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ABSTRACT 

 

It is a common belief that the presence of forest industry and associated wood demand will result 

in forest management of procurement areas. The following essays examined the relationship 

between mill demand and procurement areas by assessing the likelihood of forest management 

and the ability to predict future wood output. The first study investigates the likelihood of forest 

management given proximity to mills using a multivariate probit model, incorporating forest 

characteristics and primary wood-using mill information collected by the USDA Forest Service 

Forest Inventory and Analysis and the Timber Products Output (TPO) survey.  The second essay 

explores the use of vector autoregressive methods to forecast county pulpwood output using 

pulpwood production data collected by TPO. We evaluated a group of forecasting methods in the 

vector autoregressive family and compared the models forecast accuracy to that of the commonly 

used step-forward methodology. Results from the first study indicate that mill proximity has a 

low impact on private forest landowner management decisions. This information may prove 

useful to industry and state foresters when dealing with increases in demand arising from new 

markets, such as bioenergy. Forecasts from the second essay highlight the cross-county 

differences in terms of pulpwood output in response to national demand. While the 

macroeconomic series helped predict output activity in some counties, a group of counties 

displayed no correlation between product output and demand measured by the national variables. 

The results emphasize the need for disaggregated analysis to capture the dynamics of the 

procurement areas and primary mills.  
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I Introduction 

 

Although definitions of what constitutes a forest often center on classification of the trees by size 

and structure, a forest amounts to more than just the dominant vegetation. A forest is an 

ecosystem, home to a variety of living organisms. These ecosystems provide a variety of 

products and services, helping satisfy man’s spiritual and physical needs alike. Forests also 

contribute to the health of the environment by performing a variety of functions. For instance, 

forest vegetation provides soil protection, helping control soil erosion. Likewise, forests help 

regulate the carbon cycle and provide habitat to support biodiversity.  

 

The demands on forest ecosystems are varied and numerous. The question remains if forests can 

be sustainable given the demand from often conflicting interests such as timber and recreation. 

The renewable quality of forests brings the possibility for management to achieve both timber 

and non-timber benefits in a sustainable manner, i.e., forests managed in a way that satisfies 

existing needs for these goods and services, while securing the continued long-term availability 

of the resource. Rational forest owners will maximize utility, and though standing forests provide 

benefit, the level of utility proves subjective to landowner’s preferences. 

 

Recognition of the full range of goods and services provided by the forest ecosystems in the U.S. 

exists concurrently with a changing forestland ownership base. On one hand, forest industry 

continues divesting timberland holdings to investment organizations such as timber investment 

management organizations (TIMOs) and real estate investment trusts (REITs), whose objective 

include profit maximizing rather than mill procurement. Most TIMOs and REITs will manage to 
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maximize financial returns. On the other hand, higher-income urban populations continue 

expanding into the suburban fringe in search of natural settings, resulting in dispersed, low 

density development and fragmented forestlands (Smith, Miles, Charles, & Pugh, 2009). These 

exurban forestland owners also bring a new set of objectives, where forestlands are held for non-

timber utility including aesthetic, privacy, and recreational uses (Butler, 2008).  

 

Data from 2007 by the USDA Forest Service (Smith et al., 2009) indicate that approximately 31 

percent of U.S. timberland was publicly owned, with 19 percent being federal ownership. 

Corporate ownership accounted for about 21 percent and the remaining 49 percent was owned by 

private non-corporate owners. This last category includes family-owned forests and conservation 

groups. While the government manages federal lands for multiple uses, the ownership provides 

only marginal wood volumes when compared to volumes supplied from private lands. According 

to USDA Forest Service estimates, during 2006 private lands produced 91 percent of the total 

timber output, while federal lands contributed only three percent. Furthermore, the volume of 

timber harvested on federal lands declined by 57 percent between 1996 and 2006 (Smith et al., 

2009). This trend resulted from a variety of factors influencing the Forest Service’s management 

decisions, steering management to focus on non-timber benefits. As a consequence, forest 

industry relies more heavily on privately owned timberland to provide forest resources. 

 

1. Problem Statement 

The U.S. Census (2011) estimates that U.S. population increased by 13 percent from 1990 to 

2000 and per-capita income rose by 16 percent between 1990 and 2009. Population growth 

accompanied by an increase in wealth results in higher demand for construction timber, 
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furniture, paper, and other forest products (Basnyat, 2009; Ince, Kramp, Skog, Spelter, & Wear, 

2011). Despite the economic downturn, which substantially reduced timber output during 2008 

and 2009, the U.S. continues as the world’s leading consumer and producer of industrial 

roundwood and pulp for paper (FAO, 2010). At the same time, the demand for development land 

continues to threaten the sustainability of forests, as tracts of forestland are subdivided and sold 

for development (Mehmood & Zhang, 2001; Sampson & DeCoster, 2000; Stein et al., 2005). 

Sustainable management without sufficient focus on timber management could lead to future 

dependency on imported forest products, job losses, and probable damage to the rural economies.  

 

Aside from the added demand for wood products posed by population growth, forests also face 

increasing health problems. The probable sources for these health problems range from air 

pollution and weather changes (Côté & Ouimet, 1996; Fettig et al., 2007) to increasing 

globalization and the associated unintentional transfer of invasive plants and organisms 

(Schoettle & Sniezko, 2007). In most instances, adequate forest management promoting tree 

vigor can limit the damage or avoid the onset of pests and diseases (Côté & Ouimet, 1996).  The 

composition and structure of a forest plays a role in the forest’s susceptibility to certain pests 

(Schoettle & Sniezko, 2007). Trees in an overstocked forest, for example, are stressed by natural 

competition that reduces the tree’s ability to resist pests and diseases. Therefore, thinning can 

ensure adequate site capacity, resulting in stronger residual trees (Fettig et al., 2007) with better 

chances of defending against insects or pathogens. Single species, even-aged forest stands are 

generally considered more prone to diseases and pests outbreaks (Côté & Ouimet, 1996). 

Managing for mixed species, multi-age forests can then increase resistance to these disturbances 

(Samman & Logan, 2000). Management interventions however, carry costs that landowners 
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might not be able to offset if, for instance, the demand for timber is weak or if the forestland 

owner’s objectives do not include timber production.  

 

Forest economists and other social scientists have dedicated considerable effort to understand the 

potential timber supply from private forest landowners (PFLs). Most of the previous research has 

been focused on the willingness of landowners to sell timber. A question, so far unanswered in 

the literature, involves the effect of primary wood-using mills on the likelihood of management 

activities by PFLs.  The proposed research takes a new approach to the supply problem by using 

production data from primary wood-using mill surveys to analyze the role that mills play in 

shaping PFLs management activities within the procurement areas. Additionally, forest 

management planning requires information on expected wood demand. Although multiple 

models currently project timber requirements, the existing models inform large geographic areas, 

leaving the question of micro areas unsolved. Therefore, we present a study examining available 

time series of timber product output at the county level, to both evaluate a forecasting technique 

and to assess the behavior of these series.  

 

Results from these studies should prove useful to industry and federal and state agencies alike, 

by identifying the interaction between primary wood processing plants and the timberlands that 

supply them. Such information can determine the expected response from landowners to 

increases or decreases in timber demand. Furthermore, policymakers can benefit from local 

information that indicates how primary wood processing plants influence timberland 

management in their procurement zones. Additionally, the ability to forecast short-term wood 
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demand using information from the USDA Forest Service mill surveys provides a useful tool for 

policymakers and state foresters seeking to develop more effective programs.  

 

2. Objectives 

The objectives of the study are to (1) assess how proximity to a primary wood-processing mill 

affects the likelihood of forest management activities, and (2) examine the use of wood 

procurement and macroeconomic time series to forecast wood flow at the county level.  

 

The research is organized as two individual studies using econometric methods for empirical 

analysis. The chapters begin with an introduction to the topic followed by a review of previous 

research. Each chapter includes a detailed discussion of methodology, results, and analysis. A 

separate chapter presents the overall conclusions, policy implications, and future research needs. 

Taken together, these studies describe the interaction between primary wood-using plants and the 

characteristics of the plants’ procurement zone in an effort to understand the effect on supply.  

 

3. The USDA Forest Service Forest Inventory and Timber Products Output Data   

The national forest inventory program can track its origins to the McSweeney-McNary Forest 

Research Act of 1928 (P.L. 70-466). This Act authorized the USDA Forest Service to carry out 

the forest inventory to measure the nation’s needs for timber and other forest products 

(Woudenberg et al., 2010). The inventory is carried out by the Forest Service Forest Inventory 

and Analysis (FIA) program.  Although at that time the motivation for the inventory was 

primarily to evaluate the timber resources, this focus has shifted to include a broader set of 

objectives. The national forest inventory, currently authorized under the 1978 Forest and 
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Rangeland Renewable Planning Research Act (P.L 95-307) and amendments, includes a wider 

set of objectives. Current motivation for the inventory include the need to assess the status and 

trends of all natural resources, as well as, the need to evaluate the forests use and health 

(Woudenberg et al., 2010). This change in focus results from an increased knowledge of the 

multiple benefits forest ecosystems provide, as well as growing demands for non-timber products 

and services. The increase in globalization and resulting spread of pests and invasive species, 

place new demands on the Forest Service’s forest inventory to assess the health status of the 

forests in the nation.  

 

The FIA is currently organized into 4 regional units. Data collection takes place across the 

nation, but the responsibility for collection and reporting resides within each regional unit. 

Although part of the same program, the forest inventory and the mill survey operate under 

separate sections. Given the different nature of the data collected by these two sections, the 

methodology and survey design differ as well.  

A. Forest Inventory (FIA) Data 

To carry out the inventory, FIA established permanent plots within a continuous hexagonal grid 

across the country (approximately 1 plot every 6,000 acres). The first step in the inventory 

process involves classifying each plot into forest and non-forest categories using aerial photos or 

satellite imagery. Following this classification, field crews visit the plots and collect the ground 

information. Until recently, the FIA conducted periodic inventories, collecting the measurements 

for an entire state over a number of years. The amount of time, or period length, taken to 

complete each inventory ranged from five to ten years depending on the State. During 1999 the 

inventory changed from a periodic to an annual basis, where a portion of the plots are measured 
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every year. This change in periodicity originated in response to the 1998 Farm Bill (P.L. 105-

185) mandate for more recent information and increased frequency of reporting  of forest 

inventory information (Gillespie, 1999). Additionally, during the mid-1990s the FIA adopted a 

national plot design to standardize the national inventory. This new design involves the use of a 

fixed instead of a variable plot radius (Woudenberg et al., 2010). For cases where the analysis 

applies to multiple states the difference in design can be a problem. Within the proposed study 

region, Florida is the only state that implemented a variable radius plot design. An additional 

caveat when using inventory estimates relates to the size of the analysis area. The error 

associated with the inventory estimates increases as the area decreases. For example, while 

estimates for a state might fall below the two percent sampling error, estimates for a small 

county within that state could have double-digit sampling error (Woudenberg et al., 2010). For 

this reason FIA does not recommend using data disaggregated at a level below the FIA survey 

unit (aggregation of counties sharing similar ecological characteristics within a state). Another 

alternative for analysis, and the one used in the empirical analysis presented in Chapter II, entails 

the use of the FIA plot level, instead of the county, as the observational unit.   

B. The Timber Products Output (TPO) Data 

The FIA timber products output program conducts periodic canvasses of primary wood-using 

mills in each state. As with the FIA forest inventory, each FIA regional unit manages the TPO 

for a set of states. Within the Southern region the TPO program currently carries out a mill 

canvass every two years for mills other than pulp mills, which are canvased annually. This bi-

annual canvassing approach started in 1995. Previous to the bi-annual data collecting frequency, 

the TPO collected data as requested by each state. This as-needed data collection scheme 

resulted in uneven data years across states. Therefore, the TPO data provide an unbalanced panel 
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for non-pulp mill. The TPO survey contains varied mill information: the mill’s location, the 

counties each mill procured timber from, the total timber receipts per product type, and the tree 

species group utilized.  In the following studies we utilize data from sawmills, veneer and 

plywood mills, pulp mills, and composite panel mills.  

 

Although questionnaires are sent to all primary-wood using mills in each state, not all mills 

respond. It is possible that non-response occurs non-randomly and that, in fact, it identifies a 

certain type of mill owner. When the missing observations generate from a non-random process 

using the sample will result in inconsistent estimates for the population (Wooldridge, 2002). 

Currently, information identifying the rate of response is not readily available.  Nonetheless, 

non-respondents include smaller mills which usually operate sporadically and account for a 

minor segment of the overall wood procurement (Johnson, 2011). On the other hand, there is a 

100 percent response rate among pulp mills. The empirical analysis in the first study uses TPO 

data for South Carolina mills, which displays a 100 percent response rate (Steppleton, 2011).  

  



9 

 

II Evaluating the Effect of Available Mill Capacity on the Likelihood of Forest 

Management Activities  
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1. Abstract 

As holders of a large portion of the timberland, and providers of the majority of the timber 

harvest in the South, PFLs harvest and regeneration choices can significantly impact forest 

sustainability in the region. The following essay examined PFLs harvest and regeneration 

responses to roundwood demand from primary wood-using mills using multivariate probit 

regression. The analysis utilized forest inventory and primary mill survey data from the USDA 

Forest Service Forest Inventory and Analysis Program for South Carolina, from 1999 to 2006.  

The regression allows joint estimation of the regeneration and harvest choices to assess the 

probability of regeneration on harvested stands. Results revealed a weak response to mill 

proximity, particularly for regeneration efforts. The results suggest the need for tools other than 

timber markets to ensure continued PFLs regeneration efforts.  

 

2. Introduction 

The United States is the world’s leading producer of industrial roundwood (FAO, 2010),  a 

leadership likely to continue into the future given the nation’s abundant forest resources. Forests 

in the U.S. occupy one-third of the nation’s total land area, constituting the fourth largest 

forestland base in the world (FAO, 2010). Additionally, more than two-thirds of U.S. forests are 

classified as productive forestland, or timberland, with 40 percent of the timberland and one-

third of the growing stock volume located in the Southern region (Smith et al., 2009). Further, 

the South accounts for a significant portion of the total timber production. During 2009 this 

region provided 62 percent of the nation’s total timber harvest (Smith et al., 2009). Combined, 

timberland area, high site productivity and significant mill capacity, point to continued reliance 

on the Southern region to meet the nation’s timber needs.  
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Although timber resources and mill capacity exists, sustainable timber production from the South 

depends on the likelihood of PFLs to invest in forest management. The behavior of PFLs can 

significantly impact forest sustainability because they own the majority of the southern 

timberland, 58 percent in 2007 (Butler, 2008), and provide the majority of roundwood output, 

approximately 70 percent in 2007 (Johnson, Bentley, & Howell, 2009). Compared to industrial 

and corporate private forest owners, PFLs hold land for multiple reasons, often with no interest 

in timber production (Butler, 2008). In general, corporate and industrial timberland owners 

manage their lands to maximize profits (Hyberg & Holthausen, 1989). Private forest landowners, 

on the other hand, behave as utility- maximizing agents (Hyberg & Holthausen, 1989). As such, 

PFLs manage for timber and non-timber uses based on personal preferences. The degree to 

which PFLs manage for timber production depends on the level of utility received from the non-

timber values of their lands  (Dennis, 1989; Hyberg & Holthausen, 1989). In other words, the 

higher the preference for non-timber values, the less likely the management for timber 

production.    

 

The issue of uncertain forest management on PFL tracts goes beyond future availability of 

timber, however, since active forest management also affects non-timber attributes - forest 

management can improve wildlife habitat or control invasive species. Likewise, forest 

management plays a role in forest protection. Thinning to lower stand density, for example, 

reduces the risk of forest fires by decreasing fuel levels. Similarly, thinning overstocked stands 

improves the forest stand’s overall health by easing the stress on the remaining trees (Fettig et 

al., 2007). Thus, the benefits of these interventions extend beyond timber production. However, 



12 

 

the costs associated with management activities likely deter some PFLs from actively managing 

their forests.  

 

Provided wood markets exist, the costs from thinning interventions can generally be offset with 

the sale of harvested roundwood.  Costs from non-timber producing interventions (e.g. planting, 

or herbicide application) however, might be recovered in the long term by gains in timber 

growth. According to the U.S. Forest Service national woodland owners survey (NWOS), the 

majority of PFLs hold land for purposes other than timber production (Butler, 2008). In effect, 

the NWOS found PFLs’ top reasons for owning forestland include aesthetics, family legacy, and 

privacy (Butler, 2008). If future timber harvest is not the owner’s objectives, then investing in 

these interventions seems less likely. Nonetheless, studies have revealed that PFLs respond to 

prices, selling timber when the price is right (Cleaves & Bennett, 1995; Thompson & Jones, 

1981). PFLs reservation price, however, may be higher than that of other private ownerships. 

