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Abstract

Various particle filters have been proposed and their convergence to the optimal filter

are obtained for finite time intervals. However, uniform convergence results have

been established only for discrete time filters. We prove the uniform convergence of

a branching particle filter for continuous time setup when the optimal filter itself is

exponentially stable.

The short interest rate process is modeled by an asymptotically stationary

diffusion process. With the counting process observations, a filtering problem is

formulated and its exponential stability is derived. Base on the stability result, the

uniform convergence of a branching particle filter is proved.
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Chapter 1

Introduction

1.1 Basic knowledge

The goal of the stochastic filtering theory is to estimate a function of an unknown

Markov process based on the partial information obtained by observation process.

The filtering problem consists of two processes: the signal process Xt, which is what

we want to estimate, and the observation process Yt that provides the information

we can use. Let Gt be the information up to time t which is a σ-field generated by

{Ys, 0 ≤ s ≤ t}. To estimate f(Xt) for bounded function f , we use the conditional

expectation E(f(Xt)|Gt). The following lemma shows that it has the minimum square

error among all the Gt-measurable square-integrable random variables.

Lemma 1.1.1. Let η be any Gt-measurable square-integrable random variable, then

we have

E
(
(f(Xt)− E(f(Xt)|Gt))2

)
≤ E

(
(f(Xt)− η)2

)
. (1.1)
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Proof.

E
(
(f(Xt)− η)2

)
− E

(
(f(Xt)− E(f(Xt)|Gt))2)

)
= E ((E(f(Xt)|Gt)− η)(2f(Xt)− η − E(f(Xt)|Gt)))

= E (E((E(f(Xt)|Gt)− η)(2f(Xt)− η − E(f(Xt)|Gt))|Gt))

= E ((E(f(Xt)|Gt)− η)E(2f(Xt)− η − E(f(Xt)|Gt)|Gt))

= E
(
(E(f(Xt)|Gt)2

)
≥ 0.

Let πt(·) ≡ P(Xt ∈ ·|Gt) be the regular conditional probability distribution of Xt

given Gt; i.e. πt is a map from B(Rd)× Ω to [0, 1] such that

i) For any ω ∈ Ω, πt(·, ω) is a probability measure on Rd.

ii) For any A ∈ B(Rd), πt(A, ·) is a Gt-measurable random variable.

iii) For any A ∈ B(Rd), we have

πt(A, ω) = P(Xt ∈ A|Gt)(ω), a.s. ω.

We use 〈µ, f〉 to denote the integral of a function with respect to the measure µ.

Then it can be shown that the conditional expectation E(f(Xt)|Gt) is given by the

integral of f with respect to the regular conditional probability distribution πt.

Lemma 1.1.2. For any f ∈ Cb(Rd) and t ≥ 0, we have

E(f(Xt)|Gt) = 〈πt, f〉 a.s.

Based on the above two lemmas, we call πt the optimal filter. Let P̂ be the measure

on Ω that is absolutely continuous with respect to P and the Radon-Nickodym

derivative on (Ω,Ft) is M−1
t , that is

dP̂
dP

= M−1
t .
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The following theorem plays a very important role in the filtering theory.

Theorem 1.1.1. (Kallianpur-Striebel formula) The optimal filter πt can be

represented as

〈πt, f〉 =
〈Vt, f〉
〈Vt, 1〉

, ∀f ∈ Cb(Rd), (1.2)

where

〈Vt, f〉 = Ê(Mtf(Xt)|Gt), (1.3)

and Ê refers to the expectation with respect to the measure P̂.

1.2 Nonlinear filtering model with Brownian mo-

tion

Let the signal process Xt be a Rd-valued process governed by the following stochastic

differential equation (SDE):

dXt = b(Xt)dt+ c(Xt)dWt + σ(Xt)dBt,

where B and W are independent Brownian motions taking values in Rd and Rm,

respectively, and b : Rd → Rd, c : Rd → Rd×m and σ : Rd → Rd×d are continuous

mappings. The observation process is given by:

Yt =

∫ t

0

h(Xs)ds+Wt,

where h ∈ Cb(Rd).

The stability of this nonlinear filter model is an important concept in the filtering

theory. We investigate the following question: Under what conditions does the
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distance between πt and π̄t tends to 0 as t → ∞? Here πt and π̄t are two optimal

filters with initial distribution π0 and π̄0, respectively.

Definition 1.2.1. The filtering model is asymptotically stable if for any π0, π̄0 ∈

P(Rd), we have

lim
t→∞

d(πt, π̄t) = 0,

where d(·, ·) is a suitable metric in the space of probability measure on Rd.

The investigation of this problem has a long history, starting with the pioneering

work of Kunita [20] (in continuous time setting) on the stationary behavior of the

mean square estimation error of the nonlinear filter. But there is a serious gap in

the proof of the main result in [20] (see [29]). After that, the stability of the optimal

filter has received considerable attention in many years, e.g. . Atar and Zeitouni

[2] showed the exponential stability of the nonlinear filter in the compact space.

Budhiraja and Ocone [3] proved the exponential stability of discrete time filters for

bounded observation noise. Atar [1] considered one dimensional nonlinear filtering

with linear observations in a noncompact domain. Recently, Van Handel [14] partially

solved Kunita’s problem by checking Von Weizsácker’s conditions for exchange of

intersection and supremum of σ−fields.

Another problem in the filtering theory is numerical methods for solving optimal

filter. Even though, the filtering problem has been studied in the literature

extensively, there are only a few cases which have explicit solutions. Therefore, to

solve the filtering problems, we have to resort to numerical approximations.

An efficient way is to use random particle systems to approximate the filtering

problem numerically. Such approximation of the optimal filter was studied in heuristic

schemes in the beginning of the 1990s by Gordon et al [28], Kitagawa [18], Carvalho

et al [13]. The rigorous proof of the convergence results for the particle filter were

published in 1996 by Del Moral [23], and indepently, by Crisan and Lyons [8] in 1997.

Since then, many improvements have been made, e.g. Crisan et al [5] [11] [6] [10], Del
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Moral and Miclo [26]. There is one thing is common in these methods: the number of

particles doesn’t change along the time line. So it always require a lot on computation

ability.

A different type of particle system is introduced by Crisan and Xiong in [9] and a

central-limit-type theorem was proved. In [9], Crisan and Xiong studied a branching

particle system to solve the continuous time filtering problem. In their construction,

particles move according to the law of the signal, conditionally (given the observation)

independent of each other, in a small time interval whose length tends to 0 while the

initial number of particles tends to∞. At the end of each time interval, the particles

die and give birth to random numbers of offsprings. The offsprings move from the

positions of their mothers with weight 1. The expected numbers of offsprings are

the weight of the corresponding particles decided according to the paths during the

period prior to that time step. In this setting, the number of offsprings decreases

to a small number with a large probability. Therefore, the approximation is easy to

calculate after the long time period.

Uniform convergence of particle filter with fixed number of particles was first

studied by Del Moral and Guionnet in [25]. It was also studied by some other authors

(e.g. Crisan and Heine [7], Del Moral [24]) for discrete time filters. In [9], since the

numbers of offsprings are random numbers at each time step, the proof of uniform

convergence is not trivial. In fact, as mentioned above, the number of particles is

more likely small number after a long time. From the reference above, we see that

at the discrete-time setting, there is a close connection between the stability of the

filter and the uniform convergence of its (particle) approximation. We will study

the uniform convergence of the particle filter defined by the particle system under

the some stability condition. In [22], a scheme without integration in weights of the

particles is defined. The uniform convergence is also proved for this case.

5



1.3 The filtering model with Poisson observations

Zeng [35] proposes a general Filtering Micromovement model for asset price (FM

model, as we simply call it), where the sample characteristics of micro- and macro-

movements are tied in a consistent manner. Economically, the proposed model

has the structure similar to a class of time series structural models developed in

many early market microstructure papers (see [15], a survey paper on this topic,

and [16]). Namely, price can be decomposed as a permanent component and a

transient component. The permanent component has a long-term impact on price

while the transient component has only a short-term impact. In FM model, there is an

unobservable intrinsic value process for an asset, which corresponds to the usual price

process in the option pricing literature and in the empirical econometric literature of

macro-movement. The intrinsic value process is the permanent component and has

a long-term impact on price. Prices are observed only at random trading times

which are modeled by a conditional Poisson process. Moreover, prices are distorted

observations of the intrinsic value process at the trading times and trading (or market

microstructure) noise is explicitly modeled. It is the transient component and only

has short-term impact (when a trade happens) on price.

The most prominent feature of FM model is that trade-by-trade prices are viewed

as a collection of counting processes of price level and the model is framed as a filtering

problem with counting process observations. Then, the unnormalized and normalized

filtering equations, which correspond to Duncan-Mortensen-Zakai, and Kushner-

Stratonovich or Fujisaki-Kallianpur-Kunita equations in classical nonlinear filtering,

are derived by [35]. These equations characterize the evaluation of the integrated

likelihoods and the conditional distribution of the intrinsic value process (the signal).

The Markov chain approximation method is applied to numerically solve the filtering

equations. Then Bayes estimation via filtering for the intrinsic value process and the

related parameters in the model is developed in [35]. Bayesian hypothesis testing or

model selection via filtering for this class of models is developed in [19]. Furthermore,
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a risk minimization hedging strategy for a FM model is considered in [21], and a

mean-variance portfolio selection for a FM model is studied in [34].

The short interest rate process could be modeled by an asymptotically stationary

process, e.g. the Vasicek model and the Cox-Ingersoll-Ross model. For short interest

rate process, the stationary assumption is natural and there are ultra-high frequency

data for short interest rate, too.

The underlining intrinsic process X(t) is modeled by an asymptotically stationary

diffusion process. The observation process Y (t) is a counting process and it describes

the numbers of trades at each price level. The filtering problem is established

the same as in [35]. We will study the stability of the filtering with counting

process observations and numerical method for approximation. The following is the

mathematical model:

X(t), the intrinsic interest rate process follows a diffusion process:

dX(t) = µ(X(t)) + σ(X(t))dB(t),

where B(t) is a standard Brownian motion. The generator associated with X is

Lf(x) =
1

2
σ2(x)

∂2f

∂x2
(x) + µ(x)

∂f

∂x
(x).

The intrinsic rate process can only be partially observed through the price process, Y .

Due to price discreteness, Y is in a discrete state space given by the multiples of tick,

the minimum price variation set by trading regulation. Y is a distorted observation

of X at some random times. We view the transaction prices in the levels of price due

to price discreteness. That is, we view the prices as a collection of counting processes
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in the following form:

~Y (t) =



N1(
∫ t

0
λ1(X(s))ds)

N2(
∫ t

0
λ2(X(s))ds)

.

.

.

Nw(
∫ t

0
λw(X(s))ds)


, (1.4)

where Yk(t) = Nk(
∫ t

0
λk(X(s), s)ds), k = 1, 2, ..., w, is the counting process recording

the cumulative number of trades that have corrupted at the kth price level (denoted

by yk) up to time t. The stability of the filter is studied and the exponential stability

is derived. A branching particle filter is introduced by J. Xiong and Y. Zeng in

[34] and the convergence on the finite time interval is proved. We prove the uniform

convergence on the whole time line for a diffusion intrinsic process with linear growth.
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1.4 Notational conventions

Many of our notational conventions are outlined in the following table.

Notation Meaning

(Ω,F ,P,Ft) stochastic basis

Rd d-dimensional vector space over R

tanh(x) hyperbolic tangent function of x

Sd+ the space of all nonnegative-definite symmetric d× dmatrices

R+ all positive real numbers

C(R+,Rd) the space of all continuous mappings from R+ to Rd

B(Rd) the collection of all the Borel sets in Rd

MF (Rd) the space of finite measures on Rd

P(Rd) the space of probability measures on Rd

dTV (·, ·) total variation metric on P(Rd)

Ck
b (Rd) the collection of all bounded continuous mappings on Rd

with bounded partial derivatives up to order k

Ww
p (Rd) the collection of all functions on Rd with generalized partial

derivatives up to order k with both the functions and all its

partial derivatives being p-integrable

log x natural logarithm of x

9



Chapter 2

Nonlinear filtering model with

Brownian motion

2.1 Stability of the filtering

As mentioned in chapter 1, the exponential stability has been studied a lot. In this

section, some assumptions are stated and they are used in the proof the uniform

convergence of the numerical method in the next section. Furthermore, two examples

are presented for the assumptions check.

2.1.1 Assumptions

First, let’s recall our model. The signal process Xt follows

dXt = b(Xt)dt+ c(Xt)dWt + σ(Xt)dBt,

and observation process Yt is given by

Yt =

∫ t

0

h(Xs)ds+Wt.
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Therefore,

dWt = dYt − h(Xt)dt.

Rewrite the SDE for signal process Xt, we have

dXt = (b(Xt)− c(Xt)h)Xt)) dt+ c(Xt)dYt + σ(Xt)dBt.

The following assumptions are made on the parameters in the above model.

Assumption 2.1.1. The mappings σ, b, c, h are in Ck
b (R,X ) with k = [d

2
] + 2 and X

being Rd×d,Rd,Rd×m and Rm.

let K be the uniform bound of functions mentioned above. Since h is bounded,

M−1
t ≡ exp

(
−
∫ t

0

〈h(Xt), dWs〉 −
1

2

∫ t

0

|h(Xs)|2ds
)

= exp

(∫ t

0

h∗(Xs)dYs −
1

2

∫ t

0

|h(Xs)|2ds
)

is a martingale. Let P̂ be the measure on Ω that is absolutely continuous with respect

to P and the Radon-Nickodym derivative on (Ω,Ft) is

dP̂
dP

∣∣∣
Ft

= M−1
t .

Then,

〈Vt, f〉 = Ê(Mtf(Xt)|Gt),

and

〈πt, f〉 =
〈Vt, f〉
〈Vt, 1〉

where f ∈ Cb(Rd).
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The followings two theorems are two main equations in filtering theory. The first

one is a linear equation of unnormalized filter Vt.

Theorem 2.1.1. (Zakai’s equation) The unnormalized filter Vt satisfies the

following stochastic differential equation:

〈Vt, f〉 = 〈V0, f〉+

∫ t

0

〈Vs, Lf〉 ds+

∫ t

0

〈Vs,∇∗f + fh∗〉 dYs, (2.1)

where

Lf =
1

2

d∑
i,j=1

aij∂
2
ijf +

d∑
i

bi∂if

is the generator of the signal process, and the d × d matrix a = (aij) is given by

a = cc∗ + σσ∗.

