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Abstract  

Feral cats (Felis catus) are recognized as a problem internationally due to their negative impact 

on wildlife and potential to spread infectious disease to people and other animals. Trap-neuter-

return (TNR) programs are employed in many areas to control feral cat populations as a humane 

method, and this approach is used on a limited basis in Knox County, Tennessee. Despite the 

frequent use of TNR as a strategy, its effectiveness remains controversial. The objective of this 

mathematical model is to predict the impact of selected strategies on the population of feral cats. 

The model with three age classes predicts the population over a period of 5 years in one month 

time steps. TNR rates are varied to investigate the effects of targeting spay/neuter programs 

seasonally, and such targeting predicts a measurable decline in feral cat population growth over a 

five year period. Targeting TNR intervention at adult females during the time prior to mating 

season in highly populated feral colonies may further decrease the population. These results 

suggest a more efficacious strategy than non-targeted TNR programs. 

 

Keywords:  feral cats, discrete population model, control interventions 

 

 Correspondence should be sent to Suzanne Lenhart, Department of Mathematics, University 

of Tennessee, 1403 Circle Drive, 227 Ayres Hall,  Knoxville, TN 37996-1320.  Email: 

lenhart@math.utk.edu 

 

  



MODELING FERAL POPULATION DYNAMICS  2 

 

 

 

 

Modeling Feral Cat Population Dynamics in Knox County, TN 

Introduction
 

 Worldwide, feral domestic cats are considered a nuisance species. However, there is debate 

over the terminology in regards to feral cats (Slater, 2004).  For the purpose of this paper, we 

define them as unowned domestic cats living in the wild with a natural fear of humans. Their 

characteristic evasive behavior and lack of socialization distinguishes them from free-roaming 

pet cats (Levy & Crawford, 2004). The feral cat population has expanded dramatically due to 

their ability to breed prolifically, which humans promote through subsidization. It is estimated 

that there are approximately 80 million owned pet cats and 80-90 million feral cats in the United 

States (Centonze & Levy, 2002; Andersen, Martin & Roemer, 2004). These numbers imply an 

important problem in the United States (Nutter, Levine & Stoskopf, 2004; Centonze & Levy, 

2002) and worldwide (Andersen et al., 2004; Natoli, Schmid, Say & Pontier, 2007; Robertson, 

2008; Gunther, Finkler & Terkel, 2011).   

 The expanding feral cat population poses numerous problems. From a public health 

perspective, feral cats have the ability to transmit infectious diseases and parasites both 

intraspecifically (e.g. FIV, FeLV) and zoonotically (e.g. rabies, Toxoplasma gondii) (Levy & 

Crawford, 2004; Danner, Farmer, Hess, Stephens & Banko, 2010; Littnan, Steward, Yochem & 

Braun, 2007; Brown, 2011). Feral cats are problematic for conservation in their ability to prey on 

endemic wildlife including small mammals, reptiles, and amphibians, and they have contributed 

to the decline and extinction of some bird species (Patronek, 1998; Crooks & Soulé, 1999; 

Woods, McDonald & Harris, 2003; Nogales et al., 2004; Winter, 2004; van Heezik, Smyth, 

Adams & Gordon, 2010; Danner et al., 2010). Animal welfare groups are concerned with the 
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urban feral cat population both in regards to quality of life of the cats (Centonze & Levy; 2002) 

and vulnerability to people who consider them a nuisance and resort to poisoning and hunting as 

a means of removal.  Feral cats can also pose risks to motorists when they are present along 

major roadways as well as serving as a nuisance through the spraying behaviors of males or 

female vocalizations when in estrus.  

 Several strategies are employed to address feral cat populations; the most common of which 

is the trap-neuter-return (TNR) strategy. TNR involves the capture of feral individuals followed 

by neutering/spaying and tagging altered cats by ear-tipping, after which the cats are returned to 

the location in which they were trapped. TNR programs also often include vaccinations and 

flea/tick treatments. Once returned, the altered cats become a part of a managed colony. 

Managed colonies are monitored for new cats entering the colony through birth and immigration 

and exiting the colony via death and emigration.  Feral cat colony managers subsidize the 

colonies with food and water and when possible, take sick or injured animals for veterinary care.  

TNR is a preferred method of population control by some because of its potential to control 

populations both humanely and in a cost-effective manner (Levy & Crawford, 2004; Loyd & De 

Vore 2010).  While returning the cats does not directly address some of the issues related to 

wildlife predation, public health, and human interests, altered cats tend to roam less and have less 

objectionable behavior than before their surgery (Robertson, 2008). Thus, they may be less likely 

to encounter wildlife, wander onto highways, or spread disease through sexual contact or 

aggression. Despite the frequent use of TNR programs, data demonstrating the success of this 

strategy in reducing populations is limited.  One study indicates that a 75% TNR rate or 50% 

trap-euthanize (TE) rate is required to decrease the feral cat population (Andersen, et al. 2004).  