Nonetheless, increases in wood demand, as reflected by higher stumpage prices, should motivate 

PFLs to invest in management to capture future expected returns from wood sales. Previous 

studies on the response of PFLs to price signals prove inconclusive (Dennis, 1990, 1991; Hyberg 

& Holthausen, 1989), with a number of studies finding stumpage prices not significant to the 

management decision (Beach, Pattanayak, Yang, Murray, & Abt, 2005).  In general, researchers 

do not observe the stumpage price at the stand level. Instead, studies make use of regionally 

aggregated average prices. This data limitation likely contributes to the ambiguous results of 

price effects. Dennis (1990) points to measurement error that could arise from using a price 

index as a proxy for real stumpage price as a possible reason for the ambiguity of his results.  
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The research presented in this chapter examines the question of expected forest management by 

PFLs, given sustained demand from primary mills. As a complement to stumpage prices, the 

analysis incorporates TPO information to determine primary wood-using mill procurement 

influence for each FIA forested plot (with PFL ownership) in South Carolina. In this manner, the 

analysis examines the effect of mill demand on forest management, with mill demand measured 

by the stumpage price weighted by the volume of receipts per mill product type and by the 

number of mills in the vicinity of each plot.  

 

3. Literature Review 

Forests provide multiple benefits to timberland owners and society. These benefits result from 

standing timber and roundwood harvesting. Standing timber provides non-market amenities, as 

well as income possibilities arising from new markets such as ecosystem services and carbon 

markets. Harvested roundwood, on the other hand, provides a source of income to timberland 

owners and material supply to the timber industry, directly affecting the economies of rural 

communities. The sustainability of timber and non-timber services depends on the degree of 

forest management practiced by timberland owners. Management interventions include forest 

regeneration (natural or artificial), timber harvest (partial or total), and other activities to improve 

the stand (e.g. fertilizing, herbicide applications, and pruning). Forest management interventions 

are designed to produce and maintain desired forest characteristics such as species composition 

or stand structure. Most of these interventions do not produce immediate results, however, but 

change the forest conditions over time. Therefore, the objectives of timberland ownership play a 

central role in the likelihood of a landowner engaging in any managerial activities. Furthermore, 

sustainability of PFLs timberlands can significantly impact the future supply of timber and non-
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timber services. Consequently, considerable research has been conducted to understand the 

conditions under which PFLs engage in management activities. Beach et al. (2005) provides a 

comprehensive review of the research in this area. The most studied management activities 

include the likelihood of timber production, and the expected degree of regeneration investment 

(Beach et al., 2005; Cubbage, Snider, Abt, & Moulton, 2003).  

A. Timber Production 

Previous research reveals that multiple factors influence PFL decisions to sell timber. These 

factors include owner characteristics such as income, education (Dennis, 1989, 1990; Hyberg & 

Holthausen, 1989; Joshi & Arano, 2009) and age (Joshi & Arano, 2009; Kuuluvainen, 

Karppinen, & Ovaskainen, 1996); characteristics of the timber tract, including size (Boyd, 1984; 

Hyberg & Holthausen, 1989; Joshi & Arano, 2009; Kuuluvainen & Salo, 1991), accessibility 

(May & LeDoux, 1992) and location in relation to urban areas (Joshi & Arano, 2009); the 

characteristics of the forest resource, such as species composition and site productivity; and to 

some degree, timber prices (Boyd, 1984; Hyberg & Holthausen, 1989; Newman & Wear, 1993) 

and investment rate of return (Kuuluvainen & Salo, 1991).  

 

The likelihood of timber harvest by PFLs relates directly to the size of their timberland, with 

owners of small tracts (under 50 acres) less likely to harvest timber. (Cleaves & Bennett, 1995; 

Hyberg & Holthausen, 1989; Thompson & Jones, 1981; Vokoun, Amacher, & Wear, 2006).  

However, even small tract landowners sell timber at some point (Cleaves & Bennett, 1995; 

Thompson & Jones, 1981). Small tract PFLs, however, reported sales primarily from thinning 

operations instead of clear cutting (Cleaves & Bennett, 1995).  Additionally, the fixed costs 

associated with logging operations make harvesting small tracts more costly on a per-acre basis. 
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A survey of loggers in South Carolina revealed that only 15 percent of loggers were willing to 

harvest tracts under 10 acres (Moldenhauer & Bolding, 2009).   

 

Accessibility plays an important role in the likelihood of harvest, as a timber tract with limited 

accessibility will incur greater harvesting costs. Factors determining tract accessibility include 

terrain conditions, road infrastructure, and distance to the mills. Steep terrain causes higher 

timber extraction costs due to the added time required to harvest the area. Likewise, the available 

class of roads and distance to the mills will affect transportation costs (May & LeDoux, 1992). 

More accessible timber tracts form part of preferred procurement areas. In contrast, timberlands 

with accessibility constraints require better-quality timber to compensate for higher harvest or 

transportation costs (May & LeDoux, 1992).  

   

Other factors affecting the availability of timber from a timber tract include urban expansion and 

population density (Kline, Azuma, & Alig, 2004; Munn, Barlow, Evans, & Cleaves, 2002; Wear, 

Liu, Foreman, & Sheffield, 1999; Wear & Newman, 2004). As population grows and urban 

boundaries expand, the value of the land in the new urban boundary increases (Wear & Newman, 

2004). Likewise, property taxes are generally lower in rural areas, making forest activities more 

costly near urban centers (Wear & Newman, 2004). Demand for residential and commercial 

space increases as population grows, contributing to forest fragmentation and encouraging 

timberland owners to harvest and sell the land for development (Wear & Newman, 2004).  

Fragmented patches are then less likely to be harvested due to increased harvesting costs 

(Dennis, 1990; Thompson & Jones, 1981; Wear et al., 1999; Wear & Newman, 2004).  
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Studies by Wear et al. (1999) and Munn et al. (2002) report an inverse relationship between 

population density and the likelihood of harvest. Wear et al. (1999) reported that for Virginia the 

probability of commercial timber harvest decreased as population density increased.  The authors 

reported ranges from 25 percent probability of harvest for populations of 70 people per square 

mile (psm) to close to zero probability for populations of 150 psm and larger. This range 

represented an overall loss of about 40 percent of the timberland area and growing stock in the 

study area (Wear et al., 1999). Munn et al. (2002) examined harvesting decisions in the South-

central states and concluded that higher population density reduces harvest levels up to 19 

percent when population density increases from 10 to 170 psm. Additionally, the probability of 

harvest increases in areas at least 55 miles from the urban perimeter. The authors also found 

urbanization impacting specific timber products differently. In effect, pulpwood generated from 

intermediate timber harvest (harvest to improve stand growth) appeared more affected (lower 

volumes available) than saw-logs generated from final timber harvest (harvest where the entire 

stand is removed) (Munn et al., 2002).  

 

Estimated supply elasticities for PFLs by Prestemon and Wear (2000) and Newman and Wear 

(1993) indicate them to be relatively inelastic. The level of elasticity varies between products, 

with saw-logs having relatively higher elasticities than pulpwood. In other words, timberland 

owners will be more responsive to changes in saw-log prices than pulpwood prices (Newman & 

Wear, 1993; Prestemon & Wear, 2000). Saw mills procure timber from the harvest of saw-log 

size stands. Wood chips for pulp mills, on the other hand, result from both pulpwood and 

residues from saw-logs harvest. Therefore, a price increase in saw-logs will correspond with an 

increase in both saw-logs and pulpwood supply (Prestemon & Wear, 2000). 
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Taking a different approach, Vokoun et al. (2006) analyzed PFLs responses to a set of price 

offers. The study determined the lower price and harvest intensity at which PFLs are willing to 

harvest. Vokoun et al. (2006) find that for a minimum acceptable price, the intensity of harvest 

varies according to ownership characteristics. Significant characteristics include timber-tract 

size, number of years owned, property as place of residence, and level of urban pressure 

measured by number of existing structures in the stand. 

B. Regeneration Efforts 

Unlike harvesting, forest regeneration is a long-term investment. Furthermore, costs from 

regeneration activities might prevent some owners from adequately stocking their lands. The 

lack of investment can result in stands with a less desirable mix of species, or in changes to land 

use. Forests provide an array of environmental services for public benefit, such as carbon 

storage, erosion control, and aesthetic quality. These social benefits, in part, justify the use of 

cost-share programs to ensure adequate forest regeneration in private lands. Two such programs 

in effect during the mid-70s and 80s include the Forest Incentives Program (FIP, 1978 to 2002) 

and the Conservation Reserve Program (CRP, 1985 to present). The Forest Incentives Program 

focused only on forestry activities, while in the CRP case tree planting is one of many objectives.  

 

Under the FIP, cost-share covered up to 65 percent of the costs of reforestation and stand 

improvement for PFL lands (NRCS, 2009). However, planting was the largest management 

activity undertaken by PFLs, representing about 64 percent of the total acreage managed 

(Ellefson & Risbrudt, 1987). Brooks’ (1985) simulation models of FIP effect on future supply 

and prices concluded that the cost-share program would in fact motivate PFLs to manage their 
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forests.  Similarly, Ellefson and Risbrudt’s (1987) evaluation of the programs effect on timber 

yields concluded that sawtimber volumes in the South would experience the most benefits.  

 

The CRP provides up to a 50 percent of cost-share for retiring marginal agricultural land for a 

specific contract period. The CRP aims at soil and water protection, as well as resource 

conservation (USDA Farm Service Agency, 2011b). Aside from planting cost-share, the program 

provides annual land rents per qualifying acre of land enrolled (USDA Farm Service Agency, 

2011a). To be eligible, land has to have been in crop production for at least five years before the 

contract is awarded. Participation in the CRP is voluntary, and contracts are awarded through a 

competitive bidding process. As of August 2011, the program included 166,370 cumulative acres 

of tree plantings nation-wide, with 94 percent of those acres in the South. Across the Southern 

states, South Carolina ranks sixth in total planted acres and currently under CRP contract (USDA 

Farm Service Agency, 2011a). Contracts for tree planting are generally for 15 years. 

 

Aside from cost share incentives, reforestation efforts by PFLs have been found to be positively 

correlated with landowner level of income (Li & Zhang, 2007), size of the timber stand (Zhang 

& Pearse, 1997), and stumpage prices (Hyberg & Holthausen, 1989; Li & Zhang, 2007). 

C. Stand Improvement 

Stand improvements (SI) include a range of forest management interventions performed as 

intermediate activities and intended to enhance forest characteristics such as timber growth, 

stand composition, or forest health. These activities, as regeneration, can be considered as an 

investment in forestland development. As such, stand improvement decisions are found to be 
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affected by factors similar to those affecting the regeneration decision. Significant factors 

affecting PFLs’ decisions to invest in SI activities include age and income, with younger 

landowners and those with higher incomes being more likely to invest in forest management 

(Romm, Tuazon, & Washburn, 1987).  Previous studies find availability of cost-share 

regeneration programs playing a significant and positive role in the likelihood of observing SI 

activities on non-industrial forestlands (Boyd, 1984; Ovaskainen, Hänninen, Mikkola, & 

Lehtonen, 2006). Arano and Munn’s (2006) study of PFLs in Mississippi found the volume of 

softwood (Romm et al., 1987) and the stand size as significant predictors in the likelihood of 

investment in intermediate forest management activities. 

 

4. Landowner Management Decision  

Forest management activities can be classified into three major groups; harvest, regeneration, 

and other timber stand improvement activities (e.g. herbicide application, non-commercial 

thinning, or pruning). A landowner faces different management intervention decisions at various 

points in the development of his or her forestland, with the type of management dependent on the 

forest characteristics.  A rational landowner will conduct a particular forest activity (e.g. harvest 

or stand improvement) if the expected utility associated with this is greater than without 

intervention. Formally, let 
*

ijY denote the utility of management regime j to landowner i, where j 

=1 denotes the activity and 0 denotes otherwise. Further, assume that utility is a linear function 

of a vector, Xij, comprising forestland attributes, timber markets, and costs associated with 

management interventions, plus an error component ij , which represents components of utility 

unobserved by the analyst. This gives rise to the following relationship  
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*

ij ij ij ijY X    , 

where ij is assumed continuously distributed and independent of the variables in Xij.  Although 

utility is not directly observed, from the available data, we do observe whether a particular 

management regime was undertaken. Define the binary outcome Yij, where 

*1 if 0

0 otherwise.

ij

ij

Y
Y

 
 


 

Then, the probability of observing management j can be expressed as, 

Prob( 1| )j jY X
  

Prob( ' 0)j jX      

      ( ' )G X    

As the landowner can simultaneously choose none or all management activities, we specify a set 

of equations, assumed correlated though their errors, where the variables in X can vary across the 

different management choices. For a set of J forest management activities, 
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Where ( )G  is  most commonly assumed to follow a normal (probit) or logistic (logit) 

distribution, although alternatives, such as the Weibull or log-log models, may instead apply 

(Green, 2003).  
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Given that consistent estimators for β rely on selecting an appropriate error distribution, the 

distributional assumption requires testing. Similarly, consistent estimation of binary models rests 

on the assumption of homoscedastic errors. Adding possible endogenous covariates further 

increases the complexity of estimation. Consistent estimation with endogenous regressors 

requires an assumption about the distribution of the endogenous variables, as well.  Estimating 

the binary outcome model via a linear probability model (LPM) offers a way to circumvent the 

strong distributional assumptions needed for non-linear models. Additionally, with a LPM one 

can easily accommodate endogenous variables, as well as perform robust estimation of the errors 

under multiple forms of unspecified heteroskedasticity. However, although convenient for 

consistent estimation, the LPM fails to properly capture the nature of the binary outcome; for 

instance, by resulting in estimated probabilities outside the 0 to 1 range. Consistent estimation by 

LPM also carries the cost of efficiency loss, as the LPM is heteroskedastic by nature of the 

binary outcome (Green, 2003). 

 

5. Empirical Application 

We conducted an empirical analysis of the effect of mill demand on the likelihood of forest 

management using data for South Carolina. The USDA FIA forest inventory plot condition data 

provides the information for the dichotomous response variable. However, the sample of interest 

contains only plots classified as forestland and under non-industrial private ownership. The study 

used data from the two latest FIA forestry inventory cycles, covering 1999 to 2006. Additionally, 

FIA TPO program provided data on primary mill roundwood demand. These data were 

supplemented with information from other sources to control for exogenous factors hypothesized 

to affect the management decision.  The sample included only plots with observations in both 
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cycles. Reasons for a plot in the sample to appear in only one cycle vary, including a change in 

ownership type or land use status. These observations were dropped from the sample. With 

missing records removed, the sample includes 1,560 observations.   

 

The plots stand size varies across the sample from plots located in stands with fewer than ten 

acres to plots in holdings with 1,000 acres and larger.  Studies have revealed that stand size is a 

significant predictor of forest management, with 50 acres the usual minimum acreage needed to 

observe active management (Cleaves & Bennett, 1995). However, preliminary examination of 

the data revealed forest management activities in small stands, as seen in Table II-1.  

A. Study Area  

South Carolina has a total land area of 31,113 square miles, divided into 46 counties, with Horry 

county having the largest land area, and Greenville county the largest population center (US 

Census Bureau, 2011).  Population growth estimates for 2010 place the state’s growth rate close 

to 48 percent from 1980 to 2010, with the majority of the growth (84 percent of the overall 

increase) occurring in urban areas (USDA Economic Research Service, 2011).  

  

According to the latest published FIA report, the 2006 volume of live trees on South Carolina’s 

timberland totaled 21.5 billion cubic feet, with a net average total growth of over 1.2 billion 

cubic feet per year between 2002 and 2006 (Conner, Adams, Johnson, & Oswalt, 2009). For 

analysis purposes, FIA divides South Carolina into 3 sample units: Piedmont, Northern Coastal 

Plain and Southern Coastal Plain (Figure II.1); combining counties that share similar 

physiographic characteristics. Among these regions, the Southern Coastal Plain counties had the 

lowest percent of forestland, 26 percent, compared to 38 percent found in the Piedmont and 36   
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Table II-1 Outcome frequency by stand size categories. 

Stand size   Total    Outcome = 0     Outcome = 1  

    Frequency Percent   Frequency Percent 

 Under 10       121  108 89.26 

 

13 10.74 

 10 to 99       676  592 87.57 

 

84 12.43 

 100 to 999       704  597 84.80 

 

107 15.20 

 1000 & over         59  56 94.92   3 5.08 

Total   1,560  1,353 86.73   207 13.27 

Notes: Percent based on respective category total. Stand size in acres. 
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percent in the Northern Coastal Plain regions. In terms of species type, 46 percent of the state’s 

forestland accounted for softwoods and 56 percent were hardwoods (Conner et al., 2009).  

 

The majority of South Carolina’s timberland is in private ownership, with PFLs the predominant 

group accounting for 7.3 million acres or 59 percent of the total timberland (Conner et al., 2009). 