We define the innovation process νt by

dνt = dYt − 〈πt, h〉 dt. (2.2)

Then, for t > s, we have

E(νt|Gs) = E
(
Yt −

∫ t

0

〈πr, h〉 dr|Gs
)

= E
(
Yt − Ys −

∫ t

s

〈πr, h〉 dr|Gs
)

+ νs

= E
(
Wt −WS −

∫ t

0

(h(Xr)− 〈πr, h〉) dr|Gs
)

+ νs

=

∫ t

s

E (h(Xr)− E(h(Xr)|Gs)|Gs) + νs

= νs. (2.3)

As Yt is Brownian motion under P̂, its quadratic variation is given by

〈
Y i, Y j

〉
t

= δijt, i, j = 1, ..., d,
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where

δij =

1 if i = j,

0 if i 6= j.

Since the quadratic variation of the second term in (2.2) is 0, we get

〈
νi, νj

〉
t

=
〈
Y i, Y j

〉
t

= δijt, i, j = 1, ..., d.

Therefore νt is a Gt-Brownian motion under the probability measure P.

Theorem 2.1.2. (Kushner-FKK equation) The optimal filter πt satisfies the

following stochastic differential equation: for all f ∈ C2
b (Rd),

〈πt, f〉 = 〈π0, f〉+

∫ t

0

〈πs, Lf〉 ds+

∫ t

0

(〈πs,∇∗f + fh∗〉)− 〈πs, f〉 〈πs, h∗〉 dνs. (2.4)

Let MF (Rd) be the collection of all finite Borel measures on Rd. Denote by

dTV (·, ·) the total variation distance on MF (Rd). For any µ, ν ∈ MF (Rd), dTV (µ, ν)

is defined as following:

dTV (µ, ν) = sup
‖f‖≤1

|〈µ, f〉 − 〈ν, f〉| (2.5)

The exponential stability assumption for the optimal filter is made as following:

Assumption 2.1.2. The filter is stable in the following sense: There exist constants

C > 0 and β ∈ (0, 1) such that ∀ε > 0, whenever EdTV (π0, π̄0) < ε, there exists T > 0

such that when t > T , we have

EdTV (πt, π̄t) ≤ Cg(t)EdTV (π0, π̄0),

where πt and π̄t are the optimal filters with initial π0 and π̄0, respectively and g(·) is

a function on R which satisfies
∑∞

n=0 g(n) <∞.

13



2.1.2 Examples

In this section, we state two examples that satisfy the assumption 2.1.2. First example

is the Kalman-Bucy filtering. The filtering model whose signal is given by

dXt = bXtdt+ cdWt + σdBt (2.6)

and the observation process is

dYt = hXtdt+ dWt, (2.7)

where X0 is a d−dimensional normal random vector with mean X̂0 ∈ Rd and

covariance matrix γ0 ∈ Rd
+, the space of the all non-negative-definite symmetric

d× d−matrices, (Wt, Bt) is an m + d-dimensional Brownian motion, the coefficients

b, c, σ, h are matrices of dimensions d× d, d×m, d× d and m× d, respectively.

Theorem 2.1.3. For any t ≥ 0 and ω ∈ Ω being fixed, πt(ω) is a multivariate normal

probability measure on Rd.

Proof. Let DN = {0 = sN1 < · · · < sNk = t} be an increasing sequence of sets

whose union is dense in [0, t]. Since (Xt, Yt) is a Gaussian process, the conditional

distribution πNt ≡ P(Xt ∈ ·|Ys, s ∈ DN) is normal with conditional mean X̂N
t

and conditional covariance matrix γNt . We now consider the characteristic function

corresponding to πNt . For λ ∈ Rd, we define

φN(λ) =

∫
Rd
eiλ
∗xπNt (dx)

= E
(
eiλ
∗Xt|Ys, s ∈ DN

)
.

Note that for λ ∈ Rd fixed, {φN(λ) : N ≥ 1} is a martingale. By martingale

convergence theorem (see Theorem 27.3 in [17]), we have

lim
N→∞

φN(λ) = φ∞(λ) a.s.

14



Since the characteristic function of a multivariate normal distribution πNt is given by

φN(λ) = exp

(
λ∗X̂N

t −
1

2
λ∗γNt λ

)
,

we have the convergence of X̂N
t and γNt as N →∞. Denote the limits by X̂t and γt,

respectively. Then

φ∞(λ) = exp

(
λ∗X̂t −

1

2
λ∗γtλ

)
.

Thus, πt(ω) is a multivariate normal distribution on Rd.

Let X̂t = E(Xt|Gt) and γt = E((Xt − X̂t)(Xt − X̂t)
∗). Then X̂t and γt satisfy the

following equations:

dX̂t = (b− ch− γth∗h)X̂tdt+ (c+ γth
∗)dYt, (2.8)

and

γ̇t = γt(b− ch) + (b− ch)γt + σ∗σ − γth∗hγt. (2.9)

For any z ∈ Rd and R ∈ Rd
+, we define the d−dimensional stochastic process Zt

and Rd
+-valued function Pt by

dZt = (b− ch− Pth∗h)Ztdt+ (c+ Pth
∗)dYt

Z0 = z,

(2.10)

and Ṗt = Pt(b− ch) + (b− ch)Pt + σ∗σ − Pth∗hPt

P0 = R.

(2.11)
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Note that for z = X̂0 and R = γ0, we have Zt = X̂t and Pt = γt. Thus (Zt, Pt)

can be regarded as the linear filter with ”incorrect” initial.

First, we define the asymptotically stable matrix.

Definition 2.1.1. Let A be a d × d− matrix, A is asymptotically stable if all its

eigenvalues have negative real parts.

We make the following assumption on the coefficients of the system.

Assumption 2.1.3. There exists a matrix γ∞ ∈ Rd
+ such that

γ∞(b− ch)∗ + (b− ch)γ∞ + σ∗σ − γ∞h∗hγ∞ = 0,

and b− ch− γ∞h∗h is asymptotically stable.

Let

0 < λ0 < inf{−Reλ : λ is an eigenvalue of b− ch− γ∞h∗h}.

Note that

d

dt
(Pt − γ∞) =

(
b− ch− 1

2
(Pt − γ∞)hh∗

)
(Pt − γ∞)

+

((
b− ch− 1

2
(Pt − γ∞)hh∗

))∗
.

Thus, there exists a constant K1 such that

|Pt − γ∞| ≤ K1|R− γ0|e−λ0t. (2.12)

Similarly, we have

|Pt − γt| ≤ K2|R− γ0|e−λ0t, (2.13)
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and

|γ∞ − γt| ≤ K3|R− γ0|e−λ0t. (2.14)

By (2.8) and (2.10), we get

d(X̂t − Zt) =
{

(b− ch− γ∞h∗h)
(
X̂ − Zt

)
+ (γ∞ − γt)h∗hX̂t

+(γ∞ − Pt)h∗hZt
}
dt+ (γt − Pt)h∗dYt.

Applying Itô’s formula, we have

d
(

(X̂t − Zt)e−(b−ch−γ∞h∗h)t
)

= e−(b−ch−γ∞h∗h)t
{

(γ∞ − γt)h∗hX̂t + (γ∞ − Pt)h∗hZt
}

= e−(b−ch−γ∞h∗h)t(γt − Pt)h∗dYt.

Then,

E|X̂t − Zt|2 ≤ 3|X̂0 − z|2|e2(b−ch−γ∞h∗h)t|

+6tE
∫ t

0

|e2(b−ch−γ∞h∗h)(t−s)||γ∞ − γt||h∗h|2|X̂s|2ds

+6tE
∫ t

0

|e2(b−ch−γ∞h∗h)(t−s)||γ∞ − Ps||h∗h|2|Zs|2ds

+3tE
∣∣∣∣∫ t

0

e(b−ch−γ∞h∗h)(t−s)(γt − Pt)h∗dYs
∣∣∣∣2

(2.15)
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By (2.7)and (2.13), we have

E
∣∣∣∣∫ t

0

e(b−ch−γ∞h∗h)(t−s)(γt − Pt)h∗dYs
∣∣∣∣2

≤ 2E
∫ t

0

e2(b−ch−γ∞h∗h)(t−s)|(γt − Pt)|2|h∗|2ds

≤ 2tE
∫ t

0

e2(b−ch−γ∞h∗h)(t−s)|(γt − Pt)|2|h∗h|2|X̂s|2ds

≤ K4|R− γ0|2
∫ t

0

e−2λ0(t−s)e−2λ0sds

= K4|R− γ0|2te−2λ0t (2.16)

Combining (2.14), (2.12) (2.16) and (2.15), we get

E|X̂t − Zt|2 ≤ K5

(
|X̂0 − z|2 + |R− γ0|2

)
e−2λ0t (2.17)

Proposition 2.1. Under assumption 2.1.3 , the optimal filter for the model (2.6-2.7)

is exponential stable in the following sense:

EdTV (πt, π̄t) ≤ KdTV (π0, π̄0)e−
1
2
λ0t

Proof. Let φ(u) be the probability density function of the d-dimensional standard

normal random vector. Then, for f ∈ Cb(Rd) with ‖f‖∞ ≤ 1, we have∣∣∣∣∫
Rd
f(x)πt(dx)−

∫
Rd
f(x)π̄t(dx)

∣∣∣∣
=

∣∣∣∣∫
Rd
f(X̂t +

√
γtu)φ(u)du−

∫
Rd
f(Zt +

√
Ptu)φ(u)du

∣∣∣∣
≤ |X̂t − Zt|+ |

√
γt −

√
Pt|
∫
Rd
|u|φ(u)du

≤ |X̂t − Zt|+
√
d|√γt −

√
Pt|
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By the definition of d(·, ·) discussion above, we have

dTV (πt, π̄t)

≤ |X̂t − Zt|+
√
d|√γt −

√
Pt|

≤ K1e
−1/2λ0t(|X̂0 − Z0|+

√
d|√γ0 −

√
P0|).

Note that the convergence in distribution is equivalent to the convergences of mean

and variance for normal random variable. Therefore, for ∀ε > 0, when dTV (π0, π̄0) < ε,

we have

|X̂0 − Z0|+
√
d|√γ0 −

√
P0| ≤ K2dTV (π0, π̄0).

Hence

EdTV (πt, π̄t) ≤ K3dTV (π0, π̄0)e−1/2λ0t.

Next we consider a nonlinear filtering in one dimension. The model for the state

and observation processes is as follows:

dXt = f(Xt)dt+ dBt, Xt ∈ R, (2.18)

dYt = Xtdt+N
1/2
0 dWt, Yt ∈ R, Y0 = 0. (2.19)

Here (Bt)t≥0 and (Wt)t≥0 are independent standard Browian motions.

Assumption 2.1.4. The function V (x) = f ′(x) + f 2(x) is twice continuously

differentiable with a bounded second derivative.
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Assumption 2.1.5. There exists an initial density p̃, such that under P p̃, Xt is

stationary and ergodic.

Assumption 2.1.6. For some t ≥ 0, the marginal law of Xt under P is absolutely

continuous with respect to that under P p̃.

Assumption 2.1.7. One has that EP p̃X2
t <∞.

Examine the proof of the Theorem 1 in [1], it’s easy to get the following:

Proposition 2.2. Under assumptions 2.1.4, 2.1.5 and 2.1.6, there exist nonrandom

constants C, C1 and C2, independent of N0 and of the initial distributions π0 and π̄0,

such that P − a.s.,

EdTV (πt, π̄t) ≤ CE(dTV (π0, π̄0)) exp {(C1 logN0 + C2) t} . (2.20)

As a consequence, the optimal filter is exponential stable when N0 is small enough.

Proof. Let ρh(·, ·) be Hilbert metric onMF (Rd) (see definition on page 6 of [12]). By

Corollary 1 in [1] and Lemma 3.4 in [12], for n− 1 ≤ t ≤ n, we have

dTV (πt, π̄t) ≤ KdTV (π0, π̄0)
n∏
k=1

ρh(πk, π̄k)

ρh(πk−1, π̄k−1)

Let T be an linear operator on MF (Rd), that possesses a kernel T (·, ·). By Lemma

10.31 in [33], we have

sup

{
ρh(T µ, T ν)

ρh(µ, ν)
: 0 < ρh(µ, ν) <∞

}
= tanh

H(T )

4
,

where H(T ) = log esssupT (x,y)T (x′,y′)
T (x,y′)T (x′,y)

with convention 0/0 = 1 and 1/0 = ∞. The

supremum above is strict over x, x′ ∈ Rd, and is essential over y, y′ ∈ Rd with respect

to the distribution at the beginning of each time interval.

To obtain the exponential decay, it’s sufficient to show the boundness of the kernel

in the time interval [0, 1] which is proved in [1].
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2.2 Numerical method

2.2.1 Branching particle system

In this section, we introduce the branching particle system and the particle filter

studied by Crisan and Xiong [9]. The main idea of using branching mechanism is to

reduce the variance of the weight of the particles in the system. We divide the time

interval into small subintervals, and the weight for each particle is restarted at every

partition time.

Now we proceed to defining the branching particle system. Initially, there are

n particles of weight 1 each at locations xni , i = 1, 2, ..., n, satisfying the following

condition:

Assumption 2.2.1. The initial positions {xni : i = 1, 2, ..., n} of the particles are

i.i.d. random vectors in Rd with the common distribution π0 ∈ P(Rd).

Let δ = δn = n−2α, 0 < α < 1. For j = 0, 1, 2, ..., there are mn
j number of particles

alive at time t = jδ. Note that mn
0 = n.

During the time interval [jδ, (j+1)δ), the particles move according to the following

diffusions: For i = 1, 2, ...,mn
j ,

X i
t = X i

jδ +

∫ t

jδ

σ(X i
s)dB

i
s +

∫ t

jδ

b̃(X i
s)ds+

∫ t

jδ

c(X i
s)dYs (2.21)

where b̃ = b− ch.