At lower intervention rates, the population growth is predicted to persist though at a reduced rate. 
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In a more recent model, population decrease was similar across all intervention strategies (TE, 

TNR, and a 50:50 combination) when immigration was assumed to be 0% into a colony; 

immigration rates of 25% or greater predicted only TE at a rate of 75% could decrease the 

population whereas TNR and a 50:50 combination could not (Schmidt, Swannack, Lopez & 

Slater, 2009). Two models (Loyd et al. 2010; Lohr et al. 2010) compared management options of 

TNR and TE and showed the TNR with volunteers and small cat populations would be more cost 

effective. In this study, the effectiveness of the current TNR program in Knox County, 

Tennessee, is evaluated with a discrete mathematical model incorporating both seasonal and age-

specific population parameters. The model assesses the potential for altering the current program 

to target feral cats seasonally (i.e., immediately prior to mating season) in order to improve 

effectiveness and optimize economic benefits.  

Methods 

Formulation of the Model 

 We used data on feral cats in Knox County from two confidential sources. Both sources 

contain a substantial sample size, and both give similar results based on selected descriptive 

statistics (Table 1).  

Table 1 placed here 

 We constructed a discrete mathematical model for females in a single feral cat colony with 

monthly time steps to account for variations in population parameters that occur monthly (e.g., 

birth rate) as well as other variables such as death rate and potential for adoption. The population 

is divided into five age and spay classes; the classes included intact neonatal (N), an intact 

juvenile (J), spayed juveniles (JS), intact adults (A), and spayed adults (AS) (Figure 1). 

Figure 1 placed here 
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 These differed in the following parameters: death rate, potential to be spayed, ability to 

reproduce, possibility of emigration or immigration, and potential for adoption (Table 2). 

Table 2 placed here 

 Monthly birth rates and the addition of neonates and spay classes to the model incorporate an 

additional level of detail relative to previous studies that utilize yearly time steps and fewer age 

groups (Andersen et al., 2004; Budke & Slater, 2009).  The model includes only female cats, as 

is consistent with similar population models (Budke & Slater, 2009; Andersen et al., 2004).   

 The neonatal class (N) consists of individuals from birth to two months of age (spanning two 

time steps). Their high mortality, inability to leave the colony through emigration, and the fact 

that they are too young to be spayed (spayed individuals must be greater than 1.5 pounds, which 

is not reached until about two months of age) distinguishes these individuals from the other 

groups. Since they cannot be spayed, they cannot be adopted. Neonatal individuals do not 

reproduce. 

 The juvenile class (J) includes individuals from three to seven months of age. At the juvenile 

stage, individuals are old enough to be spayed but too young to give birth, although toward the 

end of this class, some individuals may be pregnant. Juveniles experience lower death rates 

relative to neonates, but higher death rates than adults. Since the model assumes only spayed 

individuals can be adopted, an adoption rate is not included for the intact juvenile class. 

 Individuals in the juvenile spay class (JS) are spayed individuals from four to seven months 

old. They experience a small decrease in mortality relative to intact juveniles and a decrease in 

emigration rates. Since they have been reproductively altered, the model incorporates an 

adoption rate for this group. The length of this age class does not include the third month because 

the earliest a cat can be spayed is when they become a juvenile in the third month. If a cat is 
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spayed at the earliest possible time, it will not transition into the juvenile spayed class until the 

fourth month. 

 Individuals within the adult class (A) include cats from eight months to five years of age.  All 

individuals are considered to have died by age five, which is a relatively conservative estimate as 

most studies of feral cats have found that individuals rarely live beyond three years (Jessup, 

2004). Constituents of this class experience the highest birth rate and a lower mortality rate than 

all previous classes. They can emigrate and be spayed, but cannot be adopted by our 

assumptions.   

 The adult spay class (AS) includes spayed individuals from eight months to five years old 

that have been spayed.  Some of these individuals will be JS cats that transition into the AS class.  

Cats in this class experience the lowest mortality rate because spayed individuals tend to live 

longer than intact individuals due to the decreased potential for aggression and territoriality.  

Spayed adults experience a decreased rate of emigration for the same reason.  

 To summarize, the model is based on the following assumptions: 

1. The model is for female feral cats only; 

2. Each litter contains 50% female and 50% male cats; 

3. Spayed female cats do not immigrate or emigrate; they only leave the colony 

through death or adoption; 

4. Only spayed cats are adopted; 

5. Neonatal cats neither immigrate nor emigrate; 

6. No feral cat will survive beyond 5 years. 

 The equations of the model are given below, with t representing the time step. 
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 The following parameters are accounted for in the model: birth,

spaying, immigration, abandonment, and adoption. Birth is a seasonal parameter for this model. 

Spaying is calculated as either seasonal or non

parameter has a different value depending on the age/spay class.

