matrix that are labeled
with 1 are stored in processor 1, etc.

18

1 2 3
4 5 6
1 2 3

1 2 3
4 5 6
1 2 3
4 5 6
1 2 3
4 5 6
1 2 3
4 5 6
1 2 3
4 5 6
1 2 3
4 5 6
1 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1

1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4

1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5

1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5

1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5

1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2
4 5 6 4 5 6 4 5
1 2 3 1 2 3 1 2

1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1

1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1

1 2 3
4 5 6
1 2 3

Figure 3.4: Individual block cyclic distribution of the blocks of a block
tridiagonal matrix. Each diagonal block and subdiagonal block of a
block tridiagonal matrix is individually distributed in the ScaLAPACK
block cyclic fashion.

19

the ScaLAPACK library accept matrices that are stored in this format.

3.3 Processor Load Balancing

The block cyclic distribution of Section 3.2 solves the load balancing issues in two areas of

the BD&C algorithm. Since the diagonal blocks and subdiagonal blocks of the matrix are

distributed by this method, the ScaLAPACK routines for SVD and eigen-decomposition

can be utilized for these aspects of the algorithm. In general, ScaLAPACK routines are

well balanced, so this parallel implementation should benefit by using them.

Other areas of the algorithm that can be parallelized are the eigenvalue and eigenvector

computation of the rank-1 updated matrix described in Section 2.2.3. All processes need

to receive the newly computed eigenvalues. For the eigenvalues, a specialized, efficient

root solver is used, so dividing up the work and then communicating the results will be

more costly than having each processor individually compute all of the eigenvalues. This

is also the preference in the parallel implementation of the Tridiagonal Divide and Conquer

algorithm [10].

The computation of the eigenvectors can be parallelized very effectively. The routine

that computes the eigenvalues also returns parameters used in the forming of the eigen-

vector corresponding to that eigenvalue. Each eigenvector, however, is stored as a column

of the eigenvector matrix, and therefore only the m processors in that process column (of

the m � n process grid) that “own” the eigenvector need to retain those parameters. Each

of those processors then works individually to compute its part of the eigenvector. Some

communication between processors in that process column must take place because of the

permutations performed as a result of deflation (§2.4). This communication is linear with

respect to the number of eigenvalues. Meanwhile, other processors can simultaneously

work on their eigenvectors.

20

3.4 Eigenvector Storage and Computation

The distributed storage scheme that has been chosen brings up a new issue. Since the

diagonal and subdiagonal blocks are individually distributed, the eigenvector matrix that

stores the initial and accumulating eigenvectors cannot be distributed in its entirety. The

reason is that eigenvector results from a distributed eigen-decomposition cannot be written

to an arbitrary
�
i
 j � th element of a distributed matrix. The partitions of the block structure

of the initial matrix do not generally coincide with the partition of the matrix imposed by

the block cyclic distribution, so complex communication or redistribution would be needed

to write all the data to its appropriate place in the eigenvector matrix.

Instead, a block structure directly corresponding to the block structure of the original

block tridiagonal matrix must be imposed on the eigenvector matrix. Then each of these

blocks is individually distributed block-cyclically, as it is with the initial block tridiagonal

matrix. Corresponding blocks in the block tridiagonal matrix and eigenvector matrix will

now have coinciding partitions, so eigenvectors can be easily stored without extra commu-

nication. Figure 3.5 shows an example of the eigenvector matrix that corresponds to the

block tridiagonal matrix from Figure 3.4.

This decision now imposes a new problem. From Equation (2.5), the updating of the

eigenvector matrix after each merge step requires a matrix multiply involving the current

eigenvector matrix Q̃ and the eigenvector matrix Z of the rank-1 updated system. Since

these eigenvector matrices are divided into blocks imposed by the block tridiagonal struc-

ture, a “higher level” matrix multiply routine was written to deal with the special structure

of these eigenvector matrices. This routine is essentially a triple-nested loop, with the inner

loop being a call to the ScaLAPACK (PBLAS) matrix multiply routine. This introduces one

more level above the kernel parallel matrix multiply routine, and an increase in communi-

cation overhead by a factor on the order of n � O
�
p2 � (where p is the number of diagonal

blocks, and n is the size of the matrix) in comparison with using a single function call. The

analysis follows.