At the end of the interval, the ith particle (i = 1, 2, ...,mn
j ) branches (conditionally

independent of others with F(j+1)δ given) into a random number ξij+1 of offsprings such

that the conditional expectation and the conditional variance given the information

prior to the branching satisfy

Ê(ξij+1|F(j+1)δ−) = M̃n
j+1(X i),

and
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V arP̂ (ξij+1|F(j+1)δ−) = γnj+1(X i),

where γnj+1(X i) is arbitrary,

M̃n
j+1(X i) =

Mn
j+1(X i)

1
mnj

∑mnj
l=1 M

n
j+1(X l)

and

Mn
j+1(X i) = exp

(∫ (j+1)δ

jδ

h∗(X i
t)dYt −

1

2

∫ (j+1)δ

jδ

|h(X i
t)|2dt

)
(2.22)

To minimize γnj+1(X i), we take

ξij+1 =

[M̃n
j+1(X i)] with probability 1− {M̃n

j+1(X i)},

[M̃n
j+1(X i)] + 1 with probability {M̃n

j+1(X i)}

where {x} = x − [x] is the fraction of x, and [x] is the largest integer that is not

greater that x. In this case, we have

γnj+1(X i) = {M̃n
j+1(X i)}(1− {M̃n

j+1(X i)}).

Now we define the approximate filter as follows:

πnt =
1

mn
j

mnj∑
i=1

M̃n
j+1(X i, t)δXi

t
, jδ ≤ t < (j + 1)δ,

where

Mn
j (X i, t) = exp

(∫ t

jδ

h∗(X i
s)dYs −

1

2

∫ t

jδ

|h(X i
s)|2ds

)
(2.23)

and
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M̃n
j (X i, t) =

Mn
j (X i, t)

1
mnj

∑mnj
l=1 M

n
j (X l, t)

Namely, the ith particle has a time-dependent weight M̃n
j (X i, t). At the end of the

interval, i.e. t = (j + 1)δ, this particle dies and gives birth to a random number

of offsprings, whose conditional expectation is equal to the pre-death weight of the

particle. The new particles start from their mother’s position with weight 1 each.

The process πnt is called the hybrid filter since it involves a branching particle

system and the empirical measure of these weighted particles.

To show the uniform convergence, we also define the approximation for the

unnormalized filter V n
t as following: For kδ ≤ t < (k + 1)δ,

V n
t =

1

n
ηnk

mnk∑
i=1

Mn
k+1(X i, t)δXi

t
,

where

ηnk = Πk
j=1

1

mn
j−1

mnj−1∑
l=1

Mn
j (X l).

We state the following lemmas whose proof can be found in [33].

Lemma 2.2.1. Let φ ∈ Ck
b (Rd)∩W k

2 (Rd) and ψ is a solution of the following backward

SPDE:  dψs = −Lψsds− (∇∗ψsc+ h∗ψs) d̂Ys

ψt = φ,

(2.24)

where d̂ denotes the backward Itô integral. Than, for every t ≥ 0, we have

ψt(Xt)Mt − ψ0(X0) =

∫ t

0

Ms∇∗ψsσ(Xs)dBs, a.s.
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Lemma 2.2.2. There exist constants K and K ′ such that for any i = 1, 2, ...,mn
j , we

have

Ê((Mn
j (X i, s))2|Fjδ ∨ F ijδ,(j+1)δ) ≤ eK

2δ, jδ ≤ s ≤ (j + 1)δ

and

Ê(|Mn
j+1(X i)− 1|2|Fjδ) ≤ K ′δ,

where F ijδ,(j+1)δ = σ{Bi
s − Bi

jδ : jδ ≤ s ≤ (j + 1)δ} is the σ-filed generated by the

increments of Bi
t in t ∈ [jδ, (j + 1)δ)].

Lemma 2.2.3. There exists a constant K ′′ such that for any j ≥ 0 and i =

1, 2, ...,mn
j , we have

Ê
(
γnj+1(X i)(

ηnj+1

ηnj
)2
∣∣∣Fjδ) ≤ K ′′

√
δ.

Remark 2.3. In [22], another branching particle filter is defined to avoid the

stochastic integral in (4.1) and (4.2). We describe it for the convenience of the reader.

Let mn
j be the number of particles at time jδ. During the time interval [jδ, (j+1)δ),

the particles move according to the following equation:

X i
t = X i

jδ + b̃(X i
jδ)(t− δ) + c(X i

jδ)(Yt − Yjδ) + σ(X i
jδ)(B

i
t −Bi

jδ), i = 1, ...,mn
j

At the end of the interval, the ith particle (i = 1, ...,mn
j ) branches into a random

number ξij+1 of off-springs such that the conditional expectation and the conditional

variance are given by:

Ê(ξij+1|F(j+1)δ−) = M̃n
j+1(X i),

and

V arP̂(ξij+1|F(j+1)δ−) = γnj+1(X i) = {M̃n
j+1(X i)}

(
1− {M̃n

j+1(X i)}
)
,
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where

M̃n
j+1(X i) =

Mn
j+1(X i)

1
mnj

∑mnj
l=1M

n
j+1(X l)

,

and

Mn
j+1(X i) = exp

(
h∗(X i

jδ)(Y(j+1)δ − Yjδ)−
1

2
|h(X i

jδ)|2δ
)

The branching particle filter is defined by

πnt =
1

mn
j

mnj∑
i=1

δXi
jδ
, jδ ≤ t < (j + 1)δ. (2.25)

Similar convergence result can be proved for this branching filter by using the idea

which will be given in the next section.

2.2.2 Uniform convergence

Define the distance on MF (Rd) by

d(µ, ν) =
∞∑
i=0

2−i (| 〈µ− ν, fi〉 | ∧ 1) , ∀µ, ν ∈MF (Rd), (2.26)

where f0 = 1 and for i ≥ 1, fi ∈ Ck+2
b (Rd) ∪W k+2

2 (Rd) with ‖fi‖k+2,∞ ≤ 1 and also

‖fi‖k+2,2 ≤ 1, where k = [d
2
] + 2 is given in assumption 2.1.1.

Theorem 2.2.1. Under assumptions 2.1.1, 2.1.2 and 2.2.1, the branching particle

filter uniformly converges to the optimal filter in the following sense:

lim
n→∞

sup
t>0

Ed(πt, π
n
t ) = 0. (2.27)
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Remark 2.4. Note that many exponential stability results are proved in compact state

space case. Similar convergence results hold true and our proof can also be applied to

them.

Let p(t, x, A) be the transition probability of the Markov process Xt. There exists

a probability measure Ps,x on C(R+,Rd) such that for t > s and A ∈ B(Rd),

Ps,x(ξt ∈ A|F ξs ) = p(t− s, x, A), Ps,x − a.s.,

and

Ps,x(ξu = x, 0 ≤ u ≤ s) = 1

where ξt is the co-ordinate process on C(R+,Rd), i.e. ξt(θ) = θt for all θ ∈ C(R+,Rd).

Then λ is the initial distribution of Xt and η ∈ C(R+,Rm). We define anMF (Rd)-

valued process Γs,t(λ) and a P(Rd)-valued process Λs,t(λ) on C(R+,Rm) as

〈Γs,t(λ)(η), f〉 =

∫
Rd

∫
C(R+,Rd)

f(ξt(θ))qst(θ, η)Ps,x(dθ)λ(dx),

and

Λs,t(λ)(η) =
〈Γs,t(λ)(η), f〉
〈Γs,t(λ)(η), 1〉

,

where qst(θ, η) = exp
(∫ t

s
h(ξu(θ))

∗dβu(η)− 1
2

∫ t
s
|h(ξu(θ))|2du

)
and βt(η) = ηt is the

co-ordinate process on C(R+,Rm).

Let Λkδ,(k+1)δ(λ)(Y ) be the optimal filter at time (k + 1)δ using the observation

σ(Yt, kδ ≤ t ≤ (k + 1)δ) starting with λ at time kδ. We define the following P(Rd)-

valued processes, for j ≤ k

πnjδ,kδ := Λjδ,kδ(π
n
jδ)(Y ) = Λ(k−1)δ,kδ ◦ · · · ◦ Λjδ,(j+1)δ(π

n
jδ)(Y ),
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The following is our strategy of the proof. For kδ ≤ t < (k + 1)δ, we estimate the

distance between πt and πnt by the sum of three distances: d(πkδ, πt), d(πkδ, π
n
kδ) and

d(πnkδ, π
n
t ) through the triangle inequality. To estimate the distance of πkδ and πnkδ,

we bound it by a sum of k distances. Each term in the sum is the distance of two

filters at the same time with different initials which are not far away from each other.

Namely, for kδ ≤ t < (k + 1)δ, we have

d(πt, π
n
t ) ≤ d(πt, πkδ) + d(πkδ, π

n
kδ) + d(πnkδ, π

n
t )

≤ d(πt, πkδ) +
k−1∑
i=0

d(πniδ,kδ, π
n
(i+1)δ,kδ) + d(πnkδ, π

n
t ) (2.28)

Remark 2.5. Note that, in the definition (2.25), πnt = πnkδ for kδ ≤ t < (k + 1)δ.

Then the third of (2.28) vanishes for the filter studied by [22].

We start with the estimate of the first term on the right side of (2.28).

Lemma 2.2.4. There exists a constant K1 such that

Ed(πt, πkδ) ≤ K1

√
δ

Proof. Since πt satisfies Kushner-FKK equation, we have, for fi ∈ Ck+2
b (Rd) ∩

W k+2
2 (Rd),

Ii := 〈πt, fi〉−〈πkδ, fi〉 =

∫ t

kδ

〈πs, Lfi〉 ds+

∫ t

kδ

(〈πs,5∗fic+ fih
∗〉−〈πs, fi〉 〈πs, h∗〉)dνs,

Then

E(I2
i ) ≤ 3δE

∫ t

kδ

〈πs, Lfi〉2 ds+ 3E
∫ t

kδ

(〈πs,5∗fic+ fih
∗〉 − 〈πs, fi〉 〈πs, h∗〉)2ds

≤ K2δ.
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Thus

Ed(πt, πkδ) ≤
∞∑
i=0

2−i
√
K2δ = 2

√
K2δ. (2.29)

We now estimate the third term on the right side of (2.28).

Lemma 2.2.5. There exists a constant K3 such that

Ed(πnt , π
n
kδ) ≤ K3

√
δ

Proof. Let f ∈ Ck+2
b (Rd)∩W k+2

2 (Rd) with ‖f‖k+2,∞ ≤ 1. By the definition of πn, we

have

| 〈πnt − πnkδ, f〉 | =
∣∣∣ 1

mn
k

mnk∑
i=1

M̃(X i, t)f(X i
t)−

1

mn
k

mnk∑
i=1

f(X i
kδ)
∣∣∣

=
∣∣∣ 1

mn
k

mnk∑
i=1

(M̃(X i, t)f(X i
t)− f(X i

t) + f(X i
t)− f(X i

kδ))
∣∣∣

≤ 1

mn
k

mnk∑
i=1

|M̃(X i, t)f(X i
t)− f(X i

t)|+
1

mn
k

mnk∑
i=1

|f(X i
t)− f(X i

kδ)|

≤ K
1

mn
k

mnk∑
i=1

|M̃(X i, t)− 1|+K
1

mn
k

mnk∑
i=1

|X i
t −X i

kδ|

By the proof of Lemma 3.1 in [9], we have

M̃n(X i, t) = 1 +

∫ t

kδ

M̃n(X i, s)(h∗(X i
s)− h̄∗s)(dYs − h̄s)ds,

where h̄s = 1
mnk

∑mnk
i=1 M̃

n
j (X i, s)h(X i

s).
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Since h(X) ≤ K and
∑mnk

i=1 M̃(X i, s) = mn
k , we have |h̄s| ≤ K. Thus,

Ê|M̃n(X i, t)|2 ≤ 3 + 3Ê
∣∣∣ ∫ t

jδ

M̃n(X i, s)(h∗(X i
s)− h̄∗s)dYs

∣∣∣2
+3δÊ

∫ t

kδ

|M̃n(X i, s)(h∗(X i
s)− h̄∗s)h̄s|2ds

≤ 3 + 3Ê
∫ t

jδ

M̃n(X i, s)2(h∗(X i
s)− h̄∗s)2ds

+3δÊ
∫ t

kδ

|M̃n(X i, s)(h∗(X i
s)− h̄∗s)h̄s|2ds

≤ 3 +K

∫ t

jδ

ÊM̃n(X i, s)2dr.

By Gronwall’s inequality,

Ê|M̃n(X i, t)|2 ≤ K4.

Then

Ê|M̃n(X i, t)− 1|2 = Ê
∣∣∣ ∫ t

kδ

M̃n(X i, s)(h∗(X i
s)− h̄∗s)(dYs − h̄sds)

∣∣∣2
≤ 2Ê

∣∣∣ ∫ t

kδ

M̃n(X i, s)(h∗(X i
s)− h̄∗s)dYs

∣∣∣2
+2Ê

∣∣∣ ∫ t

kδ

M̃n(X i, s)(h∗(X i
s)− h̄∗s)h̄sds

∣∣∣2
≤ 2Ê

∫ t

kδ

M̃n(X i, s)2(h∗(X i
s)− h̄∗s)2ds

+2δÊ
∫ t

kδ

M̃n(X i, s)2(h∗(X i
s)− h̄∗s)2h̄2

sds

≤ K5δ. (2.30)

On the other hand,

Ê|X i
t −X i

kδ|2 = Ê|
∫ t

jδ

b̃(X i
s)ds+

∫ t

jδ

c(X i
s)dYs +

∫ t

jδ

σ(X i
s)dB

i
s|2

≤ 3δÊ
∫ t

jδ

|b̃(X i
s)|2ds+ 3Ê

∫ t

jδ

|c(X i
s)|2ds+ Ê

∫ t

jδ

|σ(X i
s)|2ds

≤ K6δ. (2.31)
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Therefore,

Ê 〈πnt − πnkδ, f〉
2 ≤ KÊ

1

mn
k

mnk∑
i=1

Ê(|M̃n(X i, t)− 1|2 + |X i
t −X i

kδ|2|Fkδ)

≤ K7δ.

Let

Ms,t ≡ exp
(∫ t

s

h∗(Xs)dYs −
1

2

∫ t

s

|h(Xs)|2ds
)
.

Then

ÊM2
s,t = Ê exp

(
2

∫ t

s

h∗(Xs)dYs −
∫ t

s

|h(Xs)|2ds
)

= Ê exp
(∫ t

s

2h∗(Xs)dYs −
1

2

∫ t

s

|2h(Xs)|2ds
)

exp
(∫ t

s

|2h(Xs)|2
)

≤ eK(t−s). (2.32)

By Cauchy-Schwarz inequality, we have

Ed(πnt , π
n
kδ) = Ê(d(πnt , π

n
kδ)Mkδ,t)

≤ (Êd(πnt , π
n
kδ)

2)1/2(ÊM2
kδ,t)

1/2

≤ (
∞∑
i=0

2−iÊ 〈πnt − πnkδ, fi〉
2)1/2(ÊM2

kδ,t)
1/2

≤ K3

√
δ.