 Death and disappearance, adoption, immigration, and spaying rates are each percentages of 

the current population. The percentage of cats that die

counted in the model for the next time steps. These parameters are used to create terms that, 

when multiplied by the number of cats in a specific age class at the current time step, calculate 

the number of cats who survive, a

step. In the non-spayed age classes, the spayed parameter is treated the same way because if a cat 

gets spayed, it leaves the non-spayed age classes in a similar fashion. In the spayed age cla

only spayed cats are counted, so the spayed parameter itself is multiplied by the surv

and terms for cats that stay in the population. Abandonment is not a percentage; it is an integer 

value representing the number of cats that enter the pop

 The transition in age uses fractions

steps. For instance, in the N equation (Eq. 1), ½ is multiplied by the survival term and then by 
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the N population at the current time step t. The N age class is 2 time steps long, so at each time 

step, half of the N cats will move on to the J age class, and the other half will stay for one more 

time step. The same is true for the other age classes. The J age class is 5 time steps long, so in the 

J equation (Eq. 2), it is assumed that at any given time t, 4/5 of the J cats will stay in the J age 

class for the next time step, and 1/5 will transition to the A age class. 

 The model begins in January with a colony with unrestricted breeding of initially 25 intact 

female cats distributed across age classes at ratios extracted from data source 1 (Table 1) for the 

specific month of January. Table 3 shows this distribution. 

Table 3 placed here 

Parameters 

 We calculated parameters from a combination of two confidential data sets and values found 

in the literature where specific local data were unavailable. Both data sets included the following 

information: date of spay or neuter surgery, sex, age, pregnancy status, and number of feti if the 

cat was pregnant. Records from data set 1 included monthly information from 2007-2011 for 

1075 feral female cats. Because it included data for every month of the year, it is the basis for 

our estimates of monthly birth rates. Data set 2 included information collected between 2006-

2011 for 560 female feral cats and was used to calculate adoption rates.  

 Monthly birth rates were calculated from data set 1. We divided the number of pregnant cats 

that were spayed each month by the total number of cats captured during that month to determine 

a monthly pregnancy rate. At the time of surgery, the number of feti from pregnant cats was 

counted which resulted in an average of 4.27 feti per pregnant cat.  This average is similar to 

those reported by others. Nutter et al. (2004) reported that the number of feti present during 

gestation can differ from the number of kittens present at birth by as much as 25% (i.e., 3 kittens 
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born for every 4 feti present during gestation). Consequently, we decreased the birth estimate by 

25%, or 3.20 kittens/pregnant female. Since the model only reflects females, we divided the 

number of kittens per pregnant female in half to account for an approximate 50:50 sex ratio. 

Thus, a pregnant female will produce on average 1.6 female cats per litter in our model. We 

multiplied the average number of female cats produced per litter by the monthly pregnancy rate 

to generate a monthly birth rate. As an approximation, the monthly birth rate comes from shifting 

the monthly pregnancy forward by one month. The average gestation length is 65.3 days 

(Musters, de Gier, Kooistra & Okkens, 2011). Our data showed that births only occur within the 

months March-November. 

 Data for death rates of feral cats were unavailable from the Knox County data sources. Thus, 

we used values derived from the literature (Nutter et al., 2004; Danner et al., 2010). Because 

death is so difficult to differentiate from emigration, we include natural death and emigration in 

one parameter.  

 In reference to neonatal and juvenile individuals, Nutter et al. (2004) reported that out of a 

population of 169 cats, 81 had died or disappeared within 100 days (or 3.33 months) of birth. We 

assumed this rate was the same for male and female cats of this age. Thus, we calculated the total 

death rate over the first 100 days to be 81/169 (or 0.48), from which we determined an average 

monthly survival rate (1-death rate) of 0.822 (calculated from (1-0.48)
1/3.33

), from which a 

monthly death rate of 0.18 is deduced. For the model, we rounded this parameter slightly upward 

to 0.19 for our Neonatal age class (months 1 and 2) because we assume that deaths in the first 

100 days are distributed more heavily within the first two months. 

 Nutter et al. (2004) reports further death and disappearance rates from 100 to 180 days post-

birth. According to their data, 127 of 169 cats were dead or disappeared before 6 months. 
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Subtracting the deaths and disappearances from the first 100 days gives 46/169 cats died or 

disappeared between 100 days and 6 months. This gives 0.727 survival between 100 days (3.33 

months) and 6 months, meaning 0.888 monthly survival in this time (0.727^(1/(8/3))). The 

monthly death rate is 0.112, which for our model we also rounded slightly upward to 0.12 to 

account for the fact that our juvenile age class contains cats younger than 100 days. 

 Danner et al. (2010) reported annual survival rates for adult female feral cats (≥1yr) as 0.759 

per year.  We converted this value to a monthly survival rate of 0.977 (0.759= monthly rate
12

). 

Since our model considers adult cats to be those individuals greater than seven months old, we 

adjusted the monthly adult survival rate given by Danner et al. (2010) by rounding up to account 

for a slightly decreased average monthly survival rate for adults when the smaller monthly 

survival rates for months eight through eleven were incorporated.  

 We used data from Gunther et al. (2011) to estimate death rates for spayed animals. Upon 

spaying, survival rates tend to change as a result of decreased aggressive interactions and 

decreased disease transmission (Courchamp, Yoccoz, Artois & Pontier, 1998; Finkler, Gunther 

& Terkel, 2011). Gunther et al. (2011) found that in a population of unaltered cats, the survival 

rate for the first six months was 32%, a value similar to that found by Izawa and Ono (1986). 