Combined, forest industry and corporate owners hold 3.7 million acres (28 percent) with the 

remaining acres under state and federal ownership (Conner et al., 2009). The forest industry is an 

important component of the state’s economy. Currently, the industry ranks second among the 

state’s manufacturing sectors with an economic impact estimated at around $17 billion per year, 

supporting over 44,000 jobs (South Carolina Forestry Commission, 2011). Timber products 

output figures for 2007 indicate that 75 mills were operating in South Carolina during the year, 

with the majority of the production (87 percent) captured by pulp mills and sawmills (Johnson & 

Adams, 2009). Additionally, the majority of the roundwood volume originated from softwood 

species (81 percent). Most pulp mills operating in 2007 were located in the FIA Northern Coastal 

Plain unit, while all operating veneer mills were located in the Southern Coastal Plain unit. 

Although sawmills were scattered across the state, a larger number of small-size sawmills 

located in the Piedmont unit (Figure II.1).  

B. Estimation Approach  

Because plots are measured within a five to eight year cycle, a crew may record multiple 

management activities for one date even though the activities may have occurred through the 

cycle period. For instance, it is possible to observe vegetation control (stand improvement) 

together with harvest or regeneration. In some cases, field crews recorded the years in which 
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Figure II.1 Distribution of primary wood-using mills in South Carolina. 

Source: Johnson and Adams (2009). 
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they estimated the different interventions occurred.  While we assume that activities with an 

estimated date occurred in the estimated year, activities without a date were assumed to occur the 

year the crew collected the data.  Furthermore, the plot volume recorded at the time of visit 

corresponds to the conditions at the time of the visit not the time of intervention. To estimate a 

plot’s volume at a specific time of intervention, we fitted a regression estimating growth by 

species group using data from three inventory panels (1993 to 2006). Only plots with two or 

more consecutive observations without management interventions where included in the growth 

sample.  

 

Given the binary nature of the response variables, a non-linear model seems appropriate. 

Although the distributions differ, in practice studies have found the probit and logit model offer 

similar results in terms of marginal effects (Green, 2003).  We selected a probit model assuming 

normally distributed errors. The presence of suspected endogenous covariates, together with 

possible unspecified heteroskedasticity complicated the probit’s estimation and the testing of 

theoretical assumptions. As a consequence, to explore the robustness of the results to theoretical 

assumptions, a linear probability model (LPM) for each management outcome was also 

estimated. Additionally, the specifications took into account that the dataset included two 

observations per plot, giving rise to correlation in plot-level unobservables. Consequently, we 

estimated cluster-robust standard errors.  

 

For the analysis we used a multivariate probit regression to jointly estimate the set of binary 

choices associated with the selected forest management activities. Harvest can occur at different 

levels of intensity, from a clear cut to a partial or selective harvest. The FIA data provides 
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information to distinguish between different types of harvest interventions. However, as seen in 

Table II-2, the relatively small number of positive outcomes by harvest intensity prevented the 

analysis at a disaggregated level. Likewise, FIA data allows disaggregating the regeneration into 

natural or artificial, and timber stand improvement information into thinning or other, but the 

disaggregated data presents a very low count of positive outcomes (Table II-2). Analysis with 

these low frequency events resulted in severe convergence problems. Therefore, the regeneration 

estimation only used the aggregated figures. As a reference, a probit regression using the timber 

stand improvement outcome was also estimated (Appendix A). Results from that estimation 

might be biased, however, due to the low representation of stand improvement positive outcomes 

(King & Zeng, 2001).  

 

The data frequency allows disaggregating harvest at the species group level, however. Therefore, 

to examine the influence of species composition on likelihood of management, we disaggregated 

the harvest outcome by hardwood and softwood. Given the mixed species composition of most 

stands, one expects the hardwood and softwood harvest outcomes to be correlated. Additionally, 

regeneration is believed correlated with harvest. For instance, regeneration reflects the likelihood 

of maintaining the land in forest after harvest. Also, regeneration efforts to improve stand stock, 

composition, or quality suggest a correlation with future timber production. Consequently, these 

three outcomes where estimated jointly as a multivariate probit. 

 

Estimating a multivariate probit using maximum likelihood is computationally difficult because 

of the multiple integrals involved. The simulated maximum likelihood (SML) method offers an 

alternative for estimation (Green, 2003). With the SML, the likelihood is approximated by using 
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Table II-2 Outcome frequency by management activity. 

Activity  Outcome = 0   Outcome = 1 

 

Frequency Percent 

 

Frequency Percent 

Harvest 1,381 88.53  179 11.47 

By intensity      

Clearcut 1,484 95.13  76 4.87 

Thinning 1,517 97.24  43 2.76 

Partial harvest 1,502 96.28  58 3.72 

Shelterwood 1,558 99.87  2 0.13 

By species group      

Hardwood 1,434 91.92 

 

126 8.08 

Softwood 1,418 90.90 

 

142 9.10 

     

    

Regeneration 1,444 92.56 

 

116 7.44 

By type      

Natural 1,481 94.94 

 

79 5.06 

Artificial 1,523 97.63 

 

37 2.37 

Stand Improvement 1,514 97.05 

 

46 2.95 

Note: Percent based on a total 1,560 observations.  
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a number of pseudo random draws from the standard uniform distribution. The SML precision 

increases with the number of draws used. However, the efficiency of a large number of draws 

comes at the cost of processing time. The recommendation is to select a number that offers good 

precision. For the present analysis we used 500 draws, which was sufficiently large to provide 

precision to four decimals. We arrived at this precision estimate by comparing the coefficients 

between an MVP with 450 and one with 500 draws. Further, the selected number of draws falls 

within Cappellari and Jenkins (2003) recommendation to use at least √N draws for seed stability 

(with N=the number of observations), or 40 draws in our sample. For the analysis we used the 

default seed set by Stata. 

 

In the multivariate probit, calculating the probabilities requires an additional simulation step. 

Using the results from the multivariate probit, the method involves drawing a set of simulated 

observations for each equation (Cappellari & Jenkins, 2006). Then, the probabilities can be 

estimated for any combination of the outcomes by specifying the outcomes’ value of interest. 

After calculating the predicted probabilities one can estimate conditional probabilities to evaluate 

the interaction between management activities. The conditional probabilities were estimated 

using trivariate and bivariate predicted probabilities. Following the conditional probabilities rule, 

the probability of event A given events B and C is expressed as, 

(  and  and )
( | & )

(  and )

P A B C
P A B C

P B C
 . 

In this way, the conditional probability in the trivariate probit is,  

' ' '

3 1 1 2 2 3 3
1 1 2 2 3 3 ' '
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Where jM represents the management type (j=1, 2, or 3 - harvest of softwood, harvest of 

hardwood, and regeneration), and jI is an indicator variable for management type j, equal to 1 if 

the outcome is positive and 0 otherwise. i is the joint standard normal distribution with i 

number of joint equations; Σ represents the correlation matrix across the three outcomes, and 
23  

denotes the correlation between the two conditioning outcomes.  

 

To evaluate the magnitude of the independent variables effect on the probability of outcome 

success, we calculated the average marginal effect for the variables of interest. As a default, the 

marginal effects for the single probit and bivariate cases are reported at the average value of each 

variable. For multivariate cases with more than two equations, we used the estimated coefficients 

to estimate the marginal effects and then averaged the effect over the sample. The marginal 

effect for a variable  was found by estimating
[ / ] ˆ ˆ( ' )k kj

j

E y x
x

x
  


 , using the estimated 

linear prediction, ˆ ˆ( ' )k kx y  , for outcome k and the estimated coefficient ˆ
kj for the variable of 

interest jx ; where denotes the standard normal density function.  

C. Variables and Data Sources 

Based on the review of past research on roundwood supply and demand, the covariates 

hypothesized to influence management decisions provide information characterizing each 

observational unit (FIA plot) in terms of forest resource and owner attributes, plot location, and 

available wood markets. Table II-3 lists all included variables with respective data sources. 
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Table II-3 List of dependent variables with description, units, and data source. 

Variable Description Units Mean Std. Dev.   Source 

oper 
 

Indicator = 1 if signs of timber 

equipment operability constrains 

n/a 

 

0.28 

 

0.46 

 

 

FIA 

 

delta 

 

Number of years between plot 

visits 

units 

 

5.51 

 

2.12 

  

FIA 

 

lnstand Size of stand in log form ln(acres) 4.50 1.47 

 

FIA 

propswd 

 

Proportion of softwood to total 

plot volume 

1,000 cubic 

feet 

0.48 

 

0.39 

 

 

FIA 

 

miles_town 
 

Distance from plot to nearest 

town 

miles 

 

6.59 

 

4.51 

  

FIA & US 

Census 

ppsqm 

 

Number of people per square 

mile 

unit 

 

132.67 

 

113.83 

 

 

US Census 

 

percinc Average per capita income 1,000 dollars  27.24 4.19 

 

US Census 

pop65 

 

Percent of population 65 years 

and older  

percent  

 

12.76 

 

1.81 

 

 

US Census 

 

unit2 

 

Indicator =1 if SC Northern 

Coastal Plane survey unit 

n/a 

 

0.28 

 

0.45 

 

 

FIA 

 

unit3 
 

Indicator =1 if SC Piedmont 

survey unit  

n/a 

 

0.40 

 

0.49 

 

 

FIA 

 

land_dac Agricultural land value $1,000/acre 2.61 1.11  US Census 

acres_chg 
 

Net change in total acres under 

cost share 

acres 

 

0.03 

 

0.18 

 

 

USDA,NRCS 

  

gs01 
 

Annual change in the one year 

interest rate treasury 

unit 

 

-0.16 

 

1.55 

 

 

FRED 

 

whst 

 

Weighted hardwood saw logs 

stumpage price 

$/1,000 board 

feet  

5.51 

 

5.37 

 

 

TMS & FIA, 

TPO 

wsst 

 

Weighted softwood saw logs 

stumpage price 

$/1,000 board 

feet  

10.81 

 

11.33 

 

 

TMS & FIA, 

TPO 

wsply 

 

Weighted softwood ply logs 

stumpage price 

$/1,000 board 

feet  

11.41 

 

17.86 

 

 

TMS & FIA, 

TPO 

whpw 
 

Weighted hardwood pulp logs 

and chips stumpage price 

$/1,000 cords 

 

1.05 

 

1.66 

 

 

TMS & FIA, 

TPO 

wspw 

 

Weighted softwood pulp logs 

and chips stumpage price 

$/1,000 cords  

 

1.74 

 

1.96 

 

 

TMS & FIA, 

TPO 

hsaw70 

 

Number of hardwood sawmills 

within 70 miles of plot i 

units 

 

3.05 

 

2.34 

 

 

FIA, TPO 

 

ssaw70 

 

Number of softwood sawmills 

within 70 miles of plot i 

units 

 

6.02 

 

2.60 

 

 

FIA, TPO 

 

sply70 
 

Number of softwood veneer and 

plywood within 70 miles of plot i 
units 

 

0.97 

 

0.77 

 

 

FIA, TPO 

 

hpw100 

 

 

Number of hardwood pulp and 

panel mills within 100 miles of 

plot i 

units 

 

 

1.38 

 

 

0.71 

 

 

 

FIA, TPO 

 

 

spw100 
 

 

Number of softwood pulp and 

panel mills within 100 miles of 

plot i 

units 

 

 

4.17 

 

 

1.34 

 

   

FIA, TPO 
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Forest resource and owner characteristics 

Information on forest resource and plot characteristics includes the plot’s volume of hardwood 

and softwood at each inventory. To capture the effect of species composition, species volume 

was measured as a proportion of the plot’s total timber volume. In this manner, a plot volume 

corresponds to the proportion of softwood volume (propswd) in both the hardwood and softwood 

harvest specifications.  Other plot characteristics included the size of the forest stand where the 

plot is located (lnstand), an indicator of operability constraints (oper) such as steep terrain or wet 

soil conditions, and the plot’s distance to the nearest town (miles_town).  

 

Previous studies suggest forestland owner age, level of education and exogenous income as 

primary determinants on likelihood of management (Joshi & Arano, 2009). Unfortunately, 

detailed owner information is not available at the plot level. An attempt to use data from the FIA 

National Woodland Owners Survey (NWOS) as a proxy resulted in high multicollinearity among 

the variables. The NWOS data provides a general characterization of plot owners. However, 

NWOS data are aggregated by FIA survey unit, which limits the information to three values for 

the state. Furthermore, only one cycle of the NWOS was available. Therefore, a plot was 

assigned the same value over the two inventory cycles. Consequently, the final model 

specifications did not include the NWOS variables. 

 

Plot location  

Variables to control for the effect of the plot location on the likelihood of management included 

general characteristics of population and infrastructure for a plot’s county. Population variables 

included the population density as total number of people per square mile (ppsqm), the average 
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per capita income (percinc), and the percent of people 65 year and older (pop65). We expect that 

per capita income and age will capture some of the information on owner characteristics, as well. 

 

Wood market and demand availability  

To control for the influence of mill demand on the management decision, we used two measures 

– the stumpage prices weighted by mill receipts, and the number of mills within a plot’s supply 

area.  The area from which a mill procures timber is given by the mill’s average procurement 

distance, or procurement radius.  In a similar manner, we estimated a supply area for each plot, 

given by a radius based on average mill procurement distance.  All mills found within the plot’s 

supply area formed the likely market for the plot’s timber. A similar approach was used by 

White & Carver (2004) to determine the procurement influence for mapping cells. For saw mills 

and veneer mills we used a 70-mile radius, which is close to the average procurement distance 

observed in the sample, and falls close to average procurement distances reported in the literature 

(White & Carver, 2004). For panel and pulp mills we used a 100 miles radius, to accommodate 

the larger distances from which these mills procure wood.  

 

Stumpage prices from Timber Mart South, TMS (Timber Mart-South, 2006) represent an 

aggregated average annual price, reported for two regions in the state. The analysis included 

stumpage prices for three primary products (saw timber, plywood and pulpwood) by major 

species group (hardwood and softwood) with the exception of plywood prices which are for 

softwood. To incorporate the volume of mill demand, each price was weighted by the total 

volume procured by a plot’s county over the total volume procured from the plot’s TMS’s price 

region.  Procurement volumes were calculated using TPO figures and included receipts from all 
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mills drawing timber from a county. In other words, the volume includes procurement from in-

state and out-of-state mills.  For the case of hardwood saw-logs the price-weight included 

volume of receipts from sawmills and veneer mills combined. Likewise, pulpwood prices were 

weighted by the volume from pulp mills and panel mills combined. The five variables included 

hardwood pulpwood (whpw), hardwood sawtimber (whst), softwood pulpwood (wspw), softwood 

sawtimber (wsst), and softwood plywood (wsply). Information on mill receipts is available, 

mostly, over odd years. Missing data years were estimated via linear interpolation. A mill’s 

volume was interpolated only if the mill showed receipts before and after the interpolated year, 

otherwise the volume of the even year was left as zero. For example, a mill reporting receipts in 

1999 and 2001 will have an interpolated volume of receipts in 2000. A mill reporting receipts in 

1999 but not in 2001 will have no volume for 2000.  

 

In addition, the specification included a measure of market availability for each plot represented 

by the number of mills by product type within the plot’s supply area. It was expected that a 

larger number of mills would result in a higher likelihood of management. Number of mills by 

mill type include the following categories- hardwood saw and veneer mills (hsaw70), hardwood 

pulp and panel mills (hpw100), softwood saw mills (ssaw70), softwood plywood mills (sply70), 

and softwood pulp and panel mills (spw100).  For years without mill information, we followed a 

similar procedure as for the interpolated mill receipts, counting a mill in the missing year only if 

the mill was present before and after the missing year. Mills not operating in 1999 (the initial 

year of the analysis) were excluded from the plot supply area.   
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D. Specification Tests 

As previously mentioned, consistent estimation relies on the validity of the model assumptions 

including the model’s distributional assumption, homoskedasticity of the errors, and exogeneity 

of the covariates. We investigated the strength of these assumptions using standard tests, and 

report the results in Table II-4. Furthermore, before estimation, a Hausman test for fixed effects 

was performed. Using a pooled sample when fixed effects are present will render inconsistent 

estimates. To test for fixed effects, we used the Hausman test in the context of the LPM.  

 

We tested the distributional assumption via a Lagrange multiplier test of the normality of the 

residuals from the estimated probit. Unfortunately, the test assumes homoskedasticity, and does 

not allow for robust cluster error estimation (Amadou, 2010).   

 

The homoskedasticity assumption can be relaxed by explicitly including a form of 

heteroskedasticity in the probit specification. We follow the common approach and modeled the 

variance as a multiplicative function of a set of the independent variables Z, exp( ' )Z  , with 

the resulting heteroskedastic probability expressed as  

'
Prob( 1| )

exp( ' )

X
M X

Z





 
   

 
 .    

 

In Z, we included two variables believed having the greatest effect in the heterogeneity of the 

data - stand size (in log form) and site index for hardwood species. Stand size captures the 

heterogeneity of the ownerships and has been shown to affect the likelihood of management 

(Hyberg & Holthausen, 1989; Prestemon & Wear, 2000) and be a significant variable in the 
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identification of PFLs objectives (Majumdar, Teeter, & Butler, 2008). The site index for 

hardwood species indicates site quality within the area where a plot is located, providing 

information on tree growing potential.  