To estimate d(πniδ,kδ, π
n
(i+1)δ,kδ) in (2.28), we will use the stability assumption. Note

that, πnjδ,kδ is the optimal filter at time kδ starting at time (j + 1)δ with measure

πnjδ,(j+1)δ. Similarly, πn(j+1)δ,kδ is the optimal filter at the same time but with initial

πn(j+1)δ at the initial time (j + 1)δ. For any j ∈ N, we have
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Lemma 2.2.6. There exists a constant K8 such that

Ed(πnjδ,(j+1)δ, π
n
(j+1)δ) ≤ K8δ

1/4

Proof. Note that πnjδ,(j+1)δ and πn(j+1)δ have the same initial distribution πnjδ at time

jδ. Let V n
jδ,(j+1)δ and V n

(j+1)δ be the unnormalized optimal filter and unnormalized

particle filter, respectively, with the same initial distribution πnjδ. Note that for φ

bounded by 1, we have

∣∣∣ 〈πnjδ,(j+1)δ − πn(j+1)δ, φ
〉 ∣∣∣ ≤

∣∣∣ 〈V n
jδ,(j+1)δ − V n

(j+1)δ, 1
〉 ∣∣∣〈

V n
jδ,(j+1)δ, 1

〉 +

∣∣∣ 〈V n
jδ,(j+1)δ − V n

(j+1)δ, φ
〉 ∣∣∣〈

V n
jδ,(j+1)δ, 1

〉
As

d log
〈
V n
jδ,t, 1

〉
=
〈
πnjδ,t, h

∗〉 dYt − 1

2
|
〈
πnjδ,t, h

∗〉 |2dt, jδ ≤ t ≤ (j + 1)δ

we have

〈
V n
jδ,(j+1)δ, 1

〉−1
=

〈
V n
jδ, 1

〉−1
exp

(
−
∫ (j+1)δ

jδ

〈
πnjδ,t, h

∗〉 dYt +
1

2

∫ (j+1)δ

jδ

|
〈
πnjδ,t, h

∗〉 |2dt)

Then

Ê
∣∣∣
〈
V n

(j+1)δ − V n
jδ,(j+1)δ, φ

〉
〈
V n
jδ,(j+1)δ, 1

〉 ∣∣∣
2

≤ Ê
∣∣∣
〈
V n

(j+1)δ − V n
jδ,(j+1)δ, φ

〉
〈
V n
jδ, 1

〉 ∣∣∣2Ê exp

(
−2

∫ (j+1)δ

jδ

〈πt, h∗〉 dYt +

∫ (j+1)δ

jδ

| 〈πt, h∗〉 |2dt

)

≤ KÊ
∣∣∣
〈
V n

(j+1)δ − V n
jδ,(j+1)δ, φ

〉
〈
V n
jδ, 1

〉 ∣∣∣2 (2.33)
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where f ∈ Ck+2
b (Rd) ∩W k+2

2 (Rd) is any test function. Now we show

Ê
∣∣∣
〈
V n

(j+1)δ − V n
jδ,(j+1)δ, φ

〉
〈
V n
jδ, 1

〉 ∣∣∣
2

≤ Kδ1/2. (2.34)

Then, by corollary 6.22 in [33], we get

〈
V n

(j+1)δ, φ
〉
−
〈
V n
jδ,(j+1)δ, φ

〉
〈
V n
jδ, 1

〉
=

〈
V n

(j+1)δ, ψ(j+1)δ

〉
−
〈
V n
jδ, ψjδ

〉〈
V n
jδ, 1

〉
=

〈
V n

(j+1)δ, ψ(j+1)δ

〉
− Ê

(〈
V n

(j+1)δ, ψ(j+1)δ

〉 ∣∣∣F(j+1)δ−

)
〈
V n
jδ, 1

〉
+
Ê
(〈

V n
(j+1)δ, ψ(j+1)δ

〉 ∣∣∣F(j+1)δ−

)
−
〈
V n
jδ, ψjδ

〉〈
V n
jδ, 1

〉 (2.35)

By the definition of V n, we have〈
V n

(j+1)δ, ψ(j+1)δ

〉
− Ê

(〈
V n

(j+1)δ, ψ(j+1)δ

〉 ∣∣∣F(j+1)δ−

)
〈
V n
jδ, 1

〉
=

1
n
ηj+1

∑mnj
i=1 ψ(X i

(j+1)δ)(ξ
i
j+1 − M̃n

j+1(X i))
1
n
ηjmn

j

=
ηj+1

ηj

1

mn
j

mnj∑
i=1

ψ(X i
(j+1)δ)(ξ

i
j+1 − M̃n

j+1(X i))

≡ J1.

Note that

γnj+1(X i) ≤ |M̃n
j+1(X i)− 1|.
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By (4.15), we have

Ê(γnj+1(X i)|Fjδ) ≤ E(|M̃n
j+1(X i)− 1||Fjδ)

≤ K9

√
δ.

It follows from the independent increment property of Y that

Ê(ξij − M̃n
j (X i)|Fjδ− ∨ Gt) = Ê(ξij − M̃n

j (X i)|Fjδ−) = 0.

Then

Ê(J2
1 ) = Ê

∣∣∣ηj+1

ηj

1

mn
j

mnj∑
i=1

ψ(X i
(j+1)δ)(ξ

i
j+1 − M̃n

j+1(X i))
∣∣∣2

= Ê

Ê

 1

mn
j

mnj∑
i=1

ψ(X i
(j+1)δ)(ξ

i
j+1 − M̃n

j+1(X i))

2

|F(j+1)δ− ∨ Gt

 (
ηj+1

ηj
)2


= Ê

1

(mn
j )2

mnj∑
i=1

ψ2(X i
(j+1)δ)γ

n
j+1(X i)(

ηj+1

ηj
)2

= Ê
1

(mn
j )2

mnj∑
i=1

Ê
(
ψ2(X i

(j+1)δ)γ
n
j+1(X i)(

ηj+1

ηj
)2|Fjδ

)
.

By Lemma (2.2.3) and note that mn
j ≥ 1, we can continue the above estimate with

Ê(J2
1 ) ≤ K ′′‖ψ(j+1)δ‖2

0,∞Ê
1

mn
j

√
δ

≤ K10

√
δ. (2.36)
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On the other hand,

Ê(
〈
V n

(j+1)δ, ψ(j+1)δ

〉
|F(j+1)δ−)−

〈
V n
jδ, ψjδ

〉〈
V n
jδ, 1

〉
=

1
n
ηj+1

∑mnj
i=1 ψ(X i

(j+1)δ)M̃
n
j+1(X i)− 1

n
ηj
∑mnj

i=1 ψ(X i
jδ)

1
n
ηjmn

j

=
1

mn
j

mnj∑
i=1

(
ψ(X i

(j+1)δ)M
n
j+1(X i)− ψ(X i

jδ)
)

=
1

mn
j

mnj∑
i=1

∫ (j+1)δ

jδ

Mn
j (X i, s)∇∗ψsσ(X i

s)dB
i
s

≡ J2.

Note that

Ê

(∫ (j+1)δ

jδ

Mn
j (X i, s)∇∗ψsσ(X i

s)dB
i
s

∣∣∣Fjδ) = 0

Thus, we have

Ê|J2|2 = Ê

 1

(mn
j )2

mnj∑
i=1

∫ (j+1)δ

jδ

Mn
j (X i, s)2|∇∗ψsσ(X i

s)|2ds


= Ê

 1

(mn
j )2

mnj∑
i=1

∫ (j+1)δ

jδ

Ê
(
Mn

j (X i, s)2|∇∗ψsσ(X i
s)|2ds|Fjδ ∨ F ijδ,(j+1)δ

)
= Ê

( 1

(mn
j )2

mnj∑
i=1

∫ (j+1)δ

jδ

Ê
(
Mn

j (X i, s)2|Fjδ ∨ F ijδ,(j+1)δ

)
Ê
(
|∇∗ψsσ(X i

s)|2|Fjδ ∨ F ijδ,(j+1)δ

)
ds
)

≤ K11δ, (2.37)

where the last inequality follows from 1
mnj
≤ 1 and the boundness of Ê(|∇∗ψs|2|Fjδ)

which is showed on page 146 in [33].

Combine(2.35), (2.36) and (2.37), we prove (4.37). By (4.37) and (4.37), we have
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Êd(πnjδ,(j+1)δ, π
n
(j+1)δ)

2 ≤ K12

√
δ.

Then by (4.17), we have

Ed(πnjδ,(j+1)δ, π
n
(j+1)δ) ≤ Ê(d(πnjδ,(j+1)δ, π

n
(j+1)δ)Mjδ,(j+1)δ)

≤ (Êd(πnjδ,(j+1)δ, π
n
(j+1)δ)

2)1/2(ÊMjδ,(j+1)δ)
2)1/2

≤ (2K12

√
δ)1/2eKδ

≤ K8δ
1/4.

In fact, we can prove a stronger result for total variation distance as following:

Lemma 2.2.7.

lim
δ→0

EdTV (πnjδ,(j+1)δ, π
n
(j+1)δ) = 0 (2.38)

Proof. For continuous f bounded by 1, we have

∣∣〈πnjδ,(j+1)δ − πn(j+1)δ, f
〉∣∣ ≤ ∣∣〈πnjδ,(j+1)δ, f

〉
−
〈
πnjδ, f

〉∣∣+
∣∣〈πnjδ, f〉− 〈πn(j+1)δ, f

〉∣∣

Similarly to lemma 2.2.7, by using Kushner-FKK equation, we have

Ê
∣∣〈πnjδ,(j+1)δ, f

〉
−
〈
πnjδ, f

〉∣∣ ≤ Kδ1/2

On the other hand,

Ê
∣∣〈πnjδ, f〉− 〈πn(j+1)δ, f

〉∣∣ ≤ Ê

∣∣∣〈V n
(j+1)δ − V n

jδ, f
〉∣∣∣〈

V n
jδ, 1

〉 + Ê

∣∣∣〈V n
(j+1)δ − V n

jδ, 1
〉∣∣∣〈

V n
jδ, 1

〉
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Now we show

Ê

∣∣∣〈V n
(j+1)δ − V n

jδ,(j+1)δ, f
〉∣∣∣〈

V n
jδ, 1

〉 →∞, asn→∞. (2.39)

By the definition of V n, we have

Ê

∣∣∣〈V n
(j+1)δ, f

〉
−
〈
V n
jδ, f

〉∣∣∣〈
V n
jδ, 1

〉
= Ê

∣∣∣ 1
n
ηj
∑mnj

i=1

(
f(X i

(j+1)δ)M
n
j+1(X i)− f(X i

jδ)
)∣∣∣

1
n
ηjmn

j

≤ Ê

 1

mn
j

mnj∑
i=1

(∣∣f(X i
(j+1)δ)M

n
j+1(X i)− f(X i

(j+1)δ)
∣∣+
∣∣f(X i

(j+1)δ)− f(X i
jδ)
∣∣)

= Ê

 1

mn
j

mnj∑
i=1

Ê
(∣∣f(X i

(j+1)δ)(M
n
j+1(X i)− 1)

∣∣+
∣∣f(X i

(j+1)δ)− f(X i
jδ)
∣∣ ∣∣∣Fjδ)


≤ Ê

 1

mn
j

mnj∑
i=1

Ê
(∣∣Mn

j+1(X i)− 1
∣∣ ∣∣∣Fjδ)+

1

mn
j

mnj∑
i=1

Ê
(∣∣f(X i

(j+1)δ)− f(X i
jδ)
∣∣ ∣∣∣Fjδ)


≤ e(δ),

where the last inequality is from Lemma 8.6 in [33], (2.21) and the continuity of f ,

and e(δ) approaches 0 as δ tends to 0.

Then by (4.17), we have

EdTV (πnjδ,(j+1)δ, π
n
(j+1)δ) ≤ Ê(dTV (πnjδ,(j+1)δ, π

n
(j+1)δ)Mjδ,(j+1)δ)

≤ (ÊdTV (πnjδ,(j+1)δ, π
n
(j+1)δ)

2)1/2(ÊMjδ,(j+1)δ)
2)1/2

≤ (K
√
δ + e(δ))1/2eKδ

Let δ tend to 0, we have (2.2.7).

36



By assumption 2.1.2 and lemma 2.2.7, choose large n such that K8δ
1/4 < ε and

when (k − (j + 1))δ > T , we have

Ed(πnjδ,kδ, π
n
(j+1)δ,kδ) ≤ EdTV (πnjδ,kδ, π

n
(j+1)δ,kδ)

≤ Cβ(k−j−1)δEdTV (πnjδ,(j+1)δ, π
n
(j+1)δ)

≤ K ′β(k−j−1)δ(K
√
δ + e(δ))1/2

Now we are ready to prove the main theorem.