The survival rate in a population of altered individuals was 76% (death rate 24%). We converted 

this value for cats in a group of altered individuals to a monthly value and used it as the JS 

monthly death rate. The ratio of this number to the J death rate was approximately 1/(2.67). We 

could not find any literature data on the survival of adult spayed cats, so we used the ratio of the 

JS death rate to the J death rate to calculate the AS death rate. We assumed that the death rate 

ratio between JS and J remains consistent for the AS and A classes. The A death rate multiplied 

by this ratio yields our AS death rate. 



MODELING FERAL POPULATION DYNAMICS  11 

 

 

 

 Because of lack of data locally or in the literature on euthanasia rates, we did not include it in 

our model. Scott, Levy & Crawford (2002) described a county in Florida in which cats are 

captured by their caretakers and brought into a shelter, much like Knox County. They give a 

euthanasia rate of 0.4% over 40 months, so excluding a euthanasia parameter does not 

compromise the realistic nature of our results.  

 In our model, only J and A cats can enter a population through abandonment and 

immigration. We predict young cats are less likely to enter a feral colony because they are seen 

as more desirable pets, and they are too young to migrate on their own. Abandonment (i.e, by 

owners) is treated as value added to an age class at a given time step. Immigration is treated as a 

percentage of the population of the age class at a given time step. 

 While we know abandonment and immigration occur, the magnitude is unknown locally and 

is not reported in the literature. According to Schmidt et al. (2009), when immigration rates 

cannot be found, immigration is approximated to be a percentage of the maximum available 

niche-space. Studies also have run simulations at different arbitrary immigration and 

abandonment rates to compare the outputs of the various scenarios (Schmidt et al., 2009, Loyd & 

DeVore, 2012; Lohr, Cox, & Lepczyk, 2013). Our model uses the same values as Lohr et al. 

(2013) for abandonment. Entry into the population is calculated from a percentage of the initial 

population of the given age class. Our low, medium, and high levels of abandonment are 1%, 

5%, and 10% of the initial population, respectively. Our model uses the same values as Loyd et 

al. (2012) for immigration, with low, medium, and high levels of female immigration being 

monthly percentages of 0.345, 0.745, and 0.885, respectively. 

 In our model, only JS and AS cats will be adopted. We calculated adoption rates based on 

values acquired from data set 2 from Knox County (Table 4). 
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Table 4 placed here 

 In TNR programs, prior to a cat’s release to its original location, the tip of the left ear is 

removed so that they may be easily identified and recaptures can be avoided. These tipped cats 

are considered too wild to be able to successfully interact with humans as pets. Individuals that 

are adopted do not have an ear tip removed because they are less adverse to human interaction. 

We used the percentages of cats in each age group who did not have their ear tipped to calculate 

the monthly adoption rates. Adoption rates include only spayed individuals because intact cats 

are not adopted. Thus, the neonatal group does not include this variable since individuals in this 

group are too young to be spayed. The adoption rates are assumed to be non-seasonal.  

 The spay rate represents the intervention in our simulation to see what effects different values 

have on the population growth of the colony. We do not know the current spay rates of feral cats 

in Knox County, so cannot compare the current situation to the scenarios run with our model. 

Simulation Results 

 Using different intervention (i.e., spay rate) scenarios, we focused first on differences 

between spaying cats throughout the year versus spaying cats only during the months in which 

our data show there are no births: December, January, and February. At the initial time, all of the 

below scenarios depict colonies of 25 intact female cats. We show the case with no immigration 

and abandonment and the case with the most immigration and abandonment possible that could 

still lead to zero population growth in each scenario. The most possible immigration is the “high” 

level, and the most possible abandonment that could still lead to zero population growth is the 

“low” level. In all scenarios, population stabilization was impossible within 5 years if 

abandonment was above the low level. 
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 Figure 2 displays the population growth with annual spay rates of 0% for both the juvenile 

and adult classes given no immigration with no abandonment (blue) and high immigration with 

low abandonment (red). There is a dramatic increase from the initial population of 25 intact 

female cats to a total population of over 1000 in each case. While this number is likely 

exaggerated given that our model does not account for carrying capacities of these colonies, this 

number does show how quickly a feral cat colony can expand. 

Figure 2 placed here 

 Simulation of non-seasonally targeted TNR strategy.  Figure 3 shows population stabilization 

in five years when both juveniles and adults are spayed at 62% over the year when there is no 

immigration and no abandonment and 74% when there is high immigration and low 

abandonment. With cats entering the population through means other than birth, it requires more 

surgeries to achieve zero population growth, and at the end of five years, the population is 

higher. 

Figure 3 placed here 

 Figure 4 show population growth over 5 years if 100% of juveniles are spayed throughout the 

year and 0% of the adults are spayed. The blue line shows this scenario with no immigration and 

no abandonment, and the red line shows this scenario with high immigration and low 

abandonment. The population decreases after about 2 years with this age-specific intervention 

when there is no immigration and no abandonment. For both scenarios, it is impossible to 

stabilize the population with any intervention of less than 100% spaying of juveniles and no 

spaying of adults. 