 

Lastly, the exogeneity of plot volume and stumpage prices was also tested. In terms of plot 

volume, it was assumed that stands with a high volume of standing timber were more likely to be 

managed. Likewise, a managed forest is expected to yield higher volumes of timber. Therefore, 

establishing the cause and effect between management and stand volume proved difficult. 

Likewise, increases in stumpage prices are likely to increase harvest rates indicating likely 

endogeneity.  For the analysis at hand, however, we expect the stumpage prices to be exogenous 

to the management decision. Stumpage prices are available aggregated into two regions for the 

state. Changes to the level of harvest experienced by one plot are unlikely to affect the average 

prices for an entire region. To investigate the exogeneity of these variables we used a set of 

instrumental variables and the Newey (1987) two-step robust estimation approach.  

 

Instrumental variables selection 

Variables expected to be correlated with a plot’s timber volume include those likely to affect tree 

growth but which do not affect or are affected by management. Site index, which indicates site 

quality, is one such variable. The site index used originates from the USDA soil survey (NRCS, 

2011) and includes two variables, a site index for softwoods (index_s) and one for hardwoods 

(index_h). Additionally, the instruments included a set of variables from the FIA plot condition 

table that describe the plot’s potential to grow timber. Specifically, an indicator variable for 

physiological class equal to one if the site does not classify as mesic (non_mesic), and a set of 
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indicator variables for the plot’s estimated productivity class  (site_low, site_med, site_medh, 

and site_high) were included. To avoid collinearity the indicator for site_low was excluded.  

 

Instruments for the stumpage prices included variables that were correlated with price but 

exogenously determined. Specifically, the excluded instruments correlated with stumpage prices 

included logging prices by product type and major species group (logg_hpw, logg hst, log_spw, 

and log_sst), total number of logging operations by county (loggers), and average volume of rain 

by county and year (rain). The logging price variables obtained from the Timber Mart-South 

data (Timber Mart-South, 2006) likely affect levels of harvest and therefore prices. Similarly, a 

high number of logging operations in an area will result in more competition and likely higher 

stumpage prices. The information on number of logging operations comes from the U.S. Census 

Bureau. Lastly, the rain variable correlates with prices through timber accessibility. During a dry 

year, for instance, loggers can access timber more easily, causing subsequent decline in 

stumpage prices due to timber overflow.  

 

6. Results and Discussion 

Coefficients estimated by a probit model do not provide the magnitude of the effect. Instead, the 

signs of coefficients show the direction of the effect, while the usual t-test serves to indicate the 

coefficients’ significance. To evaluate the size of the effect from significant coefficients one 

needs to calculate the marginal effects. The output table for the multivariate probit model (Table 

II.4) illustrates that most variables displayed similar signs across the two harvest equations 

(softwood and hardwood).  A plot proportion of softwood volume (propswd) appeared as a  
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Table II-4 Multivariate probit regression, harvest by species group and regeneration outcomes. 

 Equation 1 Equation 2 Equation 3 

Variables Coefficient  Std. Error Coefficient  Std. Error Coefficient  Std. Error 

       

delta 0.1916*** (0.036) 0.1533*** (0.034) 0.2656*** (0.056) 

t -0.1554*** (0.032) -0.1747*** (0.033) -0.2012*** (0.043) 

oper -0.1384 (0.123) 0.0078 (0.119) -0.4063*** (0.134) 

lnstand -0.0097 (0.035) -0.0182 (0.034) 0.0013 (0.034) 

propswd 0.5432*** (0.134) 0.2576** (0.120)   

gs01 -0.0015 (0.034) 0.0283 (0.033) 0.0643* (0.037) 

land_dac -0.0000 (0.000) -0.1000 (0.000) -0.1000 (0.000) 

miles_town 0.0097 (0.011) -0.0020 (0.011) -0.0117 (0.012) 

ppsqm -0.0013 (0.001) -0.0021** (0.001) -0.0006 (0.001) 

percinc 0.0354* (0.021) 0.0347* (0.021) -0.0144 (0.024) 

pop65 -0.0066 (0.037) -0.0652* (0.039) -0.0213 (0.048) 

unit2 -0.2734* (0.165) -0.3095** (0.154) 0.0532 (0.159) 

unit3 0.3070** (0.142) 0.1891 (0.135) 0.0733 (0.160) 

wsst 0.0061 (0.004)   0.0058 (0.005) 

wsply 0.0006 (0.003)     

ssaw70 0.0323* (0.019)   -0.0013 (0.026) 

sply70 -0.0610 (0.065)     

spw100 0.0559 (0.040)     

hsaw70   0.0579** (0.026) -0.0266 (0.035) 

hpw100   0.0506 (0.062) 0.0582 (0.074) 

whst   0.0015 (0.013) 0.0402*** (0.016) 

whpw   -0.0026 (0.031)   

low_site     0.0591 (0.212) 

med_site     0.3092** (0.158) 

medh_site     0.3690** (0.157) 

acres_chg     -0.1613 (0.254) 

Constant -3.4711*** (0.726) -1.8428*** (0.632) -1.9527** (0.835) 

       

rho21 0.8645*** (0.027)     

rho31 0.7631*** (0.039)     

rho32 0.7935*** (0.036)     

       

Log Pseudo-likelihood -861.109     

Draws 500     

Observations  1,560     

Notes: Equations 1= softwood harvest, 2= hardwood harvest and 3= regeneration. 

Standard errors adjusted for 780 clusters in plot id.  

 ***=1% significance, **=5% significance, and *=10% significance.  

Likelihood ratio test of rho21 = rho31 = rho32 = 0: χ
2
(3) =440.61; Prob > χ

2
 = 0.0000. 
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significant predictor in both equations, and displayed a positive sign indicating a higher 

likelihood of harvest with increased proportion of softwood species. 

 

As previously mentioned, the majority of the wood output in South Carolina originates from 

softwood species, comprising 87 percent of the total output in 2007 (Johnson & Adams, 2009). 

Therefore, an increase in plot softwood volume likely increases the probability of harvest.  With 

only a few exceptions, all other covariates in the harvest equations (equations one and two) 

yielded the expected signs, although many were not statistically significant. Among the variables 

of interest (market variables), only the number of sawmills proved statistically significant to 

harvest. The number of softwood sawmills (ssaw70) was significant to the softwood harvest 

(equation one) at the 10 percent level. The number of hardwood sawmills (hsaw70) was 

significant at the five percent level in the hardwood harvest equation.   

 

Sawmills are an important source for pulp material, both directly and indirectly. Harvest of 

roundwood pulp most often results as a bi-product in the harvest of saw-log size timber (e.g. 

smaller logs, tops and branches), as opposed to harvest of small size stands. Additionally, pulp 

and composite panel mills secure a portion of their raw materials from sawmill and veneer mills 

residues. Consequently, the influence of sawmills to the harvest decision carry implications for 

future supply of pulp using mills, as well. For instance, a drop in number of operating sawmills, 

assuming an associated fall in production, will result in less harvest of saw-log size stand which 

in turn will reduce the volume available to mills using pulpwood. In the short term, with the 

demand of pulpwood constant, the reduction in pulp material from less saw-log harvest will 

likely motivate intermediate harvests (thinning) creating an opportunity for landowners to reduce 
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stand density while increasing potential growth for remaining trees. In the long-term, a sustained 

drop in saw-log harvest could lead to overabundance of large size timber with consequent 

declines in saw-log prices.  

 

Most covariates in the regeneration equation displayed the expected signs. Variables controlling 

for site quality were all positive and significant, but the variable controlling for the effect of cost 

share of regeneration (acres_chg) was not statistically significant. Also unexpected was the 

positive effect of the short term interest rate (gs01) on regeneration, which significant at the 10 

percent level. When considering the interest rate as an indicator of returns from alternative 

investments, one expects a negative effect on regeneration. Higher rates make alternative 

investments more attractive. The presence of a positive effect could be attributed to the positive 

influence of short-term interest rates on available exogenous income (Dennis, 1991). The effect 

might also reflect the likelihood to invest in regeneration when alternative investments offer low 

returns. Only the price of hardwood saw-logs was statistically significant among stumpage prices 

in equation three (regeneration). As for the number of mills, none emerged as statistically 

significant to the regeneration decision.   

 

Jointly estimating the regeneration and harvest outcomes resulted in a significant and positive 

correlation across equations. The correlation between hardwood and softwood harvest (equations 

one and two) was slightly higher with ρ12=0.86 compared with regeneration-hardwood harvest 

(equations two and three) ρ32=0.79 and regeneration-softwood harvest (equations one and three) 

ρ31=0.76. These correlations signaled a strong positive dependency between the errors.  

Consequently, unobserved factors influencing the likelihood of harvest of one species group 
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increase the probability of harvest for the other species group, and the likelihood of regeneration 

as well.  

 

Table II-5 lists the multivariate probit predicted probabilities for all outcome combinations. 

Considering the low frequency of positive outcomes, the probabilities were as expected. The 

highest probability of a positive outcome occurred for the combined outcomes, P(111), with only 

3.20 percent compared to the probability of observing no management, P(000), which was close 

to 86 percent. The probability of softwood harvest as the only positive outcome observed, or 

P(100), ranked second with 2.63 percent probability. 

 

Table II-6 presents the results from the average marginal effect for variables of interest 

(significant market variables as well as plot volume variables). Among the significant variables 

across harvest outcome equations, the plot proportion of softwood species yielded the largest 

effect. A one percent increase in a plot’s proportion of softwood would increase the probability 

of softwood harvest by 7.22 percent and the likelihood of hardwood harvest by 3.26 percent. 

Plots with a higher proportion of hardwoods might be less likely to be harvested given the lower 

demand for hardwood roundwood. In comparison, the significant market variables showed lower 

effects. The addition of one hardwood sawmill would increase the probability of hardwood 

harvest by 0.73 percent, while adding one more sawmill using softwood increase the probability 

of softwood harvest by less than half of a percent (0.43 percent). For regeneration, a one dollar 

increase in the expected stumpage price of hardwood saw-logs would increase the likelihood of 

regeneration by 0.5 percent. Likewise, an increase in the one year interest rate would increase the 

probability of regeneration by 0.73 percent. 
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Table II-5 Multivariate probit predicted probabilities. 

P(ijk) Probability Standard error  

P(000) 0.8632 0.00317  

P(111) 0.0320 0.00093  

P(100) 0.0263 0.00072  

P(110) 0.0171 0.00054  

P(101) 0.0111 0.00036  

P(011) 0.0094 0.00031  

P(010) 0.0199 0.00047  

P(001) 0.0210 0.00076  
Notes: i= harvest softwood, j= harvest hardwood, and k= regeneration. 

 

 

 

 

 

Table II-6 Average marginal effect on the marginal probabilities of harvest & regeneration. 

Variable Description Harvest softwood Harvest hardwood Regeneration 

propswd 

 

Plot proportion of 

softwood 
0.0722 
(0.0015) 

0.0326 
(0.0007) 

 ssaw70 

 

Number of softwood 

sawmills 
0.0043 
(0.0001) 

 

 

hsaw70 

 

Number of hardwood 

sawmills 

  

0.0073 
(0.0001) 

 whsw 

 

Weighted stumpage 

price, saw-logs 

   

0.0046 
(0.0001) 

gs01 

 

Interest rate 

   

0.0073 
(0.0002) 

Note: Standard errors in parenthesis. 
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Evaluating conditional probabilities provided a view of the interactions across the harvest-

regeneration outcomes (Table II-7). As such, plots with harvest of both hardwood and softwood 

had a 58.14 percent probability of regeneration. The probability dropped significantly when the 

harvest involved a single species, with harvest of hardwood showing the larger probability of 

regeneration at 37.13 percent. Observing regeneration when no harvest had occurred carried a 

low probability (2.37 percent), implying that if regeneration occurred, it took place for the most 

part, in relatively close proximity to the harvest event. 

 

The robustness of the estimation was assessed via a set of tests. Because we have repeated 

observations per unit, we used a Hausman test to determine the presence of unobserved 

individual effects correlated with the error term (fixed effect). Results strongly supported the null 

hypothesis in favor of pooled estimation for harvest (hardwood p=0.5984 and softwood 

p=0.9966) and regeneration (p=0.9370). Normality and homoscedasticity were tested using 

single probits (outputs found in appendix A) instead of the multivariate probit. The results, found 

in the appendix Table A-1, support the normality and homoscedasticity assumptions for the 

singular probits. Although not conclusive, the results suggest the assumptions holding for the 

multivariate probit as well. Lastly, Wald tests confirmed the exogeneity of the variables 

suspected endogenous. As further verification, we tested these assumptions using the LMP and 

found similar results.  
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Table II-7 Conditional probability of regeneration, multivariate probit. 

Conditional outcome Probability   

Pr(rg=1|hs=1, hh=1, x) 0.5814 

 Pr(rg=1|hs=1, hh=0, x) 0.3247 

 Pr(rg=1|hs=0, hh=1, x) 0.3713 

 Pr(rg=1|hs=0, hh=0, x) 0.0237   

Notes: rg= regeneration; hs=softwood harvest; hh=hardwood harvest. 
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7. Conclusions  

The study evaluated the influence of mill presence in the likelihood of PFLs to manage (harvest 

or regenerate) their timberlands. We expanded on previous research by incorporating additional 

information capturing wood demand. Namely, we utilized figures from primary mill wood 

receipts, as well as, mill location relative to forested plots. Results from this research will prove 

useful to policy makers by providing further insight about the likely influence of wood 

processing plants on PFLs timberland management. Further, the analysis contributes information 

about landowners’ expected response to regeneration and harvest activities under varying levels 

of market potential as measured by the number of mills in proximity to a plot. This information 

may prove useful to industry and state foresters when dealing with increases in demand arising 

from new markets, such as bioenergy. Furthermore, investigating to what extent mill demand 

affects forest management activities provides new facts to assist landscape policy management 

addressing joint production of timber and non-timber benefits.  

 

Empirical analysis using data from South Carolina corroborated previous findings of PFLs’ weak 

response to stumpage prices (Dennis, 1989, 1990; Kuuluvainen et al., 1996; Prestemon & Wear, 

2000).  The results revealed that contrary to common belief, the presence of a mill affected the 

management decision only marginally. In fact, sawmills were the only mill type that exhibited a 

significant, although small, effect in the probability of harvest throughout the specifications.  

 

Sawmills play a significant role in the procurement of raw materials to pulp using mills, both 

directly, through the supply of mill residues, and indirectly through the associated pulpwood 

volume obtained during saw-log harvesting. Given this relationship, the significance of sawmill 
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proximity on the likelihood of harvest affects pulp production as well. The diminishing numbers 

of sawmills, for example, could negatively affect the supply of nearby pulp using mills, at least 

in the short term. A loss of sawmills could also increase the harvest of young stands, or motivate 

the harvest of saw-log timber to satisfy the pulp demand. Further research could explore the 

relationship between these two products and the likelihood of PFLs to substitute between them. 

Merging the FIA forest inventory with the TPO data offers the ability to explore this and other 

questions that might lead to a better understanding of the role that primary mills play in the 

management of our forestlands.  

 

Forest management is needed not only to supply industry and satisfy our needs for wood 

products, but also to reduce forest health risks and ensure continuity of the many non-timber 

benefits forests provide. Given that wood markets seem to affect management decisions only 

slightly, exploring the use of mechanisms other than timber production is needed. One such 

mechanism may include policies promoting payment for ecosystem services, perhaps in the form 

of management agreements to provide PFLs with either annual rents or tax deductions.  

 

Regeneration efforts play a central role in forests continuity. The analysis findings point to a 

moderate probability of regeneration (close to 58 percent) after observing harvest of mixed 

species, and much lower probabilities (37 percent in hardwoods and 32 percent in softwood) 

after harvest of a single species group. Further research may look into existing regeneration 

patterns and explore new means to help achieve higher rates of regeneration after harvest. 

Similarly, results suggest forest composition as an indicator of likely management.  A positive 

response to management resulted with increased proportion of softwood volume which 
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corresponds with the wood market preference for softwood species, and the assumption of 

hardwood species as indicators of PFL preferences. 

 

The analysis introduced the use of a market area to study the effect of mill demand on a given 

FIA plot. This market, or plot supply, area was based on an average mill procurement distance. 