21

1 2 3
4 5 6
1 2 3

1 2 3
4 5 6
1 2 3

1 2 3
4 5 6
1 2 3

1 2 3
4 5 6
1 2 3
4 5 6
1 2 3
4 5 6
1 2 3
4 5 6
1 2 3
4 5 6
1 2 3
4 5 6
1 2 3

1 2 3
4 5 6
1 2 3
4 5 6
1 2 3
4 5 6
1 2 3
4 5 6
1 2 3
4 5 6
1 2 3
4 5 6
1 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1

1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1

1 2 3 1 2 3 1 2 3 1 2 3 1
4 5 6 4 5 6 4 5 6 4 5 6 4
1 2 3 1 2 3 1 2 3 1 2 3 1

1 2 3
4 5 6
1 2 3

Figure 3.5: Independent block cyclic distribution of the imposed blocks of the
eigenvector storage matrix. Each sub-block (imposed by the initial block tridi-
agonal matrix structure) is individually distributed in a block cyclic fashion,
similar to the block tridiagonal matrix in Figure 3.4. To avoid redundancy,
not all blocks are shown with the distribution scheme.

22

For simplicity, assume a block tridiagonal matrix with p equal size diagonal blocks of

size k, and assume that p is a power of 2. Let a stage be a set of merges of p blocks that

combines the blocks into p
2 blocks. So the number of merges at each stage i is p

2i , where

i � 1
 2
��0�1� log2 p. Each merge requires k rank-one modifications, assuming that no deflation

is performed. In turn, each rank-one modification requires
�
2i � 3 calls to the ScaLAPACK

matrix multiply routine. The total for each stage i is then pk4i. Integrating over i gives

pk 2 log2 p

0
4i � pk

ln4 3 p2 � 1 4� n
ln4 3 p2 � 1 4 (3.1)

This indicates that p is a major factor in performance and the algorithm may show better

performance on the matrix with fewer blocks when comparing matrices of approximately

the same size, depending on the overhead costs of a call to the ScaLAPACK matrix mul-

tiply. Of course, the matrix with fewer blocks in this case typically has the possibly off-

setting property of requiring more rank-one modifications, since the block sizes are larger.

3.5 Deflation

A very important aspect of the serial BD&C algorithm is deflation, which was discussed

in Section 2.4. Experiments have shown that deflation can significantly reduce floating

point operations when computing eigen-decompositions to a relaxed tolerance (greater than

machine precision). For this parallel version, implementing deflation in the same way

resulted in extra communication costs, since deflation requires column permutations of the

eigenvector matrix that will generally have to be done between processors. A subroutine

was written to permute columns, using communication calls when the columns reside on

different processors. Although it was understood that implementing full deflation may

decrease performance, it was thought that the savings in floating point computations might

offset the communication costs.

23

Chapter 4

Computational Results

4.1 Specifications

This parallel version of the Block Tridiagonal Divide and Conquer algorithm was imple-

mented in FORTRAN. It uses the ScaLAPACK library, which includes the PBLAS low-

level linear algebra routines and the BLACS communication routines. This version of

BLACS is built on MPI, so MPICH version 1.2.2.3 was used. The ATLAS version of the

core BLAS routines and LAPACK was used for the serial code. The compiler is the GNU

g77 FORTRAN compiler (version 2.96). All timings were measured by PAPI (version

1.54).

The cluster used for these tests was the anakin cluster of the SInRG grid at the Uni-

versity of Tennessee, Knoxville. The anakin cluster is a group of 32 dual Intel Pentium III

500 MHz processors with 512 KB of cache and 512 MB of main memory. The network

connections between nodes on the anakin cluster are Myrinet. The operating system is Red

Hat Linux 7.2.

Recall that the BD&C algorithm offers the option of computing the entire set of eigen-

values and eigenvectors with reduced accuracy (and a corresponding savings in computa-

tional cost). The accuracy chosen for all of the results in this chapter was 10 � 4.

24

4.2 Matrices

Random matrices were created using a MATLAB script. Given diagonal block sizes, the

diagonal and sub-diagonal blocks were filled in with random values in the range 	5� 1
 1
 .
The diagonal blocks were forced to be symmetric. Additionally, all values were divided by

a power of 10 dependent on distance from the main diagonal. This forces the magnitude

of the values to decrease from 100 on the main diagonal to roughly 10 � 15 for the nonzero

element farthest from the main diagonal. This simulates the type of matrices that can easily

be approximated by block tridiagonal matrices.