Proof of Theorem 3.1. By lemma 2.2.6, We have

lim
n→∞

Ed(πnjδ,(j+1)δ, π
n
(j+1)δ) = lim

n→∞
K8n

α/2 = 0

For any t > 0, let k be such that kδ ≤ t < (k + 1)δ. Then

Ed(πt, π
n
t )

≤ Ed(πt, πkδ) + E
k−1∑
i=0

d(πniδ,kδ, π
n
(i+1)δ,kδ) + Ed(πnkδ, π

n
t )

≤ Ed(πt, πkδ) + E
k−1∑

i=k−j0+1

d(πniδ,kδ, π
n
(i+1)δ,kδ) + E

k−j0∑
i=0

d(πniδ,kδ, π
n
(i+1)δ,kδ)

+Ed(πnkδ, π
n
t )

≤ K1

√
δ + E

k−1∑
i=k−j0+1

d(πniδ,kδ, π
n
(i+1)δ,kδ) + E

∞∑
i=0

dTV (πniδ,kδ, π
n
(i+1)δ,kδ) +K3

√
δ

≤ K1

√
δ + E

k−1∑
i=k−j0+1

d(πniδ,kδ, π
n
(i+1)δ,kδ) +K2(K

√
δ + e(δ))1/2 +K3

√
δ (2.40)

where j0 is the smallest integer such that (k − (j + 1))δ > T , and the last inequality

follows
∑∞

i=0 β
i <∞.
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By Zakai’s equation, for any t > 0 and f ∈ Ck
b (Rd) ∪W k

2 (Rd), we have

|〈πt − π̄t, f〉| ≤
|〈πt − π̄t, f〉|
〈Vt, 1〉

+
|〈πt − π̄t, 1〉|
〈V, 1〉

≤

∣∣∣〈V0 − V̄0, f
〉

+
∫ t

0

〈
Vs − V̄s, Lf

〉
ds+

∫ t
0

〈
Vs − V̄s,∇∗f + fh∗

〉
dYs

∣∣∣
〈Vt, 1〉

+

∣∣∣〈V0 − V̄0, 1
〉

+
∫ t

0

〈
Vs − V̄s, h∗

〉
dYs

∣∣∣
〈Vt, 1〉

Then by Gronwall’s inequality, for any t bounded, we have

Ed(πt, π̄t) ≤ Kd(π0, π̄0) (2.41)

Therefore, by lemma (2.2.6), we get

E
k−1∑

i=k−j0+1

d(πniδ,kδ, π
n
(i+1)δ,kδ) ≤

k−1∑
i=k−j0+1

KEd(πniδ,(i+1)δ, π
n
(i+1)δ,(i+1)δ)

≤ K4δ
1/4 (2.42)

Therefore,

lim
n→∞

sup
t>0

Ed(πt, π
n
t ) ≤ lim

n→∞
((K1 +K3)δ1/2 +K2(K

√
δ + e(δ))1/2 +K4δ

1/4)

= lim
n→∞

((K1 +K3)n−α +K2(Kn−α + e(δ)) +K4n
−α

2 )

= 0.

We state the uniform convergence theorem for the branching particle filter in [22]

and give a sketch of the proof.

Theorem 2.2.2. Under assumption 2.1.1, 2.1.2 and 2.2.1, the branching particle

filter which is defined in [22] uniformly converges to the optimal filter in the following
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sense:

lim
n→∞

sup
t>0

Ed(πt, π
n
t ) = 0. (2.43)

The following lemma (see[22]) is needed in the proof. Let

Θs(x) = Ê(ψs(x)θ̃Yf (s)|Fs), ∀x ∈ Rd,

where

Fs = Gs ∨ FBs ,

and

θ̃Yf (s) = exp

(√
(−1)

∫ t

s

f ∗s dYs +
1

2

∫ t

s

|fs|2ds
)

Lemma 2.2.8. Let ψt be the solution of (2.24). Then for every t ≥ 0, we have

ψt(Xt)Mt − ψ0(Xs) =

∫ t

s

Mu∇∗ψuσ(Xu)dBu −
∫ t

s

MuΘ(Xu)(h(Xu)− h(Xs))
∗dYu

−
∫ t

s

Ms∇∗ψuc(Xu)(h(Xu)− h(Xs))
∗du,

where

Mt = exp

{
h∗(Xt)(Yt − Ys)−

1

2
|h(Xs)|2(t− s)

}
.

To prove Theorem 2.2.2, we use the similar idea to the proof of Theorem 4.3.1.

By Remark 2.3, we only need to estimate d(πnjδ,(j+1)δ, π
n
(j+1)δ). The proof follows the

same procedure. But to estimate J2, we have to do more work. So we only give the

proof for this part.
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Proof. By Lemma 3.1 in [22], J2 can be divided into three parts.

J2 =
1

mn
j

mnj∑
i=1

∫ (j+1)δ

jδ

Mn
j (X i, s)∇∗ψsσ(X i

s)dB
i
s

+
1

mn
j

mnj∑
i=1

∫ (j+1)δ

jδ

Mn
j (X i, s)c(X i

s)
(
h(X i

s)− h(X i
jδ)
)∗
ds

+
1

mn
j

mnj∑
i=1

∫ (j+1)δ

jδ

Mn
j (X i, s)Θ∗s(X

i, s)
(
h(X i

s)− h(X i
jδ)
)
dYs

≡ J21 + J22 + J23 (2.44)

Note that

Ê

 1

mn
j

mnj∑
i=1

∫ (j+1)δ

jδ

Mn
j (X i, s)∇∗ψsσ(X i

s)dB
i
s


= Ê

 1

mn
j

mnj∑
i=1

Ê(

∫ (j+1)δ

jδ

Mn
j (X i, s)∇∗ψsσ(X i

s)dB
i
s|Fjδ)


= 0

Thus

Ê(J21)2 = Ê

Ê((
1

mn
j

mnj∑
i=1

∫ (j+1)δ

jδ

Mn
j (X i, s)∇∗ψsσ(X i

s)dB
i
s)

2|Fjδ ∨ G(j+1)δ))


= Ê

1

(mn
j )2

mnj∑
i=1

∫ (j+1)δ

jδ

Mn
j (X i, s)2|∇∗ψsσ(X i

s)|2ds

≤ eK
2δÊ
(
δ

mn
j

‖∇∗ψs‖2‖σ‖2
0,∞

)
≤ K6δ (2.45)
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Note that h is bounded, we get

Ê(J22)2

= Ê

 1

mn
j

mnj∑
i=1

∫ (j+1)δ

jδ

Mn
j (X i, s)c(X i

s)
(
h(X i

s)− h(X i
jδ)
)∗
ds

2

= Ê

 1

(mn
j )2

Ê

 mnj∑
i=1

∫ (j+1)δ

jδ

Mn
j (X i, s)c(X i

s)
(
h(X i

s)− h(X i
jδ)
)∗
ds

2 ∣∣∣Fjδ


≤ Ê

 1

(mn
j )2

mn
j

mnj∑
i=1

∫ (j+1)δ

jδ

Mn
j (X i, s)2c(X i

s)
2
(
h∗(X i

s)− h∗(X i
jδ)
)2
ds


≤ K7δ

2 (2.46)

Since Θs(X
i, s) is bounded, by the similar argument to J22, we have

Ê(J23)2 ≤ K8δ
2 (2.47)

Combine (2.44), (2.45), (2.46) and (2.47), we get

Ê|J2|2 ≤ Kδ (2.48)
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Chapter 3

Stability of filtering with Poisson

observation

In this section, we study the stability of the filtering which is mentioned in section

1.3 and the exponential stability is derived.

3.1 Filtering model

Let’s recall the intrinsic interest rate process X(t) and observation process ~Y (t) in

the model. X(t) follows a diffusion process:

dX(t) = µ(X(t))dt+ σ(X(t))dB(t),
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and ~Y (t) is defined as following:

~Y (t) =



N1(
∫ t

0
λ1(X(s), s)ds)

N2(
∫ t

0
λ2(X(s), s)ds)

.

.

.

Nw(
∫ t

0
λw(X(s), s)ds)


. (3.1)

The following four mild assumptions are invoked.

Assumption 3.1.1. Nk’s are unit Poisson processes under the physical measure P.

Assumption 3.1.2. X,N1, N2, ..., Nw are independent under P .

Assumption 3.1.3. The intensity at price level k, λk(x, t) = a(x, t)p(yk|x), where

a(x, t) is the total trading intensity at time t with x = X(t) and p(yk|x) is the

transition probability from x to yk, the kth price level. Moreover, λk’s are increasing

in x and there exist two constants C1 and C2 such that C1 ≤ λk ≤ C2, k = 1, 2, ..., w.

Remark 3.1. Under this setup, X(t) becomes the signal process, which cannot be

observed directly, and ~Y (t) becomes the observation process. Hence (X, ~Y ) is framed

as filtering problem with counting process observations.

We assume that (X, ~Y ) is in a filtered complete probability space (Ω,F ,F,P)

where F := (Ft)0≤t≤∞ is a given filtration. There is a reference measure P̂ under

which, X and ~Y become independent, the probability distribution of X remains the

same and Y1, Y2, ..., Yn become unit Poisson processes. The Radon-Nikodym derivative

is:

M(t) =
dP
dP̂

∣∣∣
Ft

=
w∏
k=1

exp

{∫ t

0

log λk(X(s))dYk(s)−
∫ t

0

[λk(X(s))− 1]ds

}
(3.2)
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Note that M(t) satisfies the following SDE:

dM(t) =
w∑
k=1

(λk − 1)M(t−)d(Yk(t)− t). (3.3)

Let Gt = σ{~Y (s)|0 ≤ s ≤ t} be all the available information up to time t and let πt

be the conditional distribution of X(t) given Gt. Define

〈Vt, f〉 = Ê[f(X(t))M(t)|Gt] and 〈πt, f〉 = E[f(X(t))|G].

By Kallianpur-Striebel formula, the optimal filter in the sense of least mean square

error can be written as 〈πt, f〉 = 〈Vt, f〉 / 〈Vt, 1〉.

The following proposition is a theorem from [35] summarizing both filtering

equations.

Proposition 3.2. Suppose that (θ,X, ~Y ) satisfies assumptions 3.1.1, 3.1.2 and 3.1.3.

Then, Vt is the unique measure-valued solution of the following SDE, the unnormalized

filtering equation,

〈Vt, f〉 = 〈V0, f〉+

∫ s

0

〈Vt, Lf〉+
w∑
k=1

∫ t

0

〈Vs−, (apk − 1)f〉 d(Yk(s)− s), (3.4)

for t > 0 and f ∈ D(L), the domain of generator L, where a = a(X(t), t), is the

trading intensity, and pk = p(yk|x) is the transition probability from x to yk, the kth

price level.

πt is the unique measure valued solution of the SDE, the normalized filtering

equation,

〈πt, f〉 = 〈π0, f〉+

∫ t

0

[〈πs, Lf〉 − 〈πs, fa〉+ 〈πs, f〉 〈πs, a〉]ds

+
w∑
k=1

∫ t

0

[
〈πs−, fapk〉
〈πs−, apk〉

− 〈πs−, f〉
]
dYk(s) (3.5)
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When a(X(t), t) = a(t), the above equation is simplified as:

〈πt, f〉 = 〈π0, f〉+

∫ t

0

〈πs, Lf〉 ds+
w∑
k=1

∫ t

0

[
〈πs−, fapk〉
〈πs−, apk〉

− 〈πs−, f〉
]
dYk(s) (3.6)

3.2 Examples

In this section, we make an assumption for the signal process X(t). We give four

examples which satisfy this assumption.

Assumption 3.2.1. For any a, b and c > 0 and a large positive number x, X(t) is

an asymptotically stationary process with the following property:

P
(

inf
a≤s≤b

X(s) ≤ c
∣∣∣X(b) = x

)
≤ K(c)(b− a)βg(x), (3.7)

where K(c) is a positive constant depends on c and β > 0. g(·) is a real function with

limx→∞
g(x)
x

= 0.

The following examples are the diffusion processes which satisfy the above

assumption.

Example 1.

In finance, the Vasicek model (see [32]) is a mathematical model describing

the evolution of interest rates. Vasicek’s model was the first one to capture mean

reversion, an essential characteristic of the interest rate that sets it apart from other

financial prices. Thus, as opposed to stock prices for instance, interest rates cannot

rise indefinitely. This is because at very high levels they would hamper economic

activity, prompting a decrease in interest rates. Similarly, interest rates can not

decrease below 0. As a result, interest rates move in a limited range, showing a

tendency to revert to a long run value. The model specifies that the instantaneous

interest rate follows the stochastic differential equation:

dX(t) = θ(µ−X(t))dt+ σdB(t), (3.8)
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where B(t) is a Brownian motion and θ, µ and σ are parameters. The typical

parameters θ, µ, and σ can be quickly characterized as follows:

µ: long term mean level. All future trajectories of X will evolve around a mean

level µ in the long run;

θ: speed of reversion. θ characterizes the velocity at which such trajectories will

regroup around µ in time;

σ: instantaneous volatility, measures instant by instant the amplitude of

randomness entering the system. Higher σ implies more randomness.

The interest rate process is an Ornstein-Uhlenbeck process. Applying Itô formula

to function f(Xt, t) = Xte
θt, we get

df(X(t), t) = eθtθµdt+ σeθtdB(t).

Let x0 be the initial value of the process. Integrating the above equation from s to t,

we have

X(t)eθt = X(s)eθs + µ(eθt − eθs) +

∫ t

s

σeθudB(u).

Then we have the following estimate:

P
(

inf
a≤s≤b

X(s) ≤ c
∣∣∣X(b) = x

)
≤ K(c)(b− a)1/2e−K

′x2 , (3.9)

where K ′ is a constant.

The proof of above property is given in Appendix. Therefore, the process satisfies

the assumption 3.2.1.

Example 2.

In mathematical finance, the CoxIngersollRoss model or CIR model (see [4])

describes the evolution of interest rates. It is a type of ”one factor model” (short

rate model) as it describes interest rate movements as driven by only one source of
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market risk. The model can be used in the valuation of interest rate derivatives. It

was introduced in 1985 by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross

as an extension of the Vasicek model. The CIR model specifies that the instantaneous

interest rate follows the stochastic differential equation, also named the CIR process:

dX(t) = θ(µ−X(t))dt+ σ
√
X(t)dB(t), (3.10)

where B(t) is a standard Brownian motion and θ, µ and σ are the parameters. The

parameter θ corresponds to the speed of adjustment, µ to the mean and σ to volatility.

The drift factor, θ(µ − X(t)),is exactly the same as in the Vasicek model. It

ensures mean reversion of the interest rate towards the long run value µ, with speed

of adjustment governed by the strictly positive parameter θ. The standard deviation

factor, σ
√
X(t) , avoids the possibility of negative interest rates for all positive values

of θ and µ. An interest rate of zero is also precluded if the condition 2θµ ≥ σ2 is met.

More generally, when the rate is at a low level (close to zero), the standard deviation

also becomes close to zero, which dampens the effect of the random shock on the rate.

Consequently, when the rate gets close to zero, its evolution becomes dominated by

the drift factor, which pushes the rate upwards (towards equilibrium).

X(t) is an ergodic process, possesses a stationary distribution, which is a gamma.

The process satisfies the assumption 3.2.1 and the proof is given in Appendix. This

process is widely used in finance to model short term interest rate.

Example 3.

The Rendleman-Bartter model (see [31]) in finance is a short rate model describing

the evolution of interest rates. It is a “one factor model” as it describes interest rate

movements as driven by only one source of market risk. It can be used in the valuation

of interest rate derivatives. The model specifies that the instantaneous interest rate

follows a geometric Brownian motion:

dX(t) = θX(t)dt+ σX(t)dB(t), (3.11)
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where B(t) is a Wiener process modeling the random market risk factor. The drift

parameter, θ, represents a constant expected instantaneous rate of change in the

interest rate, while the standard deviation parameter, σ, determines the volatility of

the interest rate.