Expanding the concept to compare responses to different procurement distances could provide 

further insight into the relationship between observed management and mill presence. Expanding 

the dataset to include multiple states, as well as, additional inventory data would certainly 

strengthen any conclusions, as well. 
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III Forecasting County Pulpwood Harvest Using Macroeconomic Conditions 
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1. Abstract  

The following study investigated the use of vector autoregressive (VAR) models to forecast the 

volume of pulpwood output at the county level. The research explored the ability to forecast 

using a set of vector autoregressive specifications including a standard VAR, a factor-augmented 

vector autoregressive (FAVAR) and a panel VAR model (PVAR). We used pulpwood output 

information collected by the USDA Forest Service Forest Inventory and Analysis Timber 

Products Output for Florida, together with national Gross Domestic Product (GDP) and Producer 

Price Index (PPI) information for pulp and paper products. Forecasting tools offer planning 

information useful to forest managers and mill procurement agents. Our forecast analysis utilized 

publicly available data and methodologies that can be replicated in most software packages. 

Although the accuracy of forecasts varied across counties, in general the VAR forecasting 

accuracy proved relatively low. Comparing the different VAR methods to a simple step-forward 

forecast, however, revealed cases with significant gains, where one or more of the VAR 

specifications reduced the forecast error of the step-forward forecast by over 50 percent. Results 

support the need for analysis with disaggregated data to better capture the dynamics across 

counties in a procurement area.  

 

2. Introduction 

Planning management activities to support sustainable timber harvests requires, among other 

things, an understanding of the relationship between timber supply and demand (Daniels & 

Hyde, 1986; Jackson, 1983). Considerable research addresses expected future timber demand, as 

well as conditions for likely timber supply. However, most supply-demand econometric models 
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focus on long-term equilibrium analysis for the entire sector, and over large geographic regions 

(Buongiorno, Kang, & Connaughton, 1988; Sohngen & Sedjo, 1998). 

 

Although these large-scale, long-term equilibrium models identify factors affecting the 

production process, they cannot be applied to smaller areas without added uncertainty and error 

(Buongiorno et al., 1988; Jackson, 1983). Nonetheless, a need exists for disaggregated short-term 

models. Transportation costs constrain primary wood-using mills to localized markets, justifying 

the need for small scale supply and demand models. At the same time, increasing globalization 

of the forest sector triggers a need for short-term forecasting to capture the effect from swift 

changes resulting from changing macroeconomic conditions (Hetemäki, Hanninen, & Toppinen, 

2004; Malaty, Toppinen, & Viitanen, 2007).  Developing econometric models for small areas 

such as individual counties or mill procurement zones, however, requires disaggregated data that 

can prove difficult and expensive to obtain. Consequently, this chapter explores the use of VAR 

models as an alternative to an econometric supply-demand model, avoiding the need for 

disaggregated data. Specifically, we evaluated the forecast of county pulpwood production 

among a set of specifications, including a simple vector autoregressive model with exogenous 

variables (VAR) and a VAR with factor variables (FAVAR). Additionally, we combine all 

counties to assess the accuracy of a panel VAR (PVAR) forecasts.  

 

Economic growth is an indicator of timber product demand.  Positive economic conditions, 

particularly those related to housing, result in increased consumer spending on wood products. 

As the demand for end-use wood products changes, the volume of roundwood demand will shift 

accordingly. The endogenous variables considered include roundwood volume procured from 
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each county in the study area, U.S. GDP, PPI for pulp and paper products, and the U.S.-Canada 

exchange rate.   

 

Short-term forecasts similar to the proposed project currently originate from forest sector 

consultants and analysts using ad-hoc methods or poorly documented assumptions (Hetemäki et 

al., 2004; Hetemäki & Mikkola, 2005). The forecast analysis developed in the following sections 

contributes documented methods for forecasting tools in the VAR family using public data, 

which can be easily replicated. Further, a forecasting practice commonly used by TPO involves 

using past data to represent current missing information. By comparing the performance of other 

forecasting methods to this step-forward ad-hoc methodology, this research could guide future 

TPO data management. The research also will assess the existence of procurement hot spots 

(counties expected to supply higher levels of roundwood). Without adequate forest management, 

counties under high procurement demand will likely experience difficulties with continued 

roundwood supply. Therefore, identifying these areas will prove useful to forests managers and 

timberland owners in planning forest management activities. Additionally, such forecasts offer 

valuable projections to timber mills in planning timber procurement, and to state extension 

foresters in directing management efforts to sensitive areas.  

 

3. Vector Autoregression: Applications in the Forest Sector  

Studies using short-term forecasting of forest products remain scarce (Hetemäki et al., 2004; 

Toppinen & Kuuluvainen, 2010), and mostly are directed at large geographic or administrative 

areas.  Several analysts have applied different time series models to examine varying aspects of 

the forest products sector. Hetemäki et al. (2004) analyzed the effect of import demand on 
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Finnish forecasts of lumber exports and Finland’s demand for saw-logs. The authors concluded 

that compared to a simple autoregressive process, AR(1), adding the complexity of a VAR 

system does not significantly improve the forecast. Malaty et al. (2007) forecast stumpage prices 

for pine saw-logs in Finland found the VAR having the largest forecast error among the methods 

evaluated. In contrast, Hetemäki & Mikkola (2005) forecasts for paper imports in Germany 

showed the VAR with exogenous regressors (VARX) provides better results compared to other 

methods. Likewise, using multiple time series models to forecast stumpage prices for U.S. pine 

sawtimber, Mei, Clutter, & Harris (2010) found the VAR predicts with more precision. The 

methods evaluated by Mei et al. (2010) include an autoregressive moving average (ARMA) 

model, a vector error correction (VEC) model, and a state space representation.   

 

Additional research using VAR to forecast forest sector activity includes the works by Jennings, 

Adamowicz, & Constantino (1991), and Alavalapati, Luckert, & Adamowicz (1996) on 

Canadian lumber and pulp markets, respectively. Alavalapati et al. (1996) examined the effect of 

shocks to the exchange rate on pulp domestic demand. The findings support the use of 

macroeconomic variables in the analysis of forest products prices and domestic demand.  In 

effect, the authors reported that shocks to the exchange rate significantly affect Canada’s pulp 

prices (Alavalapati et al., 1996). Similarly, the work by Jennings et al. (1991) provides evidence 

for the use of VAR to short-term forecast. In this work, the authors forecasted Canada’s lumber 

industry with a VAR system incorporating and array of macroeconomic variables such as GNP, 

exchange rate, and housing starts.  
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Most research uses macroeconomic variables to help generate forecasts for timber products 

markets within large geographic or administrative areas. An exception is Buongiorno et al. 

(1988), who incorporates macroeconomic variables to observe effects on harvests within a 

county.  The authors used housing starts, lumber prices, and information on cut saw timber 

volumes to forecast harvests by major land ownership type (private and public). They used a 

linear feedback methodology similar to a VAR.  According to their results, harvests in public 

lands show a stronger response to a shock in housing starts than private lands (Buongiorno et al., 

1988).  The authors cite forest conditions as a likely reason for the lack of significance of 

housing starts on private land harvests. In their study area (Pacific Northwest), most timber 

harvest originated from mature stands. On these slow-growing stands, the cost of delaying 

harvest likely exceeds the benefit of higher expected returns from increases in housing starts 

(Buongiorno et al., 1988). Jennings et al. (1991), on the other hand, found shocks on housing 

starts strongly influencing the lumber sector, with the effects lasting over a year before reverting 

to pre-shock levels.   

 

The research developed in this chapter shares some similarities with Buongiorno et al. (1988), 

with some notable differences including the following:  

First, the scope of the current study is larger. Buongiorno et al. (1988) examine harvest on 3 

areas in the state of Oregon (one county, and two areas with two aggregated counties each). In 

contrast, we examined roundwood production (timber harvest) for individual counties in the state 

of Florida. The study area corresponds to Florida’s Northwest FIA survey unit which includes 16 

counties.  
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These two studies focus on very distinct regions of the country. Buongiorno et al. (1988) 

examined counties in the Pacific Northwest (PNW), while the current research focuses on an 

area within the Southeast region (SE). Differences between these two regions include forest 

characteristics and landownership.  In terms of forest characteristics, the PNW timberlands 

contain older trees in larger size classes. Estimates for 2007 indicate that 24 percent of the PNW 

timberland contains trees in age classes of more than 100 years, compared to two percent of the 

SE timberland. Further, 57 percent of the SE timberland included trees in age classes of less than 

40 years. Describing the timberland in terms of tree-size distribution, large trees (sawtimber size) 

make up the majority of the PNW timberland (68 percent) compared to less than half (47 

percent) in the SE region. By contrast, poletimber and seedlings combined account for only 30 

percent of the PNW timberland, compared with 52 percent in the SE. An even sharper contrast 

exists between these two regions timberland ownership distribution. While federal, state and 

local governments control the majority of the PNW timberland area, the opposite trend occurs in 

the SE, where private landownership dominates (Smith et al., 2009). 

 

The Buongiorno et al. (1988) forecasts focus on sawtimber volumes (the most relevant product 

in their study area), while the following research explores pulpwood volumes. The SE region is 

the nation’s leading pulpwood producer (Smith et al., 2009), which justifies the development of a 

model for this product.  

 

Lastly, the methodology developed in this chapter diverges from Buongiorno et al. (1988) on 

various aspects regarding specification and testing. First, we test both the stationarity and 

cointegration assumptions. Second, we evaluate the series for structural breaks, which if present, 
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can distort the stationarity tests (Perron, 1989). Lastly, we assess forecast precision for a set of 

VAR specifications, comparing the errors with that of a naïve one-step-forward forecast, using 

the last three years of data and the mean absolute scale error criteria.  

 

4. The VAR Models 

A. Structural and Reduced-Form VAR  

The VAR allows the analysis of interrelated time series by making use of lagged observations. In 

a VAR, variables are treated symmetrically, affecting each other’s past and current outcomes. 

For instance, considering two variables, yt is affected from past and current realizations of zt and 

vice versa (Enders, 2003).  The structural VAR for these two variables, assuming a one-period 

lag, is expressed as  

10 12 11 1 12 1

20 21 21 1 22 1 ,

t t t t yt

t t t t zt

y b b z y z

z b b y y z

  

  

 

 

    

    
  

where yt and zt are assumed stationary.  Additionally,  and yt zt  are assumed uncorrelated, white 

noise disturbances with respective standard deviations  and y z  .  In the above system, the 

feedback is incorporated through the effects of yt on zt and zt on yt. Because of this feedback, the 

structural VAR cannot be estimated directly. Instead, one estimates the standard VAR. 

Following Enders (2003), left-multiplying the structural VAR, in matrix form, by

1

12

21

1

1

b

b



 
 
 

 

results in the standard, or reduced form, VAR, 
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10 12 20 11 12 21 1 12 12 22 1 12

11 1210 1

20 21 10 21 21 11 1 22 21 12 1 21

21 2220 2
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Or, expressed in its common condensed form,    

10 11 1 12 1 1

20 21 1 22 1 2 .

t t t t

t t t t

y a a y a z e

z a a y a z e

 

 

   

   
 

 

The standard VAR can be estimated consistently using equation-by-equation Ordinary Least 

Squares (OLS) (Enders, 2003; Hamilton, 1994).  Nonetheless, the structural VAR remains under-

identified, because in the standard form one solves for fewer parameters. In the case of two 

variables, for example, solving the standard VAR provides nine parameters, but the structural 

VAR includes ten unknowns.  Therefore, recovering the parameters for the structural VAR 

requires additional identifying restrictions. For two variables, solving the structural VAR 

requires one additional restriction. For the case of n variables, identification requires (n
2
-n)/2 

restrictions.  A commonly adopted identification assumption is that yt possess no 

contemporaneous effect on zt, or in other words, b21=0.  Under this assumption, the structural 

two-variable VAR system reduces to 

10 12 11 1 12 1

20 21 1 22 1           + .

t t t t yt

t t t zt

y b b z y z

z b y z

  

  

 

 

    

  
 

B. Panel VAR (PVAR) 

A panel specification provides an augmented sample size. To allow for county heterogeneity we 

can incorporate a county fixed effect as well as a time fixed effect to represent exogenous shocks 
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in the system that would affect all counties similarly.  Following Holtz-Eakin, Newey, & Rosen 

(1988) notation we can express the PVAR as  

0

1 1

L L

it t lt it l lt it l i t it

l l

y y z f d e     

 

       , 

where if  represents the unobserved individual effect of county i, td is the unobserved time effect. 

 and  are coefficients to be estimated, and y and z the system variables. The system includes 

lags l=1, …, L; cross-sectional units i=1, …, N; and time periods t=1,…, T.  

C. Factor Analysis VAR (FAVAR) 

VAR models are usually specified using only a few endogenous variables. Increasing the number 

of equations can consume degrees of freedom quite rapidly, as each new equation involves a new 

set of parameters to be estimated. Adding one equation to a two-equation three-lag system, for 

example, would increase the number of parameters to be estimated by 15.  This can be a 

problem, especially when working with a short time series, as in the case of the present study. 

But using only a few variables to represent the dynamics of the variable of interest can result in a 

poor fit, with the consequent low ability to predict future values of the series. To specify a model 

that incorporates more information without the need for a large number of equations, Bernanke, 

Boivin, & Eliasz (2005) propose using factor analysis. In this manner, incorporating factor 

variables estimated from a larger set of variables as additional endogenous variables in the VAR 

system.  

 

Let Xt represent a vector or observable macroeconomic variables which contains the vector of 

endogenous variables modeled, Zt. Following Stock and Watson (2002), we can further assume 
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that the information from the set can be summarized by a vector of unobservable factors Ft such 

that  

t t t tX F Z    
  

where the information set is represented by the observed macroeconomic variables and  

unobserved factors, plus a random unobserved component 
t .  is a matrix of factor loadings. 

The FAVAR is expressed as,  

1

1

( )
t t

t

t t

F F
L

Z Z






   
     

   
 

where ( )L represents a finite lag polynomial of order d; tF is a vector of unobserved factors; 

tZ is a vector of observable economic variables; and t denotes the associated error term 

assumed to have mean zero.  

 

The approach requires estimating the unobserved factors in Ft. Therefore the FAVAR estimation 

proceeds in two steps. In the first step we use all the variables in Xt to estimate a set of principal 

components. Because the components include information from Zt, a further adjustment was 

required before estimating the FAVAR. This process involved determining a subset of variables 

in Xt considered slow moving. Slow moving variables are those believed not to be affected 

contemporaneously by a shock affecting the endogenous variables in tZ (Bernanke et al., 2005).  

 

5. Empirical Application  

We use the VAR method to forecast the volume of pulpwood production for counties in 

Florida’s Northwest FIA survey unit (Figure III.1). The 16 counties comprise 36 percent of the  



59 

 

 
 Figure III.1 Distribution of primary wood-using mills in Florida.  

 Source:  Johnson et al. (2009). 
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state’s timberland resources (Brown, 2007), close to 30 percent of the mill capacity (based on  

total number of mills), and 57 percent of all the roundwood produced by the state during 2007 

(Johnson, Bentley, et al., 2009).  Given the low representation of volume in hardwood species, 

only the softwood volumes were included. We modeled the systems with three endogenous 

variables including the volume of timber receipts from each respective county, the U.S. real 

GDP, and the PPI as a proxy for pulpwood prices. Additionally, we assessed the forecast 

performance of a four equations system, including the US-Canada exchange rate as an additional 

endogenous variable. We expect the US-Canada exchange rate (EXC) to capture the effect of 

wood pulp imports. Canada is the U.S. largest source of imported pulpwood (Daniels & Hyde, 

1986) while US-Canada exchange rates have been found to affect Canada’s pulp production 

levels (Alavalapati et al., 1996). However, with a small dataset, such as the one available for 

county wood pulp production, increasing the system with additional endogenous variables can 

potentially decrease the robustness of the estimation by increasing the number of parameters to 

be estimated. Alternatively, we can combine the counties and estimate the VAR as a panel, 

which affords us a larger sample size. 

 

The TPO pulpwood series used include annual data collected from 1946 to 2009.  Table III-1 

displays information for variables and data sources. Additionally, Figures III.2 and III.3 provide 

a graphical display of the time series for each county, in levels.  Estimations were carried out 

using Stata 12.0 statistical software (StataCorp, 2011). 

A. Specification Issues 

A significant consideration in the VAR specification involves the lag-length selection. In 

practice, the true number of lags is not known, and classical hypothesis testing is problematic  
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Table III-1 Variables description, summary statistics, units of measure, and data sources, pulpwood series. 