Figure 4 placed here  
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 Simulation of seasonally targeted TNR strategy.  Figure 5 shows the population growth 

resulting from seasonal targeting (i.e., spaying only during December, January, and February) of 

both juveniles and adults. The blue line shows a spay percentage of 55% for both the juvenile 

and adult age classes with no immigration and no abandonment, and the red line shows a spay 

percentage of 70% for both classes with high immigration and low abandonment. 

Figure 5 placed here 

 Figure 6 shows population growth with seasonal (December, January, February only) 

spaying of only adults at 70% during the three targeted months over 5 years with no immigration 

and no abandonment (blue) and spaying of only adults during this time at 90% with high 

immigration and low abandonment (red).  

Figure 6 placed here 

Discussion 

 In contrast to the model proposed by Andersen et al. (2004), our model incorporates monthly 

shifts in birth rates as well as additional age classes. These details allow us to assess the effects 

of seasonal intervention on the cat population. The present model predicts that the feral cat 

population may be controlled (i.e. stabilized) within five years at a constant monthly spay rate of 

62% during the year if there is no immigration or abandonment. At spay rates greater than 62%, 

the population declines.  This value is slightly less than those values predicted by similar studies: 

71% in Budke & Slater (2009) and 75% in Andersen et al. (2004). (removed sentence here)  If 

we assume the population has a high level of immigration and low level of abandonment, a 74% 

spay rate is required to stabilize the population. When the survival rates for sub-adults during the 

first year of life are multiplied, they yield only an approximate 25% survival rate of feral cats 

over the course of the first year of life.  This is lower than the survival rates used by others for 
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the first year (Budke & Slater, 2009; Andersen et al., 2004). Despite the difference in values used 

to construct the model, a 75% death rate within the first year of life is reasonable in comparison 

with other studies (Nutter et al., 2004; Warner, 1985). It is likely that survival rate through the 

first year changes logarithmically rather than linearly; however these data were unavailable. 

 In contrast to a constant monthly spay rate, seasonally targeting spays just prior to the 

breeding season (December-February) requires only a 55% spay rate if we assume there is no 

immigration and no abandonment. If we assume high immigration and low abandonment, a 70% 

spay rate is necessary. While these values increase the number of individuals that must be spayed 

within the three months of such a program, they reduce the total number of spays required 

annually to achieve population stability. According to our model, spaying at 62% non-seasonally 

in a closed colony will require approximately 91 total spays over 5 years, and the final 

population at the end of that time spay will be approximately 63 cats, starting at initial time with 

a population of 25 female cats. The results indicate that spaying at 55% of the total population 

over the three months of December, January, and February in the same colony will stabilize the 

population before 5 years. At the end of that period, the population will be approximately 61 cats 

and will require overall about 79 spays. A similar pattern is seen in a colony with high 

immigration and low abandonment. A non-seasonal spay rate of 74% requires a total of 115 

spays over five years with an end population of 69 cats. A seasonal spay rate of 70% requires 96 

surgeries and results in an end population of 61 cats. 

 The present model suggests that targeting spays seasonally allows for fewer total spays to be 

performed throughout the year with a smaller total population at the end of 5 years. This results 

from a significant decrease in birth rates early in the year (March - May) such that fewer kittens 

are present throughout the rest of the year that would require spaying. Furthermore, the seasonal 
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targeting of spays reduces the number of unnecessary spays that would be performed on cats that 

would die later between the time of being spayed and the reproductive season. For example, in a 

TNR program maintaining a consistent monthly spay rate, a kitten born in May would be two 

months old in July and could be spayed at that time, but then could die shortly after, before it 

reached reproductive capability. Thus, the time and money invested in that individual would be 

unnecessary for controlling the population.  Since it is more likely for a cat to die within the first 

year of life, it would be more efficient to wait until just before the reproductive season to invest 

the time and money to spay the cat. Although seasonally targeting spays may require a greater 

input of personnel and economic resources during the three-month target period, the cost over 

the entire year would actually be less and yield better results. 

 Consistent with previous studies, the present model highlights the possible benefits of 

targeting juveniles for intervention if spaying is conducted without seasonal targeting. Budke & 

Slater (2009) report that a spay program targeting juveniles and adults requires a 70% spay rate 

to yield population decline, whereas a program neglecting juveniles requires a spay rate of 91% 

to halt population growth. Our model indicates that if 100% of only juveniles are spayed, there 

will be a significant decrease in population before 2 years. Over 5 years, this method requires 

about 102 total spays and results in a final population of about 33 in a population with no 

immigration or abandonment. Spaying 100% of juveniles in a colony with high immigration and 

low abandonment requires 177 spays and results in a final population of 82 cats.  No other spay 

percentage for juveniles only produced a population stabilization or decline. However, when 

seasonally targeting spays, our model shows that spaying adults is more important to population 

stabilization and decline. In a colony without immigration or abandonment, spaying only adults 

seasonally at 70% requires about 62 total spays over 5 years and results in population 
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stabilization over that time frame with a final population of 50. In a colony with high 

immigration and low abandonment, a spay rate of 90% results in population stabilization with 70 

spay surgeries and a final population of 43 cats. If colony managers are able to seasonally target 

their adults at 100%, there is an immediate dramatic decline. This scenario requires only about 

25 spays and results in a final population after 5 years of about 5 cats if cats only come into the 

population through birth. According to our model, this is the ideal spay scenario, though in 

reality it may be difficult to achieve as adult cats are more difficult to capture than juveniles 

because they are more adverse to people. Though fewer spays will need to be conducted, more 

resources may have to be spent in the actual capture of the cats. 