4.3 Timings

When running the parallel routine, the serial routine was also run individually on each pro-

cessor. Real time (wall time) was measured for both routines, separately on each processor,

and speedup was computed as maximum real time for parallel for all processors divided by

the average real time for serial for all processors.

4.3.1 Matrices with 10 Diagonal Blocks

Initially, experiments were run on matrices with 10 diagonal blocks. The block sizes used

were 50, 100, 200, and 300, corresponding to matrix sizes of 500, 1000, 2000, and 3000.

The program was run on a 2x2 processor grid (4 processors), and the block-cyclic distribu-

tion sizes used were 32, 64, and 128 (when possible). The initial results are shown in Table

4.1.

Poor performance was noted in the initial runs, so performance counters were placed in

the code to measure communication calls in both numbers and time spent. This showed that

the most time-consuming component of the algorithm was the block matrix multiplication

discussed in Section 3.4. For matrix size 500 � 500, the time spent computing all matrix

multiplications was approximately 27% of the total time. For the 1000 � 1000 matrix, it

25

Table 4.1: Timings on a 2x2 processor grid for matrices with 10 equal
size diagonal blocks. Sub-block sizes for block-cyclic distribution were
32, 64, and 128. Speedup is shown in parentheses. Hyphens represent
where the sub-block size was too large to be effectively used for the
given matrix.

Time (seconds)
Matrix Size

32 64 128

500 38.1 (0.16) —- —-
1000 203.4 (0.44) 192.5 (0.46) —-
2000 1316.8 (0.95) 1537.9 (0.80) 1515.9 (0.81)
3000 4656.4 (1.19) 4773.2 (1.16) 4758.9 (1.16)

Table 4.2: Matrix multiplication counts for matrices with 10 equal size
diagonal blocks. Data taken from the parallel run using a distribution
block size of 32. In parentheses is time as a percentage of total algo-
rithm time.

Matrix size Predicted Count Actual Count Time (secs)

500 35707 4318 10.5 (27%)
1000 71413 11332 98.0 (48%)
2000 141113 24489 822.3 (62%)
3000 214240 36318 3092.5 (66%)

was approximately 48%. For 2000 � 2000, 62%, and for 3000 � 3000, 66%. The total

number of calls to the ScaLAPACK (PBLAS) matrix multiply routine was approximately

12% to 17% of the number predicted by Equation 3.1. However, it does follow the same

linear pattern. The overestimates are most likely due to deflation, which makes accurate

approximations difficult. This data is shown in Table 4.2.

For reference, runs were also completed for matrices with 10 unequal size diagonal

blocks. The size of the diagonal blocks are as follows:

500 : 56, 74, 57, 37, 43, 34, 50, 45, 48, 56

1000 : 84, 99, 120, 96, 126, 75, 74, 126, 88, 112

1976 : 131, 210, 222, 131, 141, 243, 226, 203, 217, 252

3000 : 272, 297, 283, 272, 340, 362, 311, 344, 253, 266

The speedup results are comparable to the runs with equal diagonal blocks (see Table

4.3).

26

Table 4.3: Timings on a 2x2 processor grid for matrices with 10 unequal
size diagonal blocks. Sub-block sizes for block-cyclic distribution were
32, 64, and 128. Speedup is shown in parentheses.

Time (seconds)
Matrix Size

32 64 128

1000 161.9 (0.48) —- —-
1976 6070.7 (0.92) 6359.4 (0.88) —-
3000 4838.6 (1.19) 4795.6 (1.20) 5003.2 (1.15)

Table 4.4: Timings on a 2x2 processor grid for matrices with 4 equal
size diagonal blocks. Sub-block sizes for block-cyclic distribution were
32, 64, and 128. Speedup is shown in parentheses. The 4000 � 4000
case could not be run with the serial version.

Time (seconds)
Matrix Size

32 64 128

1000 430.1 (0.99) 409.9 (1.04) 408.2 (1.05)
2000 3257.5 (1.48) 3137.6 (1.54) 3151.2 (1.53)
3000 10477.1 (1.73) 10075.6 (1.79) 10004.5 (1.81)
4000 23443.4 22527.8 22370.1

4.3.2 Matrices with 4 Diagonal Blocks

Given the poor speedup for the 10 diagonal block runs, and the analysis of overhead costs

due to the number matrix multiplication calls, it was decided to check performance on

matrices with 4 diagonal blocks. This also allows the larger blocks to be divided over a

larger number of processors. The processor grids in these experiments are 2 � 2 and 4 � 4.