Variable Descrition Units Mean Std. Dev. Source 

12005 Pulpmill volume, Bay 

county 

standard cords     79,458      58,719  

U.S. Department of 

Agriculture, Forest 

Service, Forest 

Inventory and 

Analysis, Timber 

Products Output 

program 

12013 Pulpmill volume,  

Calhoun county 

standard cords     81,459      44,723  

12033 Pulpmill volume,  

Escambia county 

standard cords     56,084      17,091  

12037 Pulpmill volume,  

Franklin county 

standard cords     37,735      36,793  

12039 Pulpmill volume,  

Gadsden county 

standard cords     46,287      25,676  

12045 Pulpmill volume,  

Gulf county 

standard cords     47,277      42,124  

12059 Pulpmill volume,  

Holmes county 

standard cords     42,516      18,600  

12063 Pulpmill volume,  

Jackson county 

standard cords     71,626      30,367  

12065 Pulpmill volume,  

Jefferson county 

standard cords     41,340      20,482  

12073 Pulpmill volume,  

Leon county 

standard cords     32,914      12,781  

12077 Pulpmill volume,  

Liberty county 

standard cords     47,511      26,772  

12091 Pulpmill volume,  

Okaloosa county 

standard cords     36,412      23,738  

12113 Pulpmill volume,  

Santa Rosa county 

standard cords     81,493      32,380  

12129 Pulpmill volume,  

Wakulla county 

standard cords     32,942      20,215  

12131 Pulpmill volume,  

Walton county 

standard cords     63,323      32,289  

12133 Pulpmill volume,  

Washington county 

standard cords     50,247      23,902  

rgdp Real gross domestic 

product 

Billions of 

dollars 

     7,219       3,552  U.S. Department of 

Commerce, Bureau of 

Economic Analysis 

ppi Producer price index 

for pulp, paper and 

allied products 

index,1982=100            95            67  U.S. Department of 

Labor 

xchg US-Canada exchange 

rate 

1US$=CAN       U.S. Treasury 
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Figure III.2 Time series, GDP and pulpwood volume by county. 
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Figure III.2 Continued  
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Figure III.2 Continued  
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Figure III.3 Time series, PPI and county pulpwood series. 
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Figure III.3 Continued 
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Figure III.3 Continued 
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given that the sample size decreases as the number of lags specified increases. Too many lags 

will reduce model efficiency, as lags can rapidly use degrees of freedom (Enders, 2003). Not 

enough lags to capture the interaction between the variables will result in omitted variables bias 

(Enders, 2003).  Two commonly used methods for lag selection include the Akaike information 

criterion (AIC) and the Schwarz Bayesian information criterion (SIC). 

ln | | 2

ln | | ln( ),

N
AIC

T

N
SIC T

T

  

  

 

where 

T = Number of observations.  

|∑|= Determinant of the variance-covariance matrix of residuals.  

N= Number of parameters in the system;  

N= n
2
p + p (where n is the number equations, and p the number of lags). 

 

The SIC formulation includes a stronger penalty for large samples (ln (T) >2 for T>=8). 

Therefore the SIC will select smaller models (less lags). For the empirical estimation we selected 

the lags based on the AIC method, following Enders (2003) recommendation when dealing with 

a small sample. When selecting the number of lags, the common practice is to preserve 

symmetry by using the same lag number in all equations. This symmetry allows the use of OLS 

to consistently estimate the parameters.  Therefore, the same lags were used on each system.  

 

Before selecting the number of lags, however, one needs to test for the presence of unit roots, as 

a unit root renders the process non-stationary.  Two tests commonly used to assess presence of a 
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unit root (non-stationary series) include the augmented Dickey-Fuller (ADF) and the Phillips-

Perron (PP) tests. An issue with the ADF and PP tests is their low power when dealing with a 

series with persistent stationary process, which results in higher acceptance of the null. Presence 

of multiple deterministic trends also affects the power of the ADF and PP tests.  Elliott, 

Rothenberg, & Stock (1996) proposed a modified Dickey-Fuller test (DFGLS) which is more 

robust to deterministic trends and to persistent stationary processes, as well.  The DFGLS 

transforms the time series using GLS (generalized least squares) prior to running the ADF test. 

The DFGLS also proved robust to small-sample size (Elliott et al., 1996).  Like the ADF test, the 

DFGLS uses lags to deal with autocorrelation. The number of lags used for the test, therefore 

influences the results. Not enough lags results in remaining correlation to bias the results. Too 

many lags affect the power of tests. Ng & Perron (2001) proposed a modified AIC criterion 

(MAIC) tests with improved performance over the AIC and BIC for non-stationary series.   

 

For the current analysis, we evaluated the unit root tests using the number of lags suggested by 

the MAIC criterion. The tests were performed for the variables in levels and first differences. For 

level variables that show trending, we specified the ADF and PP tests with a trend. The DFGLS 

test includes a trend by default.  Tests for the variables in differences were carried out without 

the trend.  

 

When dealing with non-stationary series, the common approach to make the process stationary 

consists of using the variables’ first differences. Some authors, however, argue that information 

is lost when using the variables on differences instead of their levels (Alavalapati et al., 1996; 

Jennings et al., 1991). Nonetheless, the use of differences is common in the literature (Hetemäki 



70 

 

& Mikkola, 2005; Malaty et al., 2007). Differencing non-stationary variables, however, is only 

possible when the variables are not cointegrated.  

 

Cointegration between two variables indicates the existence of a long run relationship (cite). Two 

random variables are cointegrated if they are integrated of the same order d, but their linear 

combination is integrated of order d-1. The most typical case of cointegration involves two series 

with integration of order one, or I(1) series, that have a linear combination integrated of order 

zero, or I(0). Cointegration of I(1) variables is tested analyzing the residuals from the regression 

of the two variables. The test examines the residuals for a unit root. Finding a unit root on the 

residuals confirms the variables are not cointegrated (Enders, 2003). Cointegrated variables 

would require the specification of a vector error model (VEC), instead of the standard VAR.  

Before running cointegration tests, however, one needs to check the series for structural breaks. 

An additional assumption when using a time series is that the underlying process is the same 

across observations. However, many series include breaks resulting from external shocks, for 

example, from policy changes. Perron (1989) studied the relationship between breaks and unit 

roots and found that structural breaks significantly affect the results from unit root tests. In 

effect, series believed having a unit root proved stationary after controlling for a pre-determined 

shock (Perron, 1989).  Structural breaks can also affect cointegration tests. Hetemäki et al. 

(2004) suggest using a VAR model in differences to help the performance of models that have 

irregular behavior or structural breaks. However, first differences only work if the variables are 

not cointegrated.  Consequently, we tested for cointegration using the test proposed by Gregory 

and Hansen, which takes into account structural breaks at unknown dates (Gregory & Hansen, 

1996). Additionally, we applied the Johansen cointegration test using a restriction on the trend 
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and the intercept. The latter test is sensitive to the number of lags specified. Lags were selected 

using the AIC and FPE criteria on each system in levels. Lastly, we used the Zivot and Andrews 

(ZA) test to investigate presence of series break under different scenarios, a trend break, a break 

in constant and a combination of both. For the VAR specification, we controlled for the breaks 

determined by the ZA test using dummy variables as exogenous regressors. These break 

indicator variables take the value of one starting on the date of the break forward, and zero 

before the break.  

 

In the Panel VAR specification we also need to consider the endogeneity of the fixed effects 

which are correlated with the regressors through the lags of the dependent variable. Love and 

Zicchino (2006) recommend using forward mean differencing to transform the variables and 

remove the individual fixed effects. This transformation allows the use of the lagged regressors 

as instruments (Love & Zicchino, 2006). The time fixed effects, on the other hand, can be 

differenced out without transformations.  

B. The Empirical Models  

In the case of the simple VAR and FAVAR specifications, guided by the results obtained from 

the unit root and structural break tests, we specified the equations using the variables in first 

differences. Additionally, we used log transformed variables to facilitate interpretation (log 

differences can be interpreted as percentage of change), and reduce heteroskedasticity. The 

pulpwood series includes 63 observations, leaving 62 observations after taking first-differences. 

We reserved the last three observations for the forecast evaluation, resulting in 59 observations 

available for estimation. The actual number of observation to estimate each system depended in 

the number of lags needed. The number of lags for each system was established using the AIC 
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criteria for a VAR with exogenous variables (break indicators).  For each county we estimated a 

VAR model with three equations and one FAVAR model with the added equations for two 

identified factors.  Additionally, we combined the counties into a panel set and estimated the 

model with the three endogenous variables (PVAR1), as well as, with the US-Canada exchange 

rate as a fourth endogenous variable (PVAR2). The following standard VAR systems were 

estimated, 

 

VAR – Three endogenous variables  
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PVAR1- Three endogenous variables 

0

1

 
p

it l it l i t it

l

Z Z f d  



       ,  

{ , , }Z PU GDP PPI . 

PVAR2- Four endogenous variables 
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it l it l i t it

l

Z Z f d  



       , 

{ , , , }Z PU GDP PPI EXC . 

Where, 

l  = Lag number (l =1,…, p), 

PU = County volume of pulpwood receipts from pulp mills, 

GDP  = U.S. Real gross domestic product (base 2007), 

PPI = Producer price index for pulp, paper and allied products (100=1982), 

EXC = US-Canada exchange rate, 

Z = Vector of endogenous variables,  

F = Factor variables  

it , it , and ηit= error terms, assumed i.i.d.~(0,D).  

 

After estimating the standard VAR we evaluated whether the macroeconomic variables selected 

(zt) influenced the path of a county’s wood volume production, yt via a Granger causality test. If 

for example, past and current values of zt do not predict current values of yt, then zt lacks 

forecasting power for yt. Therefore, adding zt to the system will provide no further help in 

predicting yt. Formally, in a system with p lags, evaluating if zt Granger-causes yt means testing 
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the joint restriction 
12 12 12(1) (2) ... ( ) 0a a a p    . Rejecting the null gives evidence of zt Granger 

causing yt.  

 

For the FAVAR estimation we needed to identify slow moving variables to isolate the factor 

components from effects in the endogenous variables. We assumed slow movement for variables 

related to personal consumption and interest rates with the belief that those indicators affect or 

are affected by the endogenous variables only with a lag. Similarly, we assumed the set of fast 

moving variables included variables closer related to industrial production, such as 

manufacturing employment and industrial capacity. The list of variables used to estimate the 

factors is provided in the appendix.  We used the estimated unobservable factors as additional 

endogenous variables in the VAR.  

 

We evaluated the forecast precision between the different specifications, using the mean absolute 

percent error (MAPE). Additionally, we compared the forecasts from the VAR specifications 

with the forecast from a simple step-forward method. We compared the results from both 

methods using the mean absolute scaled error (MASE) measures. We also obtained the mean 

squared forecast error (MSFE) and the mean absolute forecast error (MAD) for each forecast 

approach. These measurement were estimated as follows,  
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1 1

1
ˆ

T h

t t

T
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VAR

SF

MAD
MASE

MAD
  

Where 

T = Start point for forecast  

h = Number of forecast periods 

1ty   = Actual value at time t+1 

1
ˆ

ty   = Forecast value at time t+1  

SF = Step-Forward forecast 

 

6. Results and Discussion 

A. VAR General Tests  

Initial graphical analysis of the pulp, GDP, and PPI series revealed mixed results across counties. 

While overall the three series do not appear to move close together, production from a few 

counties mirrored the DGP series with some proximity.  Specifically Calhoun, Gadsden and 

Walton counties (Figure III.2) followed GDP to some degree, although, these similarities 

decreased considerably for observations after the 1990s. Surprisingly, the PPI series did not 

appear to move closely with the pulp volume as often as the GDP series, as seen in Figure III.3.    

 

Further evaluation of the series showed most counties having a unit root, although the tests 

yielded varied results. As seen in Table III-2, across all three tests, we reject the null hypothesis 

of a unit root for Gulf county only. In effect, Gulf was the only county where the DF-GLS test  
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Table III-2 Unit root tests pulpwood series, variables in levels. 

  

ADF-GLS 

 

ADF 

 

PP 

Variable Description 

Test-

statistic 

Critical 

value 

5% 

MAIC 

lags   

Test-

statistic 

Critical 

value 

5%   

Test-

statistic 

Critical 

value 

5% 

log005 Bay county -1.546   -3.020 4 
 -1.370 -3.491 

 

-6.407** -3.487 

log013 Calhoun  -1.335   -3.020 4 
 

-1.087 -3.491 

 

-2.021 -3.487 

log033 Escambia -0.923   -2.181 2 
 

-2.718 -2.921 

 

-5.094** -2.920 

log037 Franklin -0.094   -2.194 1 
 

-3.458** -2.920 

 

-9.496** -2.920 

log039 Gadsden -1.101   -2.980 5 
 

-0.271 -3.492 

 

-3.167 -3.487 

log045 Gulf -4.15** -3.110 1 
 

-4.086** -3.488 

 

-4.290** -3.487 

log059 Holmes -1.695   -3.086 2 
 

-2.320 -3.489 

 

-3.646** -3.487 

log063 Jackson -1.637   -3.086 2 
 

-2.686 -3.489 

 

-4.348** -3.487 

log065 Jefferson -0.952   -3.056 3 
 

-2.084 -3.490 

 

-2.731 -3.487 

log073 Leon -1.046   -2.935 6 
 

-1.711 -3.493 

 

-3.222 -3.487 

log077 Liberty -0.393   -2.194 1 
 

0.195 -2.920 

 

0.320 -2.920 

log091 Okaloosa -2.335   -3.020 4 
 

-2.282 -3.491 

 

-4.657** -3.487 

log113 Santa Rosa -1.282   -3.056 3 
 

-2.900 -3.490 

 

-3.634** -3.487 

log129 Wakulla -1.024   -3.086 2 
 

-2.001 -3.489 

 

-2.854 -3.487 

log131 Walton -1.351   -2.935 6 
 

-1.882 -3.493 

 

-3.372 -3.487 

log133 Washington -2.436   -3.086 2 
 

-2.397 -3.489 

 

-3.990** -3.487 

loggdp Real GDP -1.480    -3.110 1 
 

-1.484 -3.488 

 

-0.932 -3.487 

logppi PPI -1.443   -3.114 1   -1.703 -3.489   -1.449 -3.488 

Notes:  **= Null of a unit root rejected for a 5% critical value. 
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rejected the null of a unit root at the five percent confidence level. In other words, of the 16 

county series examined only one can be considered stationary in levels.  Across the three tests, 

the PP test rejected the null with a much higher frequency, estimating almost 50 percent of the 

series as stationary.  Tests results for the series in differences, found in Table III-3, show PP tests 

rejected the null of a unit root in all instances, while the ADF and DF-GLS tests rejected the null 

in only a handful of cases.  The pulpwood series for Escambia, Jefferson and Washington 

counties revealed a stationary series for the variable in differences across all three tests. A rather 

high number of lags were needed for the variables in differences, compared to the optimal lags 

when using the variables in levels. Longer lags point to persistent processes that take longer to 

revert to the mean, although the long lags (e.g. Wakulla or Walton counties) did not correspond 

to stationary series.   

 

Table III-4 provides a summary of results from the cointegration tests.  The test without 

structural breaks (Johansen test) showed several series where we rejected the null of no 

cointegration with both the trend constant and trend unrestricted options. Applying the Gregory-

Hansen test, however, revealed that when controlling for structural breaks in trend and slope, 

only Bay county continued to show signs of cointegration. Consequently, we can use the 

variables in differences but needed also to control for structural breaks. The Zivot and Andrews 

tests for structural breaks provided further evidence for the existence of breaks in all series 

(Table III-5). Taking these breaks into account caused a number of the series to become 

stationary in levels. For example, Washington county series was stationary in levels after 

controlling for a break in trend and intercept occurring in 1976. The series however continued to 

signal a unit root after controlling for a break in trend in 1968.  In contrast, the null of a unit root 
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Table III-3 Unit root tests pulpwood series, variables in first-differences. 

  

ADF-GLS 

 

ADF 

 

PP 

Variable Description 

Test-

statistic 

Critical 

value 

5% 

MAIC 

lags   

Test-

statistic 

Critical 

value 

5%   

Test-

statistic 

Critical 

value 

5% 

dlog005 Bay county -0.466   -2.023 10 
 

-1.816   -2.928 

 

-15.772** -2.92 

dlog013 Calhoun  -0.961   -2.084  7 
 

-2.646   -2.926 

 

-7.512** -2.92 

dlog033 Escambia -5.742** -2.184  2 
 

-5.700** -2.922 

 

-13.476** -2.92 

dlog037 Franklin 0.038   -2.106  6 
 

-3.248** -2.925 

 

-18.894** -2.92 

dlog039 Gadsden -0.951   -2.061  8 
 

-0.470    -2.927 

 

-9.503** -2.92 

dlog045 Gulf -0.668   -2.023 10 
 

-3.370** -2.928 

 

-11.693** -2.92 

dlog059 Holmes -1.185   -2.041  9 
 

-2.490    -2.928 

 

-12.556** -2.92 

dlog063 Jackson -0.712   -2.023 10 
 

-2.193   -2.928 

 

-12.786** -2.92 

dlog065 Jefferson -6.119** -2.198  1 
 

-6.182** -2.921 

 

-9.553** -2.92 

dlog073 Leon -1.364   -2.041  9 
 

-2.506   -2.928 

 

-12.310** -2.92 

dlog077 Liberty -1.081   -2.168  3 
 

-0.733   -2.923 

 

-5.800** -2.92 

dlog091 Okaloosa -0.623   -2.061  8 
 

-2.779   -2.927 

 

-12.622** -2.92 

dlog113 Santa Rosa -0.545   -2.084  7 
 

-2.061   -2.926 

 

-10.686** -2.92 

dlog129 Wakulla -0.107   -2.023 10 
 

-1.890    -2.928 

 

-11.240** -2.92 

dlog131 Walton -0.577   -2.023 10 
 

-2.887   -2.928 

 

-11.555** -2.92 

dlog133 Washington -4.042** -2.168  3 
 

-4.104** -2.923 

 

-11.444** -2.92 

dloggdp Real GDP -1.212   -2.128  5 
 

-2.505   -2.924 

 

-6.558** -2.92 

dlogppi PPI -1.776   -2.152  4   -1.760    -2.924   -5.388** -2.92 

Notes:  **= Null of a unit root rejected for 5% critical value. 
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Table III-4 Results from cointegration tests, pulpwood series. 