 It is also important to note that with feral cat population control programs extending over 

several years, it may be most effective to invest more resources earlier in the program as these 

costs decrease with time as the population declines. In other words, if it is possible to achieve the 

desired spay rate of 62% in the first year to initiate a population decline, the following year, 

when the population decreases, there will be fewer individuals left to spay such that the 62% rate 

will include fewer cats and therefore cost less than the same rate the previous year. It is 

especially important to invest resources early if spaying is conducted above the rates required to 

stabilize the population because the difference in cost between each year is much greater than if 

spaying is conducted at a rate that slows population growth to 0%. 

 While it is difficult to achieve a spay rate of 62% across all of Knox County, we intend our 

model to apply more specifically to managed feral cat colonies wherein the manager knows the 

individuals in the colony and makes an active effort to trap individuals so that cats may be 

spayed. For managed colonies, there is evidence that spay rates well over 62% may be 

achievable (UT College of Veterinary Medicine (UTCVM) unpublished data). Thus, it is 
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possible to achieve a declining population within a managed colony, although that is assuming 

no immigration from surrounding colonies. In order to achieve a declining population for the 

entire county, it may be necessary to develop new methodologies for improving trapping rates, 

improving spay rates, or developing alternative contraceptive methods that are more efficient. 

 If we assume that our parameters remain realistic over the long term, then eigenvalue 

analysis of the underlying matrix model shows that the populations do, in fact, approach 

stabilization or decrease in the given scenarios. For the scenarios in which we conclude that the 

population of the colony approaches stabilization at the end of five years, the dominant 

eigenvalue is approximately 0.96 or less, demonstrating that over the long term, the population 

of the colony does gradually decrease. Though it is not realistic to assume that parameters such 

as adoption and birth rates remain the same for long periods of time, this eigenvalue analysis 

does support our conclusions. 

 While the model provides a basis on which to predict population growth and control 

measures, we recognize several limitations in the data. At present, significant data on migration 

of cats between colonies and abandonment of cats into feral colonies are unavailable and would 

likely require extensive radio tracking or GPS collars to collect. Our model takes migration and 

abandonment into account by running different scenarios at various rates, which may not 

accurately reflect real-life scenarios. Spaying cats has the effect of increasing lifespan of both the 

spayed individual and other members of the group (Gunther et al., 2011); however, data 

describing the differences between the two groups are unavailable. Gunther et al. (2011) suggest 

that a spayed cat may live perhaps two or three times as long as an intact cat due to fewer deaths 

related to trauma or disease. 
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 Future research will include using new data collected from individual colonies in Knox 

County to calculate migration rates. We would also like to improve the accuracy of our 

parameters, especially death rates, with more complete data and calculate the average euthanasia 

rate of feral cats in Knox County. Eventually, this could lead to the building of a multi-colony 

model to simulate the implementation of spatial spay targeting. We hypothesize that targeting the 

colonies with the highest number of cats will produce the greatest drop in population growth. 

The recent work by McCarthy, Levine & Reed (2013) used a stochastic agent-based 

model to compare trap-vasectomy-hysterectomy strategy with the strategies of lethal control and 

of trap-neuter-release. Although their work showed the advantages of the use of vasectomy or 

hysterectomy as control methods, this method has not been thoroughly investigated 

(Medes-de-Almeida, Faria & Landau-Remy, 2006; Kendall, 1979).  In future work, our model 

could be extended to include this alternative strategy. 

Conclusion 

 Overpopulation of feral cats creates conservation, sanitation, public health, and animal health 

issues in many areas of the world. The most widely accepted method to control population 

growth is trap-neuter-release (TNR). This is the method currently implemented by Knox County, 

TN, but its effectiveness is questioned with their current spay rates. 

 While we do not know the actual spay rate in Knox County currently, this model may be 

used to predict the effectiveness of spaying under several scenarios. Controlling the feral cat 

population in Knox County under the current non-seasonally targeted approach requires at least a 

62% yearly spay rate. As this rate may be difficult to achieve, it may be more effective to target 

spays seasonally, before the reproductive season, so that fewer spays are required to achieve the 

same effect. With seasonal targeting of spays, the minimum rate required to achieve population 
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stability or decline is reduced to 55% and requires fewer total spays. Consequently, it may be 

more reasonable economically to employ a seasonal spay methodology. 
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TABLE 1. Comparison of the two data sets. 