The results are shown in Table 4.4 and Table 4.5. When using a 2 � 2 processor grid,

speedup approached 1.8 (and possibly 2.0 for the 4000 � 4000 case, which was too large

for the serial version of BD&C). For the 4 � 4 processor grid, speedup approached 3.0. See

Table 4.6 for matrix multiplication counts for these cases.

In all cases, the matrix multiplications are the dominant computational cost of the par-

allel algorithm, making up from 50% to 70% of the total computational time.

27

Table 4.5: Timings on a 4x4 processor grid for matrices with 4 equal
size diagonal blocks. Sub-block sizes for block-cyclic distribution were
32, 64, and 128. Speedup is shown in parentheses.

Time (seconds)
Matrix Size

32 64 128

1000 363.8 (1.18) 348.4 (1.23) —-
2000 2244.9 (2.15) 2120.1 (2.27) 2133.8 (2.26)
3000 6461.3 (2.79) 6151.1 (2.94) 7215.8 (2.50)

Table 4.6: Matrix multiplication counts for matrices with 4 equal size
diagonal blocks. Data taken from the parallel runs using a distribu-
tion block size of 32. In parentheses is time as a percentage of total
algorithm time.

2 � 2 grid 4 � 4 grid
Size Predicted

Actual Time Actual Time

1000 10820 4716 244.0 (57%) 4716 194.3 (53%)
2000 21640 8026 2113.7 (65%) 8026 1305.2 (58%)
3000 32460 9290 7161.4 (68%) 9290 3926.4 (61%)

4.3.3 Reduced Rank Subdiagonal Block Experiments

To further examine the characteristics of the parallel BD&C algorithm, matrices with re-

duced rank subdiagonal blocks were considered. Reduced rank subdiagonals will decrease

the total number of matrix multiplications needed to merge sub-blocks of the eigenvec-

tor matrix. Test matrices were produced with 4 diagonal blocks, and having subdiagonal

blocks with ranks one-half of their size and one-tenth of their size. Results are shown in

Table 4.7. Although times did decrease greatly as expected, speedup remained consistent,

due to the fact that reduced rank causes a corresponding decrease in run time for the serial

algorithm.

4.3.4 Comparison with ScaLAPACK Eigenvalue Routine

As a final test, this parallel BD&C algorithm (PDSBTDC) is tested against the dense sym-

metric eigenvalue routine from ScaLAPACK (PDSYEV). The reduced rank subdiagonal

block test matrices from Section 4.3.3 were used, since they best represent the matrix prob-

28

Table 4.7: Timings on a 2x2 processor grid for matrices with 4 equal
size diagonal blocks and reduced rank subdiagonal blocks. Data taken
from the parallel runs using a distribution block size of 64.

Times (seconds)
Size

Full rank 50% rank 10% rank

1000 409.9 (1.09) 278.1 (0.92) 140.6 (0.97)
2000 3137.6 (1.54) 1215.1 (1.30) 822.1 (1.41)
3000 10075.6 (1.79) 2560.9 (1.50) 1989.7 (1.62)

Table 4.8: Timings compared with ScaLAPACK PDSYEV routine.
Times are in seconds. Sub-block sizes for block-cyclic distribution were
64. The approximate factor of increase is shown in parentheses with the
PDSBTDC timings.

50% rank 10% rank
Matrix Size

PDSYEV PDSBTDC PDSYEV PDSBTDC

500 5.4 63.7 (12x) —-
1000 28.5 281.4 (10x) 29.1 140.8 (5x)
2000 196.7 1217.3 (6x) 205.0 816.3 (4x)
3000 624.9 2562.5 (4x) 634.6 1982.7 (3x)

lems from expected applications. The results are shown in Table 4.8. Although PDSBTDC

takes advantage of the lower ranks of the subdiagonal blocks, it does not provide better

performance than the ScaLAPACK routine. Note, however, that the pattern in Table 4.8 in-

dicates that PDSBTDC will eventually perform better on larger matrices. This is expected,

since PDSBTDC takes advantage of the banded structure of block tridiagonal matrices,

while the ScaLAPACK routine assumes a dense matrix. In addition, PDSBTDC has the

advantage of requiring less memory to store the matrix. This parallel implementation of

BD&C would not be expected to have these advantages over a banded parallel eigenvalue

routine, however.