For any initial value x0, we apply itô formula to function f(X(t)) = logX(t)

d logX(t) =

(
θ − σ2

2

)
dt− σdB(t).

Integrating the above equation from s to t, we get:

X(t) = X(s) exp

{(
θ − σ2

2

)
t− σB(t)

}
. (3.12)

This is one of the early models of the short term interest rates, using the same

stochastic process as the one already used to describe the dynamics of the underlying

price in stock options. Its main disadvantage is that it does not capture the mean

reversion of interest rates (their tendency to revert toward some value or range of

values rather than wander without bounds in either direction). When θ < σ2

2
, X(t)

is asymptotically stationary and approaches 0 as t tends to ∞. This process satisfies

the assumption 3.2.1. The proof is given in Appendix. On the other hand, when

θ > σ2

2
, X(t) blows up as t tends to ∞. But the inequality in the assumption 3.2.1

still holds.

Example 4.

In this example, we consider more general diffusion processes which are defined

as following:

dX(t) = µ(X(t))dt+ σ(X(t))dB(t), (3.13)

where µ(·) and σ(·) are bounded.
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It can be shown that the process defined as above satisfies the assumption 3.2.1.

We give the proof in the Appendix.

3.3 Exponential stability

In this section, we state the stability theorem and give its proof.

Theorem 3.3.1. The optimal filter is stable in the following sense: for any 0 < α <

1, we have

lim sup
t→∞

1

tα
log dTV (πt, π̄t) < 0, (3.14)

where πt and π̄t are optimal filters with initials π0 and π̄0 respectively and dTV is the

total variation distance.

The idea of the proof is to use the truncated filter to approximate the optimal

filter. The interest rate process is truncated by a finite interval with length 2∆. The

stability of the truncated filter is derived by using Hilbert metric on the compact

space. Then we replace ∆ by ∆t which depends on time t. Choosing a proper ∆t,

the truncated filter could be a good approximation for optimal filter. The truncated

filter is defined as following:

Let ∆ > 0 be given. Define B(∆) = {x ∈ R : |x| ≤ ∆}. For δ > 0, let

n = [ t
δ
]. We divide the time line into small subintervals with the length δ. We define

I(i−1)δ,iδ(x, x
′; ~Y ) on the subinterval ((i− 1)δ, iδ) as following:

I(i−1)δ,iδ(x, x
′; ~Y ) := Ê

(
M(i−1)δ,iδ

∣∣∣∣G(i−1)δ,iδ, X((i− 1)δ) = x,X(iδ) = x′
)
,

where

M(i−1)δ,iδ =
w∏
k=1

exp

{∫ iδ

(i−1)δ

log λk(X(s))dYk(s)−
∫ iδ

(i−1)δ

[λk(X(s))− 1]ds

}
,
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and

G(i−1)δ,t = σ
(
~Yt − ~Y(i−1)δ : (i− 1)δ < t ≤ iδ

)
.

For µ ∈ P(R), we define Qi and Q∆
i , i = 1, ..., n on P(R):

〈Qi(µ), f〉 =

∫
Rd
∫
Rd f(x′)pδ(x, dx

′)I(i−1)δ,iδ(x, x
′; ~Y )µ(dx)∫

Rd
∫
Rd f(x′)pδ(x, dx′)I(i−1)δ,iδ(x, x′; ~Y )µ(dx)

and

〈
Q∆
i (µ), f

〉
=

∫
R

∫
R f(x′)pδ(x, dx

′)I∆
(i−1)δ,iδ(x, x

′; ~Y )µ(dx)∫
R

∫
R pδ(x, dx

′)I∆
(i−1)δ,iδ(x, x

′; ~Y )µ(dx)
, (3.15)

where I∆
(i−1)δ,iδ(x, x

′; ~Y ) = 1{x′∈B(∆)}I(i−1)δ,iδ(x, x
′; ~Y ). It’s easy to prove that πiδ =

Qi(π(i−1)δ) and by induction, we define π∆
iδ = Qi(π

∆
(i−1)δ). Let

〈
V ∆
t , f

〉
be the

unnormalized truncated filter.

We start with two truncated filters with different initial distributions.

Theorem 3.3.2. For ~Y ∈ C(R+,Rw) fixed and α ∈ (0, 1), we have

lim sup
t→∞

1

tα
log dTV (π∆t

t , π̄∆t
t ) < 0, (3.16)

where ∆t = K
√

log t and K is a constant.

To prove the theorem, we adapt the approach in [2] for the compact space case to

the current step. First, we introduce the Hilbert metric ρh onMF (R), whereMF (R)

is the collection of all finite Borel measures on R. We need the following definition:

Definition 3.3.1. i) For λ, µ ∈ MF (R), λ ≤ µ means that λ(A) ≤ µ(A) for all

A ∈ B(R).
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ii) Two measures λ, µ ∈MF (R) are comparable if there are two positive constants

K1 and K2 such that

K1λ ≤ µ ≤ K2λ.

Then,for λ, µ ∈MF (R), ρh is defined as

ρh(λ, µ) =


log sup{λ(A)/µ(A):A∈B(S),µ(A)>0}

inf{λ(A)/µ(A):A∈B(S),µ(A)>0} if λ, µ are comparable,

0 if λ = µ = 0,

∞ otherwise.

Note that for any positive constants K1 and K2, we have

ρh(K1λ,K2µ) = ρh(λ, µ).

Thus,

ρh(πt, π̄t) = ρh(Vt, V̄t), ∀t > 0.

The following lemma will be useful in the proof of the stability of truncated filter (see

lemma 10.31 on page 214 of [33]).

Lemma 3.3.1. Let T be a linear transformation on MF (R) which has the kernal

representation

〈T µ, f〉 =

∫
R

∫
R
G(x, x′)f(x′)µ(dx)λ(dx′),

where G(x,x’) is non-negative. Then T is a contraction under the Hilbert metric and

sup

{
ρh(T λ, T µ)

ρh(λ, µ)
: 0 < ρh(λ, µ) <∞

}
= tanh

H(T )

4
,
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where

H(T ) = log esssup
G(x, y)G(x′, y′)

G(x, y′)G(x′y)
,

with the convention 0/0 = 1 and 1/0 = ∞. The supremum above is strict over

x, x′ ∈ R, and is essential over y, y′ ∈ R with respect to λ.

The next lemma shows the relationship between total variation distance and

Hilbert metric.

Lemma 3.3.2. For any λ, µ ∈ P, we have

dTV (λ, µ) ≡ 2 sup
A∈B(R)

|λ(A)− µ(A)|

≤ 2

log 3
ρh(λ, µ). (3.17)

Proof. If λ and ν are not comparable, then ρh(λ, ν) =∞, and hence, equation (3.17)

clearly holds. Now, we suppose λ and ν are comparable.

let A ≡ {A ∈ B(R : λ(A) > µ(A)}. Then, for A ∈ A with µ(A) > 0, we have

0 ≤ λ(A)

µ(A)
− 1 =

λ(A)/µ(A)

λ(R)/µ(R)
− 1

≤ sup{λ(A)/µ(A) : A ∈ B(S), µ(A) > 0}
inf{λ(A)/µ(A) : A ∈ B(S), µ(A) > 0}

− 1

= eρh(λ,µ) − 1.

Hence

0 ≤ λ(A)− µ(A) ≤ µ(eρh(λ,µ) − 1). (3.18)

It’s clear that (3.18) holds even if µ(A) = 0 since λ(A) = 0 by the comparability.

By symmetry, for A ∈ A, we have

0 ≤ λ(Ac)− µ(Ac) ≤ λ(Ac)(eρh(λ,µ) − 1).
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Therefore,

dTV (λ, µ) = sup
A∈A

(λ(A)− µ(A) + µ(Ac)− λ(Ac))

≤ sup
A∈A

(µ(A) + λ(Ac))
(
eρh(λ,µ) − 1

)
≤ sup

A∈A
(λ(A) + λ(Ac))

(
eρh(λ,µ) − 1

)
= eρh(λ,µ) − 1.

Note that dTV (λ, µ) is bounded by 2. By the following inequality

2 ∧ (ex − 1) ≤ 2x

log 3
, ∀x ≥ 0

we have

dTV (λ, µ) ≤ 2 ∧ (eρh(λ,µ) − 1) ≤ 2ρh(λ, µ)

log 3
.

Now we are ready for the proof of the Theorem 3.3.2.

Proof. It is well known that the transition probability for the diffusion process X(t)

exists and satisfies

K1e
−K2∆2

t t
−1

t−
d
2 ≤ pt(x, x

′) ≤ K3t
− d

2 , (3.19)

where x, x′ ∈ B(∆t).
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Let p∆t

(i−1)δ,iδ(x, x
′) = p(i−1)δ,iδ(x, x

′)1{x′ ∈ B(∆t)}. By lemma 3.3.1 and lemma

3.3.2, we have

1

tα
log dTV (πt, π̄t)−

1

tα
log

2

log 3

≤ 1

tα
log ρh(V

∆t
nδ , V̄

∆t
nδ )

=
1

tα

n∑
i=1

log
ρh(V

∆t
iδ , V̄

∆t
iδ )

ρh(V
∆t

(i−1)δ, V̄
∆t

(i−1)δ)
+

1

tα
log ρh(π0, π̄0)

≤ δ−1t1−α
1

n

n∑
i=1

log tanh(4−1H∆t

(i−1)δ,iδ) +
1

tα
log ρh(π0, π̄0), (3.20)

where

H∆t

(i−1)δ,iδ = log esssup
p∆t

(i−1)δ,iδ(x, z)p
∆t

(i−1)δ,iδ(x
′, z′)

p∆t

(i−1)δ,iδ(x, z
′)p∆t

(i−1)δ,iδ(x
′, z)

+ log esssup
I∆t

(i−1)δ,iδ(x, z;
~Y )I∆t

(i−1)δ,iδ(x
′, z′; ~Y )

I∆t

(i−1)δ,iδ(x, z
′; ~Y )I∆t

(i−1)δ,iδ(x
′, z; ~Y )

= log esssup
p∆t

(i−1)δ,iδ(x, z)p
∆t

(i−1)δ,iδ(x
′, z′)

p∆t

(i−1)δ,iδ(x, z
′)p∆t

(i−1)δ,iδ(x
′, z)

+ log esssup
I(i−1)δ,iδ(x, z; ~Y )I(i−1)δ,iδ(x

′, z′; ~Y )

I(i−1)δ,iδ(x, z′; ~Y )I(i−1)δ,iδ(x′, z; ~Y )
.

Let FX,~Yi−1,i = Gδ ∨ {ω ∈ Ω : X(iδ) = x′, X((i− 1)δ) = x}.

I(i−1)δ,iδ(x, x
′; ~Y )

= Ê
(
M(i−1)δ,iδ|FX,

~Y
i−1,i

)
≤ Ê

(
w∏
k=1

exp(logC2 (Yk(iδ)− Yk((i− 1)δ))− (C1 − 1)δ)|FX,~Yi−1,i

)

= exp

(
logC2

w∑
k=1

(Yk(iδ)− Yk((i− 1)δ))− w(C1 − 1)δ

)
≤ exp

(
2w logC2‖~Y iδ

(i−1)δ‖∞ − w(C1 − 1)δ
)
, (3.21)
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where ‖~Y iδ
(i−1)δ‖∞ = max{‖[Yk]iδ(i−1)δ‖∞ : 1 ≤ k ≤ w}.

Let K4(~Y , δ) = max{w logC1‖~Y iδ
(i−1)δ‖∞ − w(C2 − 1)δ : 1 ≤ i ≤ n}, then

I(i−1)δ,iδ(x, x
′; ~Y ) ≤ exp(K4(~Y , δ)), (3.22)

Similarly, there exists K5(~Y , δ) such that

exp(K5(~Y , δ)) ≤ I(i−1)δ,iδ(x, x
′; ~Y ). (3.23)

Therefore,

log esssup
I∆t

(i−1)δ,iδ(x, z;
~Y )I∆t

(i−1)δ,iδ(x
′, z′; ~Y )

I∆t

(i−1)δ,iδ(x, z
′; ~Y )I∆t

(i−1)δ,iδ(x
′, z; ~Y )

≤ K4(~Y , δ)2K5(~Y , δ)2. (3.24)

On the other hand, by (3.19), when x, x′, z, z′ ∈ B(∆t) we have

log esssup
p∆t
δ (x, z)p∆t

δ (x′, z′)

p∆t
δ (x, z′)p∆t

δ (x′, z)
≤ log

K3t
− d

2K3t
− d

2

K1e−K2∆2
t t
−1t−

d
2K1e−K2∆2

t t
−1t−

d
2

≤ log(K−2
1 K2

3 exp(2K2∆2
t δ
−1)). (3.25)

Let K6(~Y , δ,∆t) = log(K−2
1 K2

3 exp(2K2∆2
t δ
−1)) + K4(~Y , δ)2K5(~Y , δ)2, by the defini-

tion of H∆t

(i−1)δ,iδ, we have

H∆t

(i−1)δ,iδ ≤ K6(~Y , δ,∆t).

Note that

tanhx = 1− 2

e2x + 1
,
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then

tanh(4−1H∆t

(i−1)δ,iδ)

≤ 1− 2

exp{2 · 4−1K6(~Y , δ,∆t) + 1}

= 1− 2

exp{2−1 log(K−2
1 K2

3 exp(2K2∆2
t δ
−1)) + 2K4(~Y , δ)2K5(~Y , δ)2}+ 1

= 1− 2

K7 exp{K8∆2
t}+ 1

, (3.26)

where K7 = (K−2
1 K2

3)2−1
exp

{
2
(
K4(~Y , δ)2K5(~Y , δ)2

)}
and K8 = K2δ

−1.

Combining (3.20) and (3.26), we have

1

tα
log dTV (π∆t

t , π̄∆t
t )− 1

tα
log

2

log 3

≤ δ−1t1−α
1

n

n∑
i=1

log tanh(4−1H∆t

(i−1)δ,iδ) +
1

tα
log ρh(π0, π̄0)

≤ δ−1 log

(
1− 2

exp(2−1K6(~Y , δ,∆t)) + 1

)t1−α

+
1

tα
log ρh(π0, π̄0)

≤ δ−1 log

(
1− 2

K7 exp{K8∆2
t}+ 1

)t1−α
+

1

tα
log ρh(π0, π̄0) (3.27)

Let ∆2
t = K9 log t, where K9 = 1−α

K8
. Then

lim
t→∞

t1−α

K7 exp{K8∆2
t}+ 1

=
1

K7

.