 Data source 1 Data source 2 

Sample size 1074 560 

Time frame 2007-2011 2006-2011 

Ratio male/female 49/51 41/59 

Proportion of pregnancy/all female 19% 15% 

Seasonal peak of pregnancy March March 

Most frequent age of pregnancy 1-3 years >2 years 

Average feti/litter 4.27 4.06 

Percentage kittens/all feral cats 28% 32% 

Seasonal peak of kittens May-June May-June 
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TABLE 2. Parameters for each age class. 

Age class Death Birth rate Spay Migration Adoption 

N X     

J X  X X  

JS X    X 

A X X X X  

AS X    X 
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TABLE 3. Distribution of cats across age classes in the month of January based on data source 1. 

Age class Percentage of total population in January 

Neonatal (N) 0% 

Juvenile (J) 16.67% 

Adult (A) 83.33% 
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TABLE 4. Adoption percentages per age class. 

Age group Number of cats 

adopted 

Number of total cats Percentage 

2-7 mo. (JS) 33 179 18.4% 

7+ mo. (AS) 32 379 8.4% 
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RESULTS TABLE 

Table A.1. Seasonal average feti/litter for adult feral cats (6months-5years) (Private source) 

Month 

Number of 

litter 

Number 

of feti 

Number of 

adult female 

Average feti 

per adult 

female  

Average feti per adult female 

(adjusted) 

Jan 0  0   0.00 0.00 

Feb 9 35 45 0.78 0.00 

Mar 37 157 71 2.21 0.58 

Apr 21 83 39 2.13 1.66 

May 11 46 29 1.59 1.60 

June 12 58 56 1.04 1.19 

July 9 46 30 1.53 0.78 

Aug 8 36 33 1.09 1.15 

Sep 3 12 19 0.63 0.82 

Oct 2 9 23 0.39 0.47 

Nov 0  0   0.00 0.29 

Dec 0  0   0.00 0.00 
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Spaying at a rate of 0% for both J and A with given (emigration, abandonment) levels, 

starting with 25 female cats (check code to make sure outputted values are correct, did not 

put them here yet) 

 End of Y1 End of Y2 End of Y3 End of Y4 End of Y5 

(none, 

none) 

64.6 132.8 273.0 561.2 1153.5 

(high, 

low) 

76.1 178.1 407.2 921.3 2074.9 

 



MODELING FERAL POPULATION DYNAMICS  31 

 

 

 

Non-seasonal. Both J and A spayed at given rate, which provides population stabilization 

after 5 years with given (emigration, abandonment) levels (starting with 25 female cats) 

  End of 

Y1 

End of 

Y2 

End of 

Y3 

End of 

Y4 

End of 

Y5 

Total 

62 

(none, 

none) 

Annual 

surgeries 

20.5828  19.6832 18.3151 17.0426 15.8585 91.48230 

 Intact end 

of year 

32.1336  29.8982 27.8209 25.8880 24.0893  

 Spayed end 

of year 

15.5956  26.7085 33.3934 37.0614 38.6849  

 Pop end 

each year 

47.7292  56.6067 61.2143 62.9494 62.7742  

74 

(high, 

low) 

Annual 

surgeries 

27.5759  24.9669 22.4544 20.5799 19.1809 114.7580 

 Intact end 

of year 

30.3389  26.9605 24.4408 22.5604 21.1571  

 Spayed end 

of year 

20.9208  34.7265 42.3626 46.2030 47.7663  

 Pop end 

each year 

51.2597  61.6870 66.8034 68.7634 68.9234  
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Non-seasonal, only J spayed at given rate, A at 0, which provides population stabilization at 

the end of 5 years with given (emigration, abandonment) levels (starting with 25 female 

cats) 

  End of 

Y1 

End of 

Y2 

End of 

Y3 

End of 

Y4 

End of 

Y5 

Total 

100 

(none, 

none) 

Annual 

surgeries 

43.3264  27.0396 16.2729 9.7933 5.8938 102.3261 

 Intact 

end of 

year 

21.6925  13.0551 7.8568 4.7283 2.8456  

 Spayed 

end of 

year 

32.7006  43.1926 42.4508 37.0859 30.4090  

 Pop end 

each year 

54.3931  56.2477 50.3076 41.8142 33.2546  

100 

(high, 

low) 

Annual 

surgeries 

48.5325  39.9680 33.3643 28.9469 25.9919 176.8036 

 Intact 

end of 

year 

27.1690  22.1838 18.8488 16.6178 15.1255  

 Spayed 36.5895  55.7549 64.1976 66.8046 66.4168  
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end of 

year 

 Pop end 

each year 

63.7585  77.9387 83.0464 83.4224 81.5423  
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Seasonal. Both J and A spayed at given rate, which provides population stabilization after 

5 years with given (emigration, abandonment) levels (starting with 25 female cats) 

  End of 

Y1 

End of 

Y2 

End of 

Y3 

End of 

Y4 

End of 

Y5 

Total 

55 

(none, 

none) 

Annual 

surgeries 

16.7424  16.4974 15.8719 15.2713 14.6935 79.07656 

 Intact 

end of 

year 

37.9491  36.5074 35.1260 33.7969 32.5180  

 Spayed 

end of 

year 

7.0189  16.4546 22.6222 26.5270 28.8613  

 Pop end 

each year 

44.9680  

 

