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ORDERLY ε-HOMOTOPIES OF DISCRETE CHAINS

ALEX HAPP

Abstract. I inspect a method of discrete homotopy devised by my advisor, Dr.
Conrad Plaut, and Dr. Valera Berestovskii of Omsk State University for construct-
ing covering spaces of arbitrary metric spaces. Itself a simple analog to the notion
of path homotopy in the field of Topology, ε-homotopy uses chains governed by
some distance ε instead of paths and defines a finite process of steps to imitate the
concept of continuous deformation. I prove that when there exists an ε-homotopy
between two chains, there must also exist at least one such homotopy with the
steps ordered in a specific way. Studying general metric spaces with these discrete
chains and homotopies may prove useful, since many geodesic spaces do not have
simply connected covering spaces.

1. Background

The educated reader may have some familiarity with the study of path homotopy
within the field of Topology. The concept is that of a continuous deformation of
a path, which can detect gaps in a space. A useful tool in itself, the idea can be
extended to detect further the size of these gaps in a discrete and measurable fashion.
The context in which we explore this notion is among metric spaces.

Definition 1. A metric space consists of a pair (X,d), with X a set and d : X×X →
R a binary function, denoted the metric or distance function, such that the following
hold ∀x, y, z ∈ X.

(1) Symmetry: d(x, y) = d(y, x)
(2) Positive Definiteness): d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y
(3) Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z)

In other words, a metric space is a set of points endowed with the sort of dis-
tance one would expect between them. Indeed, for x, y ∈ R, d(x, y) = |x − y|,
and in the real plane, we have d((x1, y1), (x2, y2)) =

√
(x1 − x2)2 + (y1 − y2)2, the

familiar distance formula. Utilizing this notion of distance, we make the following
construction:

Definition 2. An ε-chain is a finite sequence of points {x0, x1, . . . , xn} such that
d(xi, xi+1) < ε for all i.
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One can see how this finite sequence would resemble a chain. A handful of defini-
tions stem from the above: For α an ε-chain with points {x0, x1, . . . , xn}, we define
the length of α to be L(α) :=

∑n
i=1 d(xi, xi−1) with the size of α ν(α) := n, and

the reversal of α is the chain α := {xn, ..., x0}. Further, the concept of concatena-
tion with curves has a familiar analog: For any two ε-chains α = {x0, . . . , xn} and
β = {y0, . . . , ym} with xn = y0, we define the concatenation α ∗ β := {x0, . . . , xn =
y0, . . . , ym}.

Now we may discuss the mechanics of the discrete homotopy.

Definition 3. A basic move on an ε-chain α consists of either adding or removing a
single point, provided the resulting chain remains an ε-chain with the same endpoints.
A finite sequence of such moves is called an ε-homotopy.

An addition of the point y to a chain is represented with {x0, . . . , xi−1,
︷︸︸︷
y , xi, . . . , xn},

and a removal of the point y from a chain is represented with {x0, . . . , xi−1, y︸︷︷︸, xi, . . . , xn}.
As suggested, a finite sequence of legal additions and removals gives an ε-homotopy,
which would consist of a sequence of intermediate ε-chains. Thus, an ε-homotopy η
between two ε-chains α and β can be expressed as

η = 〈α = η0, η1, . . . , ηm−1, ηm = β〉

with each ηi an ε-chain. We define the size of η to be ν(η) = m as with the ε-chains
themselves. Furthermore, we call ηi an addition if it is obtained from the addition
of a point to ηi−1, and likewise a removal if it is obtained via the removal of a point
from ηi−1.

If there exists an ε-homotopy from α to β ε-chains, then we say α is ε-homotopic to
β, or it is simply homotopic to β. In fact, it can be shown that this homotopy forms
an equivalence relation on chains. In this case, we write α∼ε β with [α]ε denoting the
equivalence class of all chains ε-homotopic to α in the space.

Given a metric space X, we can now define (Xε, ∗), the space of ε-homotopy classes
of ε-chains with initial point ∗ in X. Its metric is given by d([α]ε, [β]ε) = |[α ∗ β]ε|
for [α]ε, [β]ε ∈ Xε and the norm defined by |[α]ε| = inf{L(γ) : γ ∈ [α]ε}. The
endpoint mapping is denoted by φε : Xε → X such that for α = {∗, x1, . . . , xn}, then
φε([α]ε) = xn.