  

Johansen test                                              

maximum rank=0 

 

Gregory -Hansen test  

Variable County  

AIC 

Lags 

Test-statistic 

Trend 

Constant 

Test-statistic 

Trend 

Unrestricted   

Test-statistic 

break in 

trend & 

slope 

Break 

date 

log005 Bay  1 59.63* 63.86* 

 

-82.06* 1978 

log013 Calhoun 2 25.90 27.67 

 

-39.52 1967 

log033 Escambia 2 30.68* 26.00 

 

-65.90 1994 

log037 Franklin  2 24.42 20.46 

 

-63.85 1998 

log039 Gadsden 2 29.76* 26.86 

 

-46.24 1993 

log045 Gulf 2 30.66* 26.44 

 

-44.52 1977 

log059 Holmes 2 38.90* 34.01 

 

-53.77 1996 

log063 Jackson 2 49.17* 30.38 

 

-63.01 1968 

log065 Jefferson 2 26.23 26.19 

 

-50.32 1977 

log073 Leon 2 28.80 27.13 

 

-43.11 1976 

log077 Liberty 2 22.09 26.21 

 

-51.95 1996 

log091 Okaloosa 2 25.77 21.16 

 

-52.64 1990 

log113 Santa Rosa 2 27.75 24.00 

 

-39.15 1987 

log129 Wakulla 2 21.45 24.24 

 

-53.97 1977 

log131 Walton 2 34.60* 32.46 

 

-48.43 1977 

log133 Washington 2 29.01 26.15 

 

-53.09 1975 

        5% Critical value   29.68 34.55   -68.43   

Notes:  *= Null of no cointegration rejected at the 5% critical value. 
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Table III-5 T-statistics from Zivot & Andrews test, series break and unit root. 

Variable Description Intercept 

Break 

year Trend 

Break 

year 

Trend & 

Intercept 

Break 

year 

 

  Levels 

log005 Bay county -3.68 1960 -3.92 1999 -3.91 1995 

log013 Calhoun  -3.62 1996 -4.31 1983 -4.42 1988 

log033 Escambia -3.55 1959 -3.21 1962 -3.49 1959 

log037 Franklin -4.98 1999 -5.09 1997 -5.17 1996 

log039 Gadsden -3.82 1999 -4.91 1999 -5.60 1994 

log045 Gulf -4.77 1999 -4.37 1998 -4.70 1968 

log059 Holmes -3.53 1977 -2.70 1967 -3.95 1977 

log063 Jackson -4.20 1966 -3.09 1973 -4.20 1966 

log065 Jefferson -4.43 1991 -4.85 1978 -5.19 1982 

log073 Leon -4.05 1995 -4.54 1956 -4.58 1990 

log077 Liberty 0.80 1999 -1.37 1999 -1.67 1999 

log091 Okaloosa -6.05 1991 -4.84 1962 -6.45 1991 

log113 Santa Rosa -4.27 1999 -4.50 1956 -4.86 1987 

log129 Wakulla -3.45 1988 -3.46 1971 -3.85 1988 

log131 Walton -4.86 1957 -4.74 1974 -5.03 1957 

log133 Washington -5.72 1976 -4.24 1968 -5.81 1976 

loggdp Real GDP -2.59 1962 -4.60 1969 -4.53 1965 

logppi PPI -4.55 1974 -2.04 1996 -4.13 1974 

  

First Difference 

log005 Bay county -7.22 1981 -7.01 1997 -7.28 1981 

log013 Calhoun  -6.24 1988 -5.94 2000 -6.25 1988 

log033 Escambia -9.52 1986 -9.27 1996 -9.51 1986 

log037 Franklin -10.40 1998 -9.92 1993 -10.40 1999 

log039 Gadsden -6.55 1980 -6.53 1996 -6.64 1994 

log045 Gulf -7.12 1976 -6.77 1961 -7.29 2000 

log059 Holmes -9.38 1986 -8.89 1979 -9.30 1986 

log063 Jackson -8.95 1984 -9.22 1957 -9.66 1957 

log065 Jefferson -7.03 1994 -6.93 2000 -6.81 1959 

log073 Leon -10.78 1979 10.62 1958 -10.71 1979 

log077 Liberty -6.48 1977 -7.75 2000 -9.00 2000 

log091 Okaloosa -8.16 1987 -7.85 1993 -8.38 1987 

log113 Santa Rosa -7.49 1987 -7.08 1961 -7.62 1987 

log129 Wakulla -8.14 2000 -7.82 1973 -8.18 2000 
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Table III-5 Continued  

log131 Walton -7.21 1977 -7.24 1958 -7.52 1960 

log133 Washington -8.41 1971 -7.90 1997 -8.52 1971 

loggdp Real GDP -6.44 1984 -6.10 1981 -6.40 1984 

logppi PPI -6.95 1973 -6.21 1980 -7.22 1973 

1% critical value -5.43 

 

-4.93 

 

-5.57 

 5% critical value -4.80   -4.42   -5.08   
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was rejected at the one percent level in all differentiated series when controlling for breaks in 

trends and intercept.  A few break patterns were noticeable, for instance, no breaks were 

identified during the 1962 to 1970 period. A good number of intercept breaks were found in the 

1980s and mid-late 1970s. In effect, intercept breaks occurred in seven series between 1984 and 

1988 and five series between 1976 and 1979. Conversely, a few more breaks in trend were 

identified from 1956 to 1961 (breaks in six series), and during the 1996-2000 period (nine 

series).   

 

Lag selection for the VAR equations followed, after identifying and controlling for the break 

dates. Table III-6 presents the results of three lag selection methods. We used the optimum lag 

number selected by the AIC criteria, which outperforms other methods when dealing with small 

samples (Enders, 2003). The AIC selected a maximum of three lags for the majority of the 

equations, the exceptions being Santa Rosa and Washington each with four lags, and Liberty and 

Walton with zero lags each. For these last two series, the equations were estimated using one lag 

instead of zero.  

B. The Standard VAR Specification 

Table III-7 presents results from the standard VAR model. Only a few coefficients in this model 

proved significant, corroborating the preliminary graphical examination of the series. The GDP 

and PPI movements did not represent the observed movements in the volumes of pulpwood 

procurement series for all the counties in the sample. Nonetheless, the methodology proved 

useful to help predict procurement volume in 30 percent of the counties in the Northwest unit. 

GDP and PPI explained the volume series individually in a similar percent of cases. Only the 

Gulf county volume equation held both GDP and PPI as significant predictors within a 95   
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Table III-6 Optimal number of lags by different selection criteria  

for the VAR specification. 

  

Selection Criteria 

County  Variable AIC FPE SBIC 

Bay log005 3 3 1 

Calhoun  log013 3 3 0 

Escambia log033 3 3 0 

Franklin log037 3 3 1 

Gadsden log039 3 3 0 

Gulf log045 3 3 0 

Holmes log059 3 3 0 

Jackson log063 3 3 0 

Jefferson log065 3 3 0 

Leon log073 3 0 0 

Liberty log077 0 0 0 

Okaloosa log091 3 3 0 

Santa Rosa log113 4 3 0 

Wakulla log129 3 3 0 

Walton log131 0 0 0 

Washington log133 4 4 0 
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Table III-7 Coefficients significance in county volume equations, VAR model. 

 

D_loggdp 

 

D_logppi 

Equation Lag 1 Lag 2 Lag 3 Lag 4   Lag 1 Lag 2 Lag 3 Lag 4 

 

----------  Prob > |t| ---------- 

D_log005 0.831 0.839 0.345 - 

 

0.493 0.867 0.584 - 

D_log013 0.121 0.947 0.136 - 

 

0.052* 0.694 0.042** - 

D_log033 0.330 0.372 0.315 - 

 

0.457 0.619 0.864 - 

D_log037 0.186 0.210 0.206 - 

 

0.944 0.960 0.358 - 

D_log039 0.941 0.493 0.824 - 

 

0.704 0.650 0.012** - 

D_log045 0.041** 0.152 0.169 - 

 

0.14 0.727 0.001*** - 

D_log059 0.973 0.287 0.030** - 

 

0.592 0.623 0.718 - 

D_log063 0.507 0.735 0.412 - 

 

0.442 0.697 0.321 - 

D_log065 0.023** 0.451 0.619 - 

 

0.348 0.935 0.704 - 

D_log073 0.959 0.700 0.356 - 

 

0.717 0.137 0.851 - 

D_log077 0.242 - - - 

 

0.255 - - - 

D_log091 0.171 0.586 0.061* - 

 

0.855 0.628 0.518 - 

D_log113 0.253 0.784 0.939 0.367 

 

0.443 0.270 0.654 0.199 

D_log129 0.403 0.277 0.697 - 

 

0.076* 0.399 0.245 - 

D_log131 0.113 - - - 

 

0.567 - - - 

D_log133 0.753 0.629 0.876 0.072* 

 

0.844 0.187 0.376 0.144 

Notes: ***= significant at 1%; **= significant at 5%; *= significant at 10%. 
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percent confidence level. After fitting the VAR model, we employed the Granger causality tests 

to assess the ability of the macroeconomic variables to predict the county volumes. Table III-8 

provides a summary of the causality test from variable A to B for each volume equation. The 

first two columns of Table III-8 show the causality of GDP and PPI on the volume equations. 

Only Gadsden, Gulf, Okaloosa, and Walton counties displayed a five percent statistical 

significance, supporting the assumption of either GDP or PPI Granger causing the mentioned 

counties’ pulpwood volumes. Further, the granger tests failed to support the theory of PPI 

causing GDP, instead providing evidence of PPI granger causing GDP in more than half of the 

counties. Likewise, county pulp volume (PV) was found to granger cause PPI in the Santa Rosa 

equation with a high significance level, as seen in Table III-8 columns three and four. The 

conflicting results in the causal relationship for PPI tests make the findings for the causal 

relationship on PV doubtful, as well. Possible explanations include the test’s low power given by 

loss of information caused by using the series in differences and by a small sample. 

C. The FAVAR Specification  

The FAVAR estimation included two estimated factors, which were statistically significant in at 

least one cross equation for each county. The first factor proved significant to the volume 

equation with more frequency. The Granger causality tests displayed a similar pattern as that 

observed in the VAR specification. Although the macroeconomic variables and the factor 

variables granger caused pulpwood volumes in a series of counties, the wood production of a 

significant number of counties was not explained by the system variables. This suggests the need 

for alternative specifications that can support a larger set of variables such as the panel VAR.  
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Table III-8 F-statistic from Granger causality tests between endogenous variables, VAR model. 

County  GDP to PV PPI to PV GDP to PPI PV to PPI PPI to  GDP PV to GDP 

Bay  0.625 0.490 3.277** 1.029 1.469 0.157 

Calhoun  1.096 2.180 2.457* 1.328 2.092 0.086 

Escambia  0.921 0.278 2.408* 1.321 1.726 0.243 

Franklin 1.812 0.372 3.278** 0.220 1.551 1.582 

Gadsden 0.499 3.120** 2.064 0.480 0.967 0.955 

Gulf 2.501* 4.191** 2.337* 2.439* 1.138 0.120 

Holmes 2.280* 0.226 2.559* 0.625 1.637 1.014 

Jackson 0.727 0.384 2.283* 0.939 1.907 1.130 

Jefferson 0.744 0.682 3.163** 0.476 1.572 1.151 

Leon 0.515 1.037 4.112** 1.830 1.739 0.246 

Liberty 0.056 1.421 3.347* 0.022 5.976** 0.339 

Okaloosa 3.000** 0.082 3.316** 0.796 1.626 0.285 

Santa Rosa 0.748 0.850 5.454*** 4.426*** 2.453** 1.416 

Wakulla 0.471 1.235 2.318* 0.290 1.244 2.380* 

Walton 4.224** 0.293 4.039** 0.839 4.806** 0.918 

Washington 0.881 0.962 2.672** 0.886 2.162* 1.134 

Notes:  

 

GDP= Real gross domestic product; PPI = Producer price index; PV= Pulpwood 

volume.  ***= significant at 1%; **= signifcant at 5%; *= significant at 10% 
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D. Forecasts  

A forecast period of three years was evaluated with results displayed in Table III-9 and Table II-

10.  Forecast results across the four models showed mixed patterns, without a clear leading 

methodology. The squared forecast errors varied from decimal numbers to a few counties 

exhibiting double digit errors (Table III-9). While some models performed better in certain 

counties, the same models failed to provide significant forecasts for other counties. None of the 

models provided a MAPE under 50 percent, indicating poor fit and, perhaps, the need for a 

higher system. Considering the total MAPE value for the three-year forecast, the FAVAR model 

seemed to perform slightly better than the simple VAR model. The reduced percent of error from 

the FAVAR, compared to the VAR, provides evidence to support the need of additional 

information to identify the system dynamics. However, the results shown by Holmes county also 

indicate the need for information to capture the dynamics at the county level to help explain the 

variation across counties in the area. In part, the low predictability of the FAVAR could be the 

result of a small sample. The FAVAR augmented the VAR by two equations, and some counties 

needed up to four lags for identification, leaving few degrees of freedom for the estimation. The 

Panel specification allowed for a larger sample, and for most counties proved to predict future 

values with less average error (lower MAPE values). The inclusion of the exchange rates to the 

panel specification (PVAR2), however, resulted only in a slight change in MAPE.  

 

Comparing the forecast from the above models with the results from a simple step-forward 

forecast revealed some gains in prediction power (Table III-10).  We assessed the improvement 

of the vector autoregressive approach over the simple step-forward forecast using the MASE 

values. Values above one reveal no gain in the use of the alternate model. In effect, the smaller 
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Table III-9 Mean squared forecast error (MSFE) and Mean Absolute percent error across models for a 

three-year period forecast. 
 MSFE MAPE 

FIPS SF VAR FAVAR PVAR 

1 

PVAR 

2 

SF VAR FAVAR PVAR 

1 

PVAR 

2 

Bay  15.56 6.48 6.08 17.97 17.97 128.11 132.28 73.90 96.45 93.89 

Calhoun  0.05 0.02 0.05 0.01 0.01 113.79 61.57 117.08 89.93 98.31 

Escambia  0.82 0.31 0.09 0.10 0.10 314.76 423.15 183.68 89.26 88.02 

Franklin 10.50 4.90 5.28 13.63 13.64 136.31 130.42 131.41 100.89 101.82 

Gadsden 0.21 0.05 0.06 0.40 0.40 158.85 139.33 81.53 106.49 109.44 

Gulf 0.62 0.36 0.26 0.09 0.09 244.84 105.41 75.45 75.56 72.81 

Holmes 0.05 0.06 0.35 0.04 0.04 1,494.83 206.38 4,675.66 133.00 123.06 

Jackson 1.32 0.44 0.39 0.84 0.84 170.55 78.30 85.27 97.57 99.36 

Jefferson 0.11 0.16 0.17 0.17 0.17 99.73 142.24 139.70 104.07 105.01 

Leon 0.04 0.61 0.10 0.02 0.02 139.36 433.00 218.96 101.84 136.30 

Liberty 2.13 2.36 3.11 12.57 12.58 74.19 71.64 171.51 103.52 104.08 

Okaloosa 0.09 0.08 0.32 0.12 0.12 216.36 109.06 381.18 96.82 95.66 

Santa Rosa 0.48 0.14 0.06 0.09 0.09 315.17 94.14 140.13 90.94 90.18 

Wakulla 0.56 0.60 0.74 0.61 0.62 155.11 93.38 103.66 102.17 102.66 

Walton 0.13 0.08 0.10 0.22 0.22 137.27 93.91 93.95 102.32 102.65 

Washington 0.33 0.15 0.14 0.18 0.18 215.65 139.41 133.20 81.39 91.96 

Notes: SF=Step-Forward, PVAR1= Panel VAR with three endogenous variables, PVAR2= Panel VAR with four 

endogenous variables.  
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Table III-10 Mean absolute scaled error comparison between vector autoregression methods and step-

forward forecast approach for a three-year period forecast. 