Take t→∞ on (3.27), we have

lim
t→∞

(
1

tα
log dTV (π∆t

t , π̄∆t
t )− 1

tα
log

2

log 3

)
≤ −δ−1K−1

7 .

This implies that

lim
t→∞

1

tα
log dTV (π∆t

t , π̄∆t
t ) < 0
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Figure 3.3 The exact filter process and approximations base on truncation.

Then we estimate the approximation of truncated filter for the optimal filter with same

initial distribution. Denote by π∆t
0,0 the initial distribution π0. For any µ ∈ MF (R),

let Qi,j = Qj (Qj−1 (· · · (Qi+1(µ)))) and Q∆t
j,i (µ) = Q∆t

j

(
Q∆t
j−1

(
· · ·
(
Q∆t
i+1(µ)

)))
. Then,

we define

π∆t
j,j ≡ Qi,j(π

∆t
i,i )

= Qj

(
Qj−1

(
· · ·
(
Qi+1(π∆t

i,i )
)))

,

and

π∆t
j,i ≡ Q∆t

j,i (π
∆t
i,i )

= Q∆t
j

(
Q∆t
j−1

(
· · ·
(
Q∆t
i+1(π∆t

i,i )
)))

,

where i < j ≤ n.

For any t ∈ [nδ, (n+ 1)δ), we have

dTV (πt, π
∆t
t ) ≤

n∑
i=0

dTV (π∆t
t,i−1, π

∆t
t,i ) (3.28)
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Note that

π∆t
t,i−1 = Q∆t

i+1,t(π
∆t
i,i−1),

and

π∆t
t,i−1 = Q∆t

i+1,t(π
∆t
i,i ). (3.29)

So π∆t
t,i−1 and π∆t

t,i−1 are two truncated filters with different initial distributions π∆t
i,i−1

and π∆t
i,i respectively. Then by the proof of stability of truncated filter, we have

dTV (π∆t
t,i−1, π

∆t
t,i ) ≤ K1e

−K2(t−iδ)αdTV (π∆t
i,i−1, π

∆t
i,i ).

Therefore, we need to estimate dTV (π∆t
i,i−1, π

∆t
i,i ).

Theorem 3.3.3.

lim
t→∞

1

t
log sup

i
dTV (π∆t

i,i−1, π
∆t
i,i ) < 0. (3.30)

Proof. For any function f bounded by 1, we have

∣∣〈π∆t
i,i−1, f

〉
−
〈
π∆t
i,i , f

〉∣∣
≤

∣∣∣ 〈V ∆t
i,i−1, f

〉
−
〈
V ∆t
i,i , f

〉 ∣∣∣〈
V ∆t
i,i , 1

〉 +

∣∣∣ 〈V ∆t
i,i−1, 1

〉
−
〈
V ∆t
i,i , 1

〉 ∣∣∣〈
V ∆t
i,i , 1

〉
=

∣∣∣ ∫R ∫R f(xi)I(i−1)δ,iδ(xi−1, xi; ~Y )1xi /∈B(∆t)pδ(xi−1, dxi)πi−1(dxi−1)
∣∣∣∫

R

∫
R I(i−1)δ,iδ(xi−1, xi; ~Y )pδ(xi−1, dxi)πi−1(dx)

+

∣∣∣ ∫R ∫R I(i−1)δ,iδ(xi−1, xi; ~Y )1xi /∈B(∆t)pδ(xi−1, dxi)πi−1(dxi−1)
∣∣∣∫

R

∫
R I(i−1)δ,iδ(xi−1, xi; ~Y )pδ(xi−1, dxi)πi−1(dx)

≤
2
∫
R

∫
R I(i−1)δ,iδ(xi−1, xi; ~Y )1xi /∈B(∆t)pδ(xi−1, dxi)πi−1(dxi−1)∫

R

∫
R I(i−1)δ,iδ(xi−1, xi; ~Y )pδ(xi−1, dxi)πi−1(dx)

(3.31)
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let M i(δ, ~Y ) = 1
w

∑w
k=1 |Yk(iδ)−Yk((i−1)δ)−δ| and gk(x) := λk(x)−1−log λk(x), k =

1, 2, ..., w, we have

I(i−1)δ,iδ(xi−1, xi; ~Y )

= Ê
(
M(i−1)δ,iδ

∣∣∣FX,~Yi−1,i

)
= Ê

( w∏
k=1

exp

{∫ iδ

(i−1)δ

log λk(X(s))d(Yk(s)− s)
}
·

exp

{
−
∫ iδ

(i−1)δ

(λk(X(s))− 1− log λk(X(s)))ds

} ∣∣∣FX,~Yi−1,i

)
≤ exp

{
logC2

w∑
k=1

|Yk(iδ)− Yk((i− 1)δ)− δ|

}
·

Ê

(
w∏
k=1

exp

{
−
∫ iδ

(i−1)δ

gk(x)ds

} ∣∣∣FX,~Yi−1,i

)
≡ exp{w logC2M

i(δ, ~Y )} ·

Ê

(
w∏
k=1

exp

{
−
∫ iδ

(i−1)δ

gk(x)ds

} ∣∣∣FX,~Yi−1,i

)
. (3.32)

Let Ak = {ω ∈ Ω| inf(i−1)δ≤s≤iδX(s) ≤ λ−1
k (1 + e∆2

t )}, k = 1, 2, ..., w. It’s easy

to check that gk(x) ≥ 0 for all x and k and the equality can be reached only when

λk(x) = 1. By the monotonicity assumption on λk’s, we have

Ê

(
w∏
k=1

exp

{
−
∫ iδ

(i−1)δ

gk(x)ds

} ∣∣∣FX,~Yi−1,i

)

≤ Ê

(
exp

{
−

w∑
k=1

∫ iδ

(i−1)δ

gk(X(s))ds

}
w∏
k=1

1Ack

∣∣∣FX,~Yi−1,i

)

+Ê

(
exp

{
−

w∑
k=1

∫ iδ

(i−1)δ

gk(X(s))ds

}
w∑
k=1

1Ak

∣∣∣FX,~Yi−1,i

)
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≤ exp{−
w∑
k=1

(1 + e∆2
t − 1− log(1 + e∆2

t ))δ}

+
w∑
k=1

Ê
(
1Ak

∣∣∣X(iδ) = xi, X((i− 1)δ) = xi−1

)
= exp{−wδ(e∆2

t − log(1 + e∆2
t ))}+

w∑
k=1

Ê
(
1Ak

∣∣∣X(iδ) = xi, X((i− 1)δ) = xi−1

)
≡ U i

1 + U i
2 (3.33)

Therefore, we have

I(i−1)δ,iδ(xi−1, xi; ~Y ) ≤ exp
{
w logC2M

i(δ, ~Y )
}
· (U i

1 + U i
2)

Let δn ↓ (i − 1)δ and F k
t = 1{inft≤s≤iδX(s) ≤ λ−1

k (1 + e∆2
t )}, by Fatou’s lemma, we

get

U i
2 = Ê

(
F k

(i−1)δ

∣∣∣X(iδ) = xi, X((i− 1)δ) = xi−1

)
≤ lim

n→∞
Ê
(
F k
δn

∣∣∣X(iδ) = xi, X((i− 1)δ) = xi−1

)
(3.34)

For any FXδin,iδ ≡ σ{Xs, δ
i
n ≤ s ≤ iδ}-measurable random variable Z and Borel

measurable function φ, it follows from the Markov property of X(t) that

∫
R
Ê(Z|X((i− 1)δ) = x,X(iδ) = x′)pδ(x, x

′)φ(x)dx

= Ê(Ê(Z|X(iδ), X(iδ) = x′)φ(Xiδ)|X(iδ) = x′)

= Ê(Zφ(Xiδ)X(iδ) = x′)

= Ê(ZÊ(φ(Xiδ)|FXδn)|X(iδ) = x′)

= Ê
(
Z

∫
R
pδin−(i−1)δ(x,X(δin))φ(x)dx|X(iδ) = x′

)
=

∫
R
Ê
(
Zpδin−(i−1)δ(x,X(δin))|X(iδ) = x′

)
φ(x)dx
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Thus,

Ê
(
F k
δn

∣∣∣X(iδ) = xi, X((i− 1)δ) = xi−1

)
pδ(x(i−1), xi)

= Ê
(
F k
δnpδin−(i−1)δ(xi−1, X(δin))

∣∣∣X(iδ) = xi

)
.

Let bn−1(xi−1, xi) = Ê
(
F k
δn−1

pδin−(i−1)δ(xi−1, X(δin))
∣∣∣X(iδ) = xi

)
, we have

|bn(xi−1, xi)− bn−1(xi−1, xi)|

≤ Ê
(
|F k
δn − F

k
δn−1
|pδin−(i−1)δ(xi−1, X(δin))

∣∣∣X(iδ) = xi

)
≤

{
Ê
(
|F k
δn − F

k
δn−1
|2
∣∣∣X(iδ) = xi

)}1/2 {
Ê
(
pδin−(i−1)δ(xi−1, X(δin))2

∣∣∣X(iδ) = xi

)}1/2

≡ Ri
1R

i
2. (3.35)

By (3.19), we have

Ri
2 =

{∫
pδin−(i−1)δ(xi−1, z)

2pδn(z, xi)dz

}1/2

≤ K3(δin − (i− 1)δ)−1/2

{∫
pδin−(i−1)δ(xi−1, z)pδn(z, xi)dz

}1/2

≤ K3(δin − (i− 1)δ)−1/2pδ(xi−1, xi)
1/2. (3.36)

By the definition of F k
δn

and assumption 3.2.1, we have

Ri
11{xi > ∆t}

=

{
Ê

(
1{ inf

δin≤s≤δin−1

X(s) ≤ λ−1
k (1 + e∆2

t )}
∣∣∣X(iδ) = xi

)}1/2

1{xi > ∆t}

≤ K10(δin−1 − δin)βg(∆2
t )1{xi > ∆t}, (3.37)

where the last inequality is from the assumption 3.2.1.
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Choosing δn = (i− 1)δ + 2−nδ and combining estimates (3.38), (3.36) and (3.37),

we get

|bn(xi−1, xi)− bn−1(xi−1, xi)|1{xi > ∆t}

≤ K11(δin − (i− 1)δ)−1/2pδ(xi−1, xi)
1/2(δn−1 − δn)βg(∆2

t )1{xi > ∆t}

≤ K12pδ(xi−1, xi)
1/22−nβg(∆2

t )1{xi > ∆t}

Note that, when xi > ∆, we have xi > λ−1
k (1+e∆2

t ) by the boundness of λk. Therefore,

b0(xi−1, xi)1{xi > ∆t}

= Ê
(
F k
iδpiδ−δ1(Xiδ, xi)

∣∣∣X(iδ) = xi

)
1{xi > ∆t}

= Ê
(

1{xi ≤ λ−1
k (1 + e∆2

t )}piδ−δ1(Xδ0 , xi)
∣∣∣X(iδ) = xi

)
1{xi > ∆t}

= 0.

Therefore,

bn(xi−1, xi)1{xi > ∆t} ≤ K13pδ(xi−1, xi)
1/2g(∆2

t ) (3.38)

By (3.34) and (3.38), we have

U i
21{xi > ∆t} ≤ K13pδ(xi−1, xi)

1/2g(∆2
t ). (3.39)

Combine (3.32), (3.33) and (3.39), we have

I(i−1)δ,iδ(xi−1, xi; ~Y )1{xi > ∆t}pδ(xi−1, xi)

≤
{
w logC2M

i(δ, ~Y )
}
· (U i

1 + U i
2)1{xi > ∆}pδ(xi−1, xi)

≤
{
w logC2M

i(δ, ~Y )
}(

pδ(xi−1, xi) exp{−wδ(e∆2
t − log(1 + e∆2

t ))}

+K13pδ(xi−1, xi)
1/2g(∆2

t )
)

≤
{
w logC2M

i(δ, ~Y )
}
pδ(xi−1, xi)

1/2K14(∆t), (3.40)
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where K14(∆t) = exp{−wδ(e∆2
t − log(1 + e∆2

t ))}+K13g(∆2
t ).

As ∆2
t = K9 log t,

lim
t→∞

1

t
log exp{−wδ(e∆2

t − log(1 + e∆2
t )} < 0,

and

lim
t→∞

1

t
log g(∆2

t ) < 0.

Therefore

lim
t→∞

1

t
logK14(∆t) < 0. (3.41)

On the other hand,we have

I(i−1)δ,iδ(xi−1, xi; ~Y )

= Ê

(
exp

{
w∑
k=1

(∫ iδ

(i−1)δ

log λk(X(s))dYk(s)−
∫ iδ

(i−1)δ

(λk(X(s))− 1) ds

)} ∣∣∣FX,~Yi−1,i

)

≥ Ê

(
exp

{
w∑
k=1

(logC1(Yk(iδ)− Yk((i− 1)δ)− (C2 − 1)δ)

}∣∣∣Giδ(i−1)δ

)
≥ K(~Y iδ

(i−1)δ), (3.42)

where K(~Y iδ
(i−1)δ) depends on Yk(iδ)− Yk((i− 1)δ), 1 ≤ k ≤ w.

Note that
∫
R

∫
R pδ(xi−1, xi)

1/2dxiπi−1(dxi−1) < ∞. Combining (3.31), (3.40) and

(4.31), we get

∣∣〈π∆t
i,i−1, f

〉
−
〈
π∆t
i,i , f

〉∣∣
≤

2
∫
R

∫
R I(i−1)δ,iδ(xi−1, xi; ~Y )1xi /∈B(∆t)pδ(xi−1, dxi)πi−1(dxi−1)∫

R

∫
R I(i−1)δ,iδ(xi−1, xi; ~Y )pδ(xi−1, dxi)πi−1(dx)

≤
2
{
w logC2M

i(δ, ~Y )
}
K14(∆t)

∫
R

∫
R pδ(xi−1, xi)

1/2dxiπi−1(dxi−1)

K(~Y iδ
(i−1)δ)

. (3.43)
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Thus, by (3.41), we can prove (3.30).