An ε-loop is an ε-chain with identical endpoints, and when such a loop is homotopic
to the trivial chain consisting of a single point, we say the loop is null-homotopic.
This, of course, necessitates the exception of allowing the removal of one endpoint
as the last step of a null-homotopy. At this point, we define for a metric space X
πε(X, ∗), the space of homotopy classes of ε-loops with basepoint ∗ in X. It turns
out this πε(X, ∗) forms a group under concatenation and carries strong similarities
to π1, the first path-homotopy class from Topology.
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2. The Result

Our definition for an ε-homotopy is by no means unique: If there exists an ε-
homotopy η between ε-chains α and β, there are likely numerous other ε-homotopies
that are equally as legitimate. Included in these is guaranteed a homotopy of a
certain form:

Theorem 1. For all η an ε-homotopy from α to β ε-chains, there exists η′ = 〈α =
η′0, ..., η

′
k−1, η

′
k, ..., η

′
n = β〉 an orderly ε-homotopy such that all i < k are additions

and all j ≥ k are removals. Further, ν(η) ≤ ν(η′) ≤ 5ν(η) − 4, or ν(η) ≤ ν(η′) ≤
ν(η) + 4νa(η) where νa(η) is the number of additions in η.

Proof. Let η = 〈α = η0, η1, . . . , ηn−1, ηn = β〉 be an ε-homotopy from α to β ε-chains.
We can assume WOLOG that the first step is an addition. If there are no removals
in η, then we are finished. Otherwise, there is some ηk the first removal. If all i > k
are also removals, then we’re finished. If not, there exists l > k an addition of the
point z between x and y:

ηl = {x0, ..., xp, x,
︷︸︸︷
z , y, xp+1, ..., xm}

To maintain generality, we include in our consideration points wi that will be
removed between ηk and ηl. We start with ηk−1:

ηk−1 = {x0, ..., xp, x, w1, ..., wq, y, xp+1, ..., xm}
Now we perform the following additions immediately following our ηk−1:

η′k1 = {x0, ..., xp, x, w1, ..., wq, y,
︷︸︸︷
y , xp+1, ..., xm}

η′k2 = {x0, ..., xp, x, w1, ..., wq, y,
︷︸︸︷
x , y, xp+1, ..., xm}

η′k3 = {x0, ..., xp, x, w1, ..., wq, y, x,
︷︸︸︷
z , y, xp+1, ..., xm}

We have effectively inserted a point z between x and y using only duplications
of points already involved in the homotopy. Now we proceed with the removals
ηk through ηl, which will leave our new additions of x, y, and z untouched. Then
we perform the following removals, starting with the new ηl containing our recent
additions:

η′l = {x0, ..., xp, x, y︸︷︷︸, x, z, y, xp+1, ..., xm}
η′l1 = {x0, ..., xp, x︸︷︷︸, x, z, y, xp+1, ..., xm}
η′l2 = {x0, ..., xp, x, z, y, xp+1, ..., xm}

This final chain, η′l2 , is equivalent to the ηl in the original homotopy above. Now
if all the following steps are removals, we are finished. If not, we detect this t > l
a removal and perform the same process. As the homotopy by definition contains
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a finite number of points, the repetitions will cease, yielding some η′ such that all
additions are applied prior to any removals.

As this process involves only adding more steps to the homotopy, we clearly have
ν(η) ≤ ν(η′). To obtain a bound on the lengthening of this process, observe that each
iteration of the algorithm described adds 4 steps to the original homotopy. Further,
notice that an iteration is triggered only when an addition occurs subsequent to a
removal. Thus, the process of creating η′ adds at most 4νa(η) steps to η, yielding
ν(η′) ≤ ν(η) + 4νa(η), where νa(η) is the number of additions in η. The greatest
number of additions possible subsequent to a removal is exactly ν(η)−1 (if η consists
of one removal at the start and all additions following), so we get the rougher bound
in ν(η′) ≤ ν(η) + 4(ν(η)− 1) = 5ν(η)− 4.

�

This result (reached with the guidance of my advisor, Dr. Conrad Plaut) has a
number of possible applications where actual ε-homotopies are involved. For ex-
ample, we know that the following diagram is commutative for all ε > 0 via path
homotopy and covering space theory:

R

f(t)
''NNNNNNNNNNNNNN

f̃(t)
// (S1)ε

φε
��
S1

where f is the usual mapping onto the circle by f(t) = cos2πt + sin2πt and φε is
the endpoint mapping. But in the context of discrete homotopy, a large part of the
proof consists in proving that πε(S

1) is isomorphic to Z for all ε > 0, and an elemen-
tary proof of injectivity of the mapping requires the existence of an orderly homotopy.

Of course, the method of discrete homotopy finds its richest application among
metric spaces which do not necessarily have nice properties such as local path con-
nectedness. This result will surely find utility there.
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