 MAD   MASE 

FIPS SF VAR FAVAR PVAR1 PVAR2   VAR FAVAR PVAR1 PVAR2 

Bay  3.05 2.14 2.02 3.48 3.48   0.70 0.66 1.14 1.14 

Calhoun  0.19 0.12 0.21 0.10 0.10   0.64 1.10 0.51 0.55 

Escambia  0.72 0.46 0.28 0.30 0.30   0.64 0.39 0.42 0.41 

Franklin 2.77 2.13 2.19 3.12 3.12   0.77 0.79 1.12 1.13 

Gadsden 0.62 0.52 0.42 0.57 0.57   0.84 0.67 0.91 0.92 

Gulf 0.45 0.22 0.21 0.25 0.25   0.48 0.46 0.57 0.55 

Holmes 0.20 0.20 0.52 0.18 0.18   1.00 2.65 0.93 0.89 

Jackson 1.08 0.56 0.57 0.84 0.84   0.52 0.53 0.77 0.78 

Jefferson 0.31 0.40 0.41 0.35 0.36   1.29 1.33 1.14 1.15 

Leon 0.19 0.76 0.31 0.12 0.12   3.89 1.61 0.60 0.62 

Liberty 1.03 1.08 1.53 2.82 2.82   1.04 1.49 2.73 2.74 

Okaloosa 0.29 0.22 0.54 0.34 0.33   0.75 1.89 1.17 1.16 

Santa Rosa 0.68 0.32 0.23 0.28 0.27   0.48 0.34 0.41 0.40 

Wakulla 0.72 0.61 0.70 0.76 0.76   0.85 0.97 1.05 1.06 

Walton 0.34 0.28 0.30 0.42 0.43   0.83 0.88 1.25 1.27 

Washington 0.53 0.36 0.35 0.33 0.34   0.69 0.66 0.63 0.64 

Notes: SF=Step-Forward, PVAR1= Panel VAR with three endogenous variables, PVAR2= Panel VAR 

with four endogenous variables. 
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the MASE value, the more preferred the autoregressive models over the simple step-forward 

method.  According to the MASE values, most of the series showed at least slight improvement 

from using the standard VAR. The best cases corresponded to Santa Rosa and Jackson counties 

with MASE close to 50 percent, which translates into the VAR having close to half the forecast 

error of the simple forecast. The use of the FAVAR and Panel VAR further improved the 

forecast, over the step-forward method. Once again, the results showed a mixed trend across 

counties with some counties displaying larger gains from the use of one method over another. 

Liberty and Holmes proved the exception, with both counties showing no improvement in 

forecast accuracy across all VAR models used.  

 

Graphic representation of the VAR forecast against the observed values in Figure III.4, however, 

show that the forecast accuracy varied across the forecast years. Santa Rosa’s forecast, for 

example, revealed a forecasted value close to the observed value during the last period. The 

intermediate years however showed values farther apart.  In general, the plotted forecasts 

revealed the VAR prediction for the first period (2007), at least having the same direction as the 

actual observation, than subsequent forecasts periods. Similar trends can be observed in the 

forecast graphs for the FAVAR and PVAR specifications shown in Figures III.5 and III.6, 

respectively. Comparing the graphs for the VAR and FAVAR forecasts, we observed only a few 

counties, such as Okaloosa and Escambia, displaying slight differences while the majority 

showed no apparent differences in the forecast. The PVAR models on the other hand displayed a 

more irregular pattern with the forecast moving in opposite directions to the observed value. The 

two specifications (PVAR1 and PVAR2) moved close together across the majority of the 

counties. This similarity in the forecasts indicates a minimal gain from the addition of the extra  
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Figure III.4 Forecast values for county pulpwood production, VAR specification against the observed 

values. 
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Figure III.4 Continued 
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Figure III.5 Forecast values for county pulpwood production, FAVAR specification against the observed 

values 
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Figure III.5 Continued 
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Figure III.6 Forecast values for county pulpwood production, PVAR specifications against the observed 

values. 
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Figure III.6 Continued 

 

 
 

 

 
 

 

 

 

 

 

 

0

.0
5

.1
.1

5
.2

2006 2007 2008 2009

Leon

-6
-4

-2
0

2

2006 2007 2008 2009

Liberty

-.
4

-.
2

0
.2

.4

2006 2007 2008 2009

Okaloosa

-.
6

-.
4

-.
2

0
.2

.4

2006 2007 2008 2009

Santa Rosa

-.
5

0
.5

1

2006 2007 2008 2009

Wakulla

-.
5

0
.5

2006 2007 2008 2009

Walton

-.
4

-.
2

0
.2

.4

2006 2007 2008 2009

Washington

-4
-2

0
2

4
6

2006 2007 2008 2009
year

PVAR1 PVAR2 Observed



97 

 

endogenous variable in PVAR2. Similar to the VAR and FAVAR forecasts, the PVAR showed 

better performance in the forecast of the first period, although not in all counties. While the 

PVARs forecast for Escambia and Gulf, for example, revealed some similarities between 

forecast and observed values, we can see Walton and Wakulla counties showing no resemblances 

between forecast and observed.  

 

7. Conclusions 

The research presented in this chapter explored the characteristics of wood procurement time 

series for a group of Florida counties. Using these time series, we evaluated the performance of 

VAR models to forecast future timber production at the county level given macroeconomic 

variables. We utilized data from 16 Florida counties corresponding to the northwest FIA survey 

unit. As a whole, this unit provides a substantial part of Florida’s total timber output. Among 

others, the ability to forecast or predict future movements of wood in a county given general 

economic conditions can provide timely information to forest managers and state agencies. Such 

information can assist agencies targeting assistance or policies towards forests resource 

management.  

 

Initial examination of the data revealed a mixed picture. Pulpwood volume did not follow the 

GDP trends as closely as expected. Inclusion of the Producers Price Index as a proxy for national 

pulpwood prices improved the performance of the VAR. However, overall, the macroeconomic 

variables did not appear to capture the dynamics of county pulpwood procurement.  Nonetheless, 

the VAR models provided a better alternative for forecasting when compared to a simple step 

forward forecasting approach.  One must be cautious, however, as the family of VAR models 
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evaluated proved effective only on a portion of all counties. In effect, the data showed the flow 

of pulpwood differing considerably across counties and across time. As a consequence, applying 

the same VAR specification to all counties would fail to capture the varying conditions of the 

pulpwood procurement series. Future research needs to identify the underlying reasons for these 

differences among counties. Forest resource characteristics seem a likely source for county 

heterogeneity. Although the FIA forest inventory provides information to identify the forest 

resources of the area, the disaggregation to county levels would bring high levels of error due to 

the sample intensity. Nonetheless, methods to incorporate forest inventory information into the 

VAR analysis need to be evaluated. Possible ways to capture forest resources include the use of a 

weight, based on county area relative to an FIA unit, or the use of imagery to determine forest 

cover area for each county. Similarly, the analysis of the pulpwood series revealed the presence 

of structural breaks for all counties. For some counties, the external shock resulted in a change in 

trend direction and intensity. Further investigation of these breaks in terms of nature and 

expected effects is needed. Such information would aid determine the procurement areas 

expected response to future similar external shocks. 

 

In summary, the effectiveness of the VAR approach should be evaluated county by county and 

alternative methods utilized to predict series movement for counties that show a low 

correspondence with macroeconomic variables. Results from the forecast research provide 

information to guide future TPO forecasting practices. Although the forecasting performance of 

the tested VAR was not optimal, the exercise provided evidence of the large errors associated 

with a simple step forward methodology. Further, the VAR methodology showed the potential 

improvement in accuracy to be gained from a formal specification. Further research could 
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explore a combined approach between the FAVAR and PVAR, to exploit the gains in sample 

size from the panel together with the gain in information from the factor-augmented 

specification.  
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IV Summary and Conclusions 

 

Timberlands have economic significance beyond the monetary value of the growing timber. 

Environmental, aesthetic, recreational, and cultural values have not been a direct part of the 

market value of timber but instead have been indirectly addressed through individual preferences 

or regulations and policies.  For example, private landowners consider non-timber services such 

as recreation or aesthetics when making harvesting decisions; environmental regulations and 

management policies increase timber harvest costs and allow for fragile areas to be withdrawn 

from production.  Because forests provide a number of ecological services, the public benefit 

from adequate forest management in private lands is significant. Adequate forest management 

can also ensure the necessary supply of timber products to satisfy the nation demands and lessen 

the dependence on foreign resources. Additionally, maintaining a sustainable supply of wood 

help maintain the industry, supporting rural economies.  

 

In this light, the research developed in this dissertation investigated the relationship between 

primary mill demand and procurement areas. The first essay evaluated the effect of available mill 

markets on the likelihood of private forest landowners to engage in forest management activities. 

For the analysis, we applied multivariate probit models to data from the USDA Forest Service 

Forest Inventory and Analysis forest inventory and Timber Products Output. In this manner, we 

combined data for forest management at the FIA plot level with data from mill surveys which 

provide mill location and volume of mill receipts. Results from our analysis contradict the 

common belief that mill proximity will motivate management. In effect, only sawmills 

significantly affected the management decision and with a relatively low effect. Overall, the 
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study points to the need for mechanisms other than mill demand to encourage management in 

private non-industrial forest lands.  The analysis also revealed a low probability of regeneration 

following harvest of a single species (between 25 and 35 percent), and a lower probability of 

management in hardwood stands. 

 

In our second study we examined the use of a VAR methodology to forecast mill procurement at 

the county level. Understanding the dynamics of timber flow can assist in planning of 

management activities. Movement of timber forms a vital part in the analysis of resource use and 

sustainability. The TPO dataset provides a wealth of information that can help predict future 

timber flows. The VAR analysis revealed the need for a county-to-county evaluation and the 

need to further explore other macroeconomic series that might bring a better fit. The initial 

outcomes give promise to a straightforward methodology to forecast the flow of pulpwood 

volumes.  
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Appendix A  - Specification tests results and output tables from single probit regressions. 

 

Table A-1 Probit specification tests and mean variance inflator (VIF). 

Test  

Harvest 

hardwood 

Harvest 

softwood  Regeneration  

Timber stand 

improvement 

 ---    Prob > chi2    --- 

Lagrange multiplier test normality  0.9726 0.6361 0.6048 0.3941 

Wald test of Homoskedasticity  0.2791 0.1576 0.7769 0.7025 

Wald test of exogeneity* 0.0641 0.2505 --- 0.0985 

     Mean VIF 2.10 1.94 2.21 2.18 

Notes:  *= Suspect endogenous variables include plot's proportion of softwood and stumpage prices. 
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Table A-2 Probit regression, softwood harvest outcome. 

Variables Coefficient  Standard Error
1
 

   

delta 0.1955*** (0.039) 

t -0.1532*** (0.032) 

oper -0.0608 (0.123) 

lnstand -0.0206 (0.034) 

propswd 0.6573*** (0.132) 

gs01 0.0059 (0.035) 

land_dac -0.0000 (0.000) 

miles_town 0.0122 (0.011) 

ppsqm -0.0013 (0.001) 

percinc 0.0370* (0.022) 

pop65 -0.0062 (0.040) 

unit2 -0.3167* (0.179) 

unit3 0.3396** (0.154) 

wsst 0.0083* (0.004) 

wsply 0.0011 (0.003) 

ssaw70 0.0560** (0.022) 

sply70 -0.0731 (0.082) 

spw100 0.0588 (0.051) 

Constant -3.7288*** (0.792) 

   

Log Pseudo-likelihood -388.273  

Pseudo R-squared  0.1837  

   

Observations 1,560  

Notes: 
1 

= Errors adjusted for 780 clusters in plot id.   

***= significant at 1%, **= significant at 5%, and *=significant at 10%. 
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Table A-3 Probit regression, hardwood harvest outcome. 

Variables Coefficient  Standard Error
1
 

   

delta 0.1580*** (0.037) 

t -0.1704*** (0.033) 

oper 0.0896 (0.121) 

lnstand -0.0324 (0.035) 

gs01 0.0417 (0.035) 

land_dac -0.0000 (0.000) 

miles_town 0.0035 (0.012) 

ppsqm -0.0022** (0.001) 

percinc 0.0332 (0.022) 

pop65 -0.0791* (0.042) 

unit2 -0.3016* (0.164) 

unit3 0.2332 (0.144) 

hsaw70 0.0817*** (0.029) 

hpw100 0.1010 (0.079) 

propswd 0.4384*** (0.127) 

whst 0.0029 (0.015) 

whpw -0.0412 (0.048) 

Constant -1.9330*** (0.654) 

   

Log Pseudo-likelihood -366.504  

Pseudo R-squared  0.1629  

   

Observations 1,560  

Notes: 
1 

= Errors adjusted for 780 clusters in plot id.   

***= significant at 1%, **= significant at 5%, and *=significant at 10%. 
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Table A-4 Probit regression, regeneration outcome. 

Variables Coefficient Standard Error
1
 

   

oper -0.3792*** (0.134) 

delta 0.2936*** (0.066) 

t -0.1941*** (0.045) 

lnstand 0.0117 (0.035) 

low_site 0.4123 (0.252) 

med_site 0.4795** (0.189) 

medh_site 0.4883** (0.192) 

gs01 0.0873** (0.040) 

acres_chg 0.0845 (0.228) 

land_dac -0.1000 (0.000) 

miles_town -0.0059 (0.012) 

ppsqm -0.0010 (0.001) 

percinc -0.0128 (0.025) 

pop65 -0.0506 (0.053) 

unit2 0.0986 (0.172) 

unit3 0.1422 (0.167) 

wsst 0.0091* (0.005) 

whst 0.0355* (0.019) 

hsaw70 -0.0158 (0.042) 

ssaw70 0.0015 (0.031) 

hpw100 0.0786 (0.087) 

Constant -2.2318** (0.924) 

   

Log Pseudo-likelihood -326.638  

Pseudo R-squared  0.209  

   

Observations 1,560  

Notes: 
1 

= Errors adjusted for 780 clusters in plot id.   

***= significant at 1%, **= significant at 5%, and *=significant at 10%. 
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Table A-5 Probit regression, timber stand improvement outcome. 

Variables Coefficient  Standard Error
1
 

   

oper -0.5075** (0.206) 

delta 0.0637 (0.045) 

t -0.1121** (0.045) 

lnstand 0.1715*** (0.046) 

propswd 0.4266** (0.199) 

low_site -0.2671 (0.298) 

med_site -0.5506*** (0.207) 

medh_site -0.3685** (0.185) 

gs01 0.0177 (0.044) 

acres_chg 0.8212** (0.324) 

land_dac 0.0000 (0.000) 

miles_town 0.0071 (0.015) 

ppsqm -0.0031** (0.001) 

percinc 0.0420 (0.038) 

pop65 -0.1470*** (0.057) 

unit2 -0.3922 (0.245) 

unit3 0.5181*** (0.192) 

wsst 0.0085 (0.007) 

whst -0.0402* (0.024) 

hsaw70 0.0876* (0.045) 

ssaw70 -0.0131 (0.035) 

hpw100 0.1253 (0.104) 

Constant -2.0862** (1.032) 

   

Log Pseudo-likelihood -171.661  

Pseudo R-squared  0.1724  

   

Observations 1,560  

Notes: 
1 

= Errors adjusted for 780 clusters in plot id.   

***= significant at 1%, **= significant at 5%, and *=significant at 10%. 
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Appendix B  - Variables used in the Factor Analysis. 

 

Table B-1 Factor Analysis, list of variables with description and data sources. 

Variable Description Units Movement 

GDPI Gross private domestic investment  index Slow 

PC_Exp Personal consumption expenditures index Slow 

Empl All employees, non-durable goods thousands of people Fast 

CPI_Urb Consumer price index, urban  index Slow 

TB3M Interest rate 3-month Treasury Bill  percent  Slow 

PPI_fuel Producer price index fuel/power index Slow 

PPI_lumber Producer price index lumber index Fast 

IC_paper Industrial production capacity, paper index Fast 

Source: Federal Reserve Bank of St Louis (2012).  
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Appendix C  - List of Stata User-Written Commands used. 

COMMAND (year created), Author(s) 

Description (Reference to associated paper) 

 

MVPROBIT (2003), Lorenzo Cappellari and Stephen P. Jenkins. 

Calculate multivariate Probit regression using simulated maximum likelihood (Cappellari & 

Jenkins, 2003). 

MVDRAWS & MVNP (2006), Lorenzo Cappellari and Stephen P. Jenkins. 

Calculate multivariate normal probabilities by simulation (Cappellari & Jenkins, 2006). 

SKPROBIT (2010), Diallo Ibrahima Amadou. 

Perform Lagrange multiplier test for normality for the Probit model (Amadou, 2010). 

IVREG2 (2002), Christopher F Baum, Mark E Schaffer and Steven Stillman. 

Extended instrumental variables/2SLS and general method of moments (GMM) estimation 

(Baum, Schaffer, & Stillman, 2007). 

GHANSEN (2011). Jorge Eduardo Perez Perez. 

Perform the Gregory-Hansen test for cointegration with regime shifts (Perez, 2011). 

PVAR (2009), Inessa Love. 

Estimate a panel vector autoregressive model as described in Holtz et al. (1988) (Love & 

Zicchino, 2006).  
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