52.9620 57.7482 60.3239 61.3793  

70 

(high, 

low) 

Annual 

surgeries 

23.1408  20.6953 18.6857 17.2406 16.2008 95.96321 

 Intact 

end of 

year 

37.2609  33.2548 30.3766 28.3055 26.8153  

 Spayed 

end of 

9.5743  21.6642 28.5448 32.2325 34.0005  
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year 

 Pop end 

each year 

46.8352  54.9190 58.9214 60.5380 60.8158  
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Seasonal, only A spayed at given rate, J at 0, which provides population stabilization at the 

end of 5 years with given (emigration, abandonment) levels (starting with 25 female cats) 

  End of 

Y1 

End of 

Y2 

End of 

Y3 

End of 

Y4 

End of 

Y5 

Total 

70 

(none, 

none) 

Annual 

surgeries 

16.5289  

 

12.1045 11.6094 11.1304 10.6712 62.04446 

 Intact 

end of 

year 

31.8491  

 

30.5434 29.2832 28.0749 26.9165  

 Spayed 

end of 

year 

8.3343  

 

14.7874 18.9508 21.5159 22.9748  

 Pop end 

each year 

40.1834  45.3308 48.2340 49.5908 49.8913  

90 

(high, 

low) 

Annual 

surgeries 

23.4614  

 

12.9692 11.8617 11.1190 10.6235 70.03481 

 Intact 

end of 

year 

25.1704  

 

22.6075 20.8853 19.7363 18.9696  

 Spayed 

end of 

12.1362  

 

18.3866 21.8086 23.5585 24.3521  
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year 

 Pop end 

each year 

37.3066  40.9941 42.6939 43.2948 43.3217  
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Figure Captions 

1. Compartment representation of the discrete mathematical model. 

2. Population growth with non-seasonal spaying of 0% for both J and A age classes. Red is high 

immigration and low abandonment. Blue is no immigration and no abandonment. 

3. Population growth with non-seasonal spaying of 62% for both J and A age classes with no 

immigration and no abandonment (blue) and 74% for both J and A age classes with high 

immigration and low abandonment (red). 

4. Population growth with non-seasonal spaying at 100% for J cats and 0% for adult cats over 5 

years with no immigration and no abandonment (blue) and high immigration and low 

abandonment (red). 

5. Population growth with seasonal spaying at 55% for both J and A cats over 5 years with no 

immigration and no abandonment (blue) and seasonal spaying of 70% for both J and A with 

high immigration and low abandonment (red). 

6. Population growth with seasonal spaying at 70% for adults only with no immigration and no 

abandonment (blue) and seasonal spaying of 90% for adults only with high immigration and 

low abandonment (red). 
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Figure 1.  Compartment representation of the 
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Figure 2.  Population growth with non

is high immigration and low abandonment. Blue is no immigration and no abandonment.
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Population growth with non-seasonal spaying of 0% for both J and A age classes. Red 

is high immigration and low abandonment. Blue is no immigration and no abandonment.
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seasonal spaying of 0% for both J and A age classes. Red 

is high immigration and low abandonment. Blue is no immigration and no abandonment. 
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Figure 3.  Population growth with non

no immigration and no abandonment (blue) and 74% for both J and A age classes with high 

immigration and low abandonment (red).
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Figure 3.  Population growth with non-seasonal spaying of 62% for both J and A age classes with 

no immigration and no abandonment (blue) and 74% for both J and A age classes with high 

immigration and low abandonment (red). 
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easonal spaying of 62% for both J and A age classes with 

no immigration and no abandonment (blue) and 74% for both J and A age classes with high 
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Figure 4.  Population growth with non

over 5 years with no immigration and no abandonment (blue) and high immigration and low 

abandonment (red). 
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Figure 4.  Population growth with non-seasonal spaying at 100% for J cats and 0% for adult cats 

over 5 years with no immigration and no abandonment (blue) and high immigration and low 

42 

 

cats and 0% for adult cats 

over 5 years with no immigration and no abandonment (blue) and high immigration and low 
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Figure 5.  Population growth with seasonal spaying at 55% for both J and A cats over 5 years 

with no immigration and no abandonment (blue) and seasonal spaying of 70% for both J and A 

with high immigration and low abandonment (red)
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Population growth with seasonal spaying at 55% for both J and A cats over 5 years 

abandonment (blue) and seasonal spaying of 70% for both J and A 

with high immigration and low abandonment (red) 
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Population growth with seasonal spaying at 55% for both J and A cats over 5 years 

abandonment (blue) and seasonal spaying of 70% for both J and A 
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Figure 6.  Population growth with seasonal spaying at 70% for adults only with no immigration 

and no abandonment (blue) and seasonal spaying

and low abandonment (red). 
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Figure 6.  Population growth with seasonal spaying at 70% for adults only with no immigration 

and no abandonment (blue) and seasonal spaying of 90% for adults only with high immigration 
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Figure 6.  Population growth with seasonal spaying at 70% for adults only with no immigration 

of 90% for adults only with high immigration 
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