4.4 Other Results

Timings and counters were embedded in the code for all communication calls needed for

column permutations and eigenvector computations. Besides the matrix multiplication, all

29

of these communications were not a large cost. For example, for a 3000 � 3000 matrix

with 10 equal size diagonal blocks, on a 2 � 2 processor grid, the highest communication

costs were calls relating to eigenvector computation of the rank-one updated matrix. The

total average time spent for each processor was 369 seconds. This is small compared with

the time spent on matrix multiplications, which was 3350 seconds. The corresponding

numbers for the identical case with 4 diagonal blocks are 727 seconds and 7213 seconds.

When using a 4 � 4 processor grid, the same times for the 4 diagonal block matrix are 602

seconds and 15865 seconds.

There are a few areas in the code where some of these communication costs can be

reduced. One way is to combine several related communication calls into one, and then

separate the data after receiving it. This can reduce the overhead costs associated with the

communication routines. However, there is currently no reason for doing this, until the

major cost of the matrix multiplications can be greatly reduced.

30

Chapter 5

Conclusion

5.1 Summary

This parallel implementation of the Block Tridiagonal Divide and Conquer algorithm was

able to produce speedups over the serial version from 2 to 3 on larger matrices (2000 to

3000) using 4 and 16 processors. However, even with matrices suitable for the parallel al-

gorithm, this speedup is not adequate to compete with current parallel eigenvalue routines

from ScaLAPACK, even though the serial version showed good competition with corre-

sponding routines from LAPACK [5].

The major cost in the parallel algorithm was found to be the repeated matrix multi-

plications required in updating the eigenvector matrix. The storage method used for the

eigenvector matrix causes a large increase in overhead for communication.

5.2 Future Work

The storage scheme for the eigenvector matrix must be revisited. One option is to imple-

ment a specialized multiplication routine, which does not rely on ScaLAPACK’s PBLAS

routines. This specialized routine may be able to greatly reduce overhead. Another option

is to utilize a different storage scheme altogether. A new implementation of the parallel

31

BD&C algorithm is currently being investigated in which the eigenvector matrix is not re-

stricted by the form of the block tridiagonal matrix. This implementation should be more

fine-grain and show better performance.

32

Bibliography

33

Bibliography

[1] E. Anderson et al. LAPACK User Guide. SIAM, February 2000.

[2] L. S. Blackford et al. ScaLAPACK Users’ Guide. SIAM, July 1997.

[3] J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal eigen-

problem. Numerical Mathematics, 36:177–195, 1981.

[4] Jack Dongarra et al., editors. Sourcebook of Parallel Computing. Morgan Kaufmann,

2003.

[5] W. N. Gansterer, R. C. Ward, R. P. Muller, and W. A. Goddard, III. Computing ap-

proximate eigenpairs of symmetric block tridiagonal matrices. SIAM J. Sci. Comput.,

2003 (to appear).

[6] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins, Baltimore, third

edition, 1996.

[7] M. Gu and C. Eisenstat. A stable and efficient algorithm for the rank-one modification

of the symmetric eigenproblem. SIAM J. Matrix Anal. Appl., 15:1266–1276, 1994.

[8] J. D. Rutter. A serial implementation of Cuppen’s divide and conquer algorithm for

the symmetric eigenvalue problem. Technical Report UCB/CSD 94/799, University

of California, Berkeley, CA, February 1994. LAPACK Working Note 69.

[9] A. Szabo and N. S. Ostlund. Modern Quantum Chemistry. Dover Publications, Mi-

neola, NY, 1996.

34

[10] F. Tissuer and J. Dongarra. Parallelizing the divide and conquer algorithm for the sym-

metric tridiagonal eigenvalue problem on distributed memory architecures. Technical

Report UT–CS–98–382, University of Tennessee, Knoxville, TN, February 1998.

35

Vita

Robert M. Day was born in Knoxville, TN on May 10, 1976. He was raised in Heiskell,

TN, and graduated valedictorian from Anderson County High School in 1994. Afterward,

he attended Lincoln Memorial University and graduated magna cum laude and salutatorian

with a Bachelor of Science degree in Mathematics.

He is currently pursuing a Master of Science degree in Computer Science at the Uni-

versity of Tennessee, Knoxville.

36

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2003

	A Coarse-Grain Parallel Implementation of the Block Tridiagonal Divide and Conquer Algorithm for Symmetric Eigenproblems.
	Robert M. Day
	Recommended Citation

	tmp.1379966456.pdf.iUrP7