Similarly, we can prove

lim
t→∞

1

t
log dTV (π∆t

t,t , π
∆tnδ, t) < 0. (3.44)

Combining (3.28), (3.29), (3.30) and (4.36), we have

lim
t→∞

1

t
log dTV (πt, π

∆t
t ) < 0. (3.45)

Now, we are ready to prove the main theorem.

Proof. By triangle inequality, we have

dTV (πt, π̄t) ≤ dTV (πt, π
∆t
t ) + dTV (π∆t

t , π̄∆t
t ) + dTV (π̄t, π̄

∆t
t ) (3.46)

Combining (3.46), (3.3.2) and (3.45), we have

lim
t→∞

1

t
log dTV (πt, π̄t) < 0. (3.47)
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Chapter 4

Numerical method for filtering

model with Poisson observation

4.1 Branching particle system

In [34], a branching particle filter is studied as a approximation of the optimal filter

mentioned in previous section. In this section, we introduce a branching particle

system without using the integration in the weight of the particles.

We proceed to defining the branching particle system. Initially, there are n

particles of weight 1 each at locations xni , i = 1, 2, ..., n, satisfying the following

condition:

Assumption 4.1.1. The initial positions {xni : i = 1, 2, ..., n} of the particles are

i.i.d. random vectors in Rd with the common distribution π0 ∈ P(Rd).

Let δ = δn = n−2α, 0 < α < 1. For j = 0, 1, 2, ..., there are mn
j number of particles

alive at time t = jδ. Note that mn
0 = n.

During the time interval (jδ, (j+1)δ), the particles move according to the following

equations: For i = 1, 2, ...,mn
j ,

X i(t) = X i(jδ) + µ(X i(jδ))(t− jδ) + σ(X i(jδ))(Bi(t)−Bi(jδ))
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where {Bi, i = 1, 2, ..., n} are independent standard Brownian motions.

At the end of the interval, the ith particle (i = 1, 2, ...,mn
j ) branches (independent

of others) into a random number ξij+1 of offsprings such that the conditional

expectation and the conditional variance given the information prior to the branching

satisfy

Ê(ξij+1|F(j+1)δ−) = M̃n
j+1(X i),

and

V arP̂ (ξij+1|F(j+1)δ−) = γnj+1(X i),

where γnj+1(X i) is arbitrary,

M̃n
j+1(X i) =

Mn
j+1(X i)

1
mnj

∑mnj
l=1 M

n
j+1(X l)

and

Mn
j+1(X i) =

w∏
k=1

exp{log apk(X
i(jδ))(Yk(j + 1)δ)− Yk(jδ))−

(
apk(X

i(jδ))− 1
)
δ}(4.1)

To minimize γnj+1(X i), we take

ξij+1 =

[M̃n
j+1(X i)] with probability 1− {M̃n

j+1(X i)},

[M̃n
j+1(X i)] + 1 with probability {M̃n

j+1(X i)}

where {x} = x − [x] is the fraction of x, and [x] is the largest integer that is not

greater that x. In this case, we have

γnj+1(X i) = {M̃n
j+1(X i)}(1− {M̃n

j+1(X i)}).

Now we define the approximate filter as follows:
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πnt =
1

mn
j

mnj∑
i=1

M̃n
j+1(X i, t)δXi

t
, jδ ≤ t < (j + 1)δ,

where

Mn
j (X i, t) =

w∏
k=1

exp{log apk(X
i(jδ))(Yk(t)− Yk(jδ))− [apk(X

i(jδ))− 1](t− jδ)}(4.2)

and

M̃n
j (X i, s) =

Mn
j (X i, s)

1
mnj

∑mnj
l=1(X l, s)

Namely, the ith particle has a time-dependent weight M̃n
j (X i, t). At the end of the

interval, i.e. t = (j + 1)δ, this particle dies and gives birth to a random number

of offsprings, whose conditional expectation is equal to the pre-death weight of the

particle. The new particles start from their mother’s position with weight 1 each.

The process πnt is called the hybrid filter since it involves a branching particle

system and the empirical measure of these weighted particles.

To show the uniform convergence, we also define the approximation for the

unnormalized filter Vt as following: For kδ ≤ t < (k + 1)δ,

V n
t =

1

n
ηnk

mnk∑
i=1

Mn
k+1(X i, t)δXi

t
,

where

ηnk = Πk
j=1

1

mn
j−1

mnj−1∑
l=1

Mn
j (X l).

We derive some estimates for the branching particle system introduced above in the

following lemmas.
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Lemma 4.1.1. There exists constant K such that for any i = 1, ...,mn
j and j is

bounded, we have

Ê
(
Mn

j (X i, t)2
∣∣∣Fjδ) ≤ eK

2δ, (4.3)

and

Ê
(
|Mn

j (X i, t)− 1|2
∣∣∣Fjδ) ≤ Kδ (4.4)

Proof. It’s easy to show (4.3) by (4.1). Note that Mn
j (X i, t) satisfies the following

SDE:

dMn
j (X i, t) =

w∑
k=1

[apk(X
i(t))− 1]Mn

j (X i, t)dỸk(t),

where Ỹk(t) = Yk(t)− t for k = 1, ..., w. Thus,

Ê
(
|Mn

j (X i, t)− 1|2
∣∣∣Fjδ) = Ê

∫ t

jδ

∣∣∣∣∣
w∑
k=1

[apk(X
i(s))− 1]Mn

j (X i, s)

∣∣∣∣∣
2

ds


≤ (C2 − 1)2eKδδ

The following lemma is proved in [34]

Lemma 4.1.2. For any finite j, we have

Ê
(
mn
j (ηnj )2

)
≤ Kn (4.5)
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4.2 Uniform convergence in finite time interval

In this section, we consider the uniform convergence of the branching particle filter

over finite time interval [0, S]. We consider the backward SPDE:

dψs = −Lψsds−
∑w

k=1(apk − 1)ψs+d̂(Y k(s)− s), 0 ≤ s ≤ t

ψt = φ

(4.6)

where d̂ denotes the backward Itô integral and φ is a bounded function.

Let fk, k = 1, 2, ..., w and g be bounded functions on [0, t], for r ∈ [0, t], we define

θ
~Y
f (r) =

w∏
k=1

exp

{√
−1

∫ r

0

log fk(s−)dYk(s)−
∫ r

0

(fk(s)− 1) ds

}

and

θBg (r) = exp

{√
−1

∫ r

0

gsdB(s) +
1

2

∫ r

0

g2
sds

}

The following lemma plays an important role in the proof of main theory.

Lemma 4.2.1. Let Mt = exp {
∑w

k=1 (log apk(X(0))(Yk(t)− Yk(0))− (apk(X(0))− 1)t)}

and Ỹk(t) = Yk(t)− t, k = 1, 2, ..., w. Then almost surely, we have

ψt(X(t)))Mt − ψ0(X(0)) =

∫ t

0

Msψ
′
sσ(X(s))dB(s) (4.7)

+

∫ t

0

MsΘs(X(s))
w∑
k=1

(apk(X(0))− apk(X(s)))dỸk(s),

where

Θr = E
(
ψrθ̃f (r)|F

~Y
r ∧ FBr

)
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with

θ̃f (r) = θ
~Y
f (t)/θ

~Y
t (r) =

w∏
k=1

exp

{√
−1

∫ t

r

log fk(s−)dYk(s)−
∫ t

r

(fk(s)− 1) ds

}
.

Proof. By the proof of lemma 4.2 in [34], we have the followings:

dΘr(X(r)) = −
√

1

(
w∑
k=1

(fk(r)− 1)(apk(X(r))− 1)Θr(X(r))

)
dr + Θ′rσ(X(r))dB(r),

dMr =
w∑
k=1

[apk(X(r))− 1]MrdỸk(r),

dθ
~Y
f (r) =

√
−1θ

~Y
f (r−)

w∑
k=1

(fk(r)− 1) dỸk(r),

and

dθBg (r) =
√
−1θBg (r)grdB(r).

Apply Itô’s formula to the four equations above, we have

d(Θr(X(r))Mrθ
~Y
f (r)θBg (r))

= −
√

1

(
w∑
k=1

(fk(r)− 1)(apk(X(r))− 1)Θr(X(r))

)
Mrθ

~Y
f (r)θBg (r)dr

+Θ′rσ(X(r))Mrθ
~Y
f (r)θBg (r)dB(r) +

w∑
k=1

[apk(X(r))− 1]ΘrMrθ
~Y
f (r)θBg (r)dỸk(r)

+
√
−1θ

~Y
f (r−)

w∑
k=1

(fk(r)− 1) ΘrMrθ
B
g (r)dỸk(r)

70



+
√
−1Θr(X(r))Mrθ

~Y
f (r)θBg (r)grdB(r) + Θ′rσ(X(r))

√
−1θBg (r)grMrθ

~Y
f dr

+
w∑
k=1

[apk(X(r))− 1]Mr

√
−1θ

~Y
f (r−) (fk(r)− 1) Θr(X(r))θBg (r)dr

= Θ′rσ(X(r))
√
−1θBg (r)grMrθ

~Y
f dr

+
√
−1

w∑
k=1

(apk(X(0))− apk(X(r))) (fk(r)− 1) Θr(X(r))Mrθ
~Y
f (r)θBg (r)dr

+d(mart.)

Note that for r > 0,

E
(
ψr(X(r))Mrθ

~Y
f (t)θBg (t)|F ~Y

r ∧ FBr
)

= Θr(X(r))Mrθ
~Y
f (r)θBg (r).

Let QΘ,M
k (t) = (apk(X(0))− apk(X(t))) Θt(X(t))Mt. Combining above two equa-

tions, we get

E
(

(ψt(X(t))Mt − ψ0(X(0)))θ
~Y
f θ

B
g (t)

)
= E

(
Θr(X(r))Mrθ

~Y
f (r)θBg (r)−Θ0(X(0))θ

~Y
f (0)θBg (0)

)
=

∫ t

0

E
(

Θ′rσ(X(r))θBg (r)grMrθ
~Y
f

)
dr

+
√
−1

∫ t

0

E

(
w∑
k=1

QΘ,M
k (r) (fk(r)− 1) θ

~Y
f (r)θBg (r)

)
dr (4.8)

It is showed on page 23 in [34] that

∫ t

0

E
(

Θ′rσ(X(r))θBg (r)grMrθ
~Y
f

)
dr = E

(∫ t

0

Msψ
′
sσ(X(s))dB(s)θ

~Y
f (t)θBg (t)

)
. (4.9)
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On the other hand, applying integration by parts, we have

∫ t

0

w∑
k=1

QΘ,M
k (r)dỸk(r)θ

~Y
f (t)θBg (t)

=

∫ t

0

w∑
k=1

QΘ,M
k (r)θ

~Y
f (r)θBg (r)dỸk(r)

+

∫ t

0

√
−1

w∑
k=1

QΘ,M
k (r) (fk(r)− 1) θ

~Y
f (r)θBg (r)dr

+

∫ t

0

· · ·dB(r)

Therefore,

E

(∫ t

0

√
−1

w∑
k=1

QΘ,M
k (r) (fk(r)− 1) θ

~Y
f (r)θBg (r)dr

)

= E

(∫ t

0

w∑
k=1

QΘ,M
k (r)dỸk(r)θ

~Y
f (t)θBg (t)

)
(4.10)

Combining (4.8), (4.9) and (4.10), we prove (4.7).

By the definition of Mn
j , almost surely, we have

ψ(j+1)δ(X
i((j + 1)δ))Mn

j (X i, (j + 1)δ)− ψjδ(X i(jδ))

=

∫ (j+1)δ

jδ

Mn
s (X i, s)ψ′s(X

i(s))σ(X i(s))dBi(s)

+

∫ (j+1)δ

jδ

Mn
s (X i, s)Θs(X

i(s))
w∑
k=1

(apk(X
i(jδ))− apk(X i(s)))dỸk(s).(4.11)

By triangle inequality, for Rδ ≤ t < (R + 1)δ, we have

Ed(πt, π
n
t ) ≤ Ed(πt, πRδ) + Ed(πRδ, π

n
Rδ) + Ed(πnRδ, π

n
t ).

Then we begin with the first term on the right side of (4.12).
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Lemma 4.2.2. There exists a constant K such that

Ed(πt, πRδ) ≤ Kδ (4.12)

Proof. Since πt satisfies Kushner-FKK equation, we have, for fi ∈ Ck+2
b (Rd) ∩

W k+2
2 (Rd),

E| 〈πt, fi〉 − 〈πRδ, fi〉 | = E
∣∣∣ ∫ t

Rδ

[〈πs, Lfi〉 − 〈πs, fa〉+ 〈πs, f〉 〈πs, a〉] ds

+
w∑
k=1

∫ t

Rδ

[
〈πs−, fapk〉
〈πs−, apk〉

− 〈πs−, f〉
]
dYk(s)

∣∣∣
≤ K1(t−Rδ) +K2

w∑
k=1

E(Yk(t)− Yk(kδ))

≤ K3(t−Rδ)

Thus

Ed(πt, πkδ) ≤
∞∑
i=0

2−iK3δ = 2K3δ. (4.13)

We now estimate the third term on the right side of (4.12).

Lemma 4.2.3. There exists a constant K such that

Ed(πnt , π
n
Rδ) ≤ K

√
δ (4.14)
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Proof. Let f ∈ C4
b (Rd) ∩W 4

2 (Rd) with ‖f‖4,∞ ≤ 1. By the definition of πn, we have

| 〈πnt − πnRδ, f〉 | =
∣∣∣ 1

mn
R

mnR∑
i=1

M̃(X i, t)f(X i
t)−

1

mn
R

mnR∑
i=1

f(X i
Rδ)
∣∣∣

=
∣∣∣ 1

mn
R

mnR∑
i=1

(M̃(X i, t)f(X i
t)− f(X i

t) + f(X i
t)− f(X i

Rδ))
∣∣∣

≤ 1

mn
R

mnR∑
i=1

|M̃(X i, t)f(X i
t)− f(X i

t)|+
1

mn
R

mnR∑
i=1

|f(X i
t)− f(X i

Rδ)|

≤ 1

mn
R

mnR∑
i=1

|M̃(X i, t)− 1|+K1
1

mn
R

mnR∑
i=1

|X i
t −X i

Rδ|

By the proof of Lemma 4.4 in [34], we have

M̃n(X i, t) = 1 +

∫ t

Rδ

M̃n(X i, s)
w∑
k=1

[
λk(X

i(Rδ))

h̄k(s−) + 1
− 1

]
dYk(s),

where h̄s = 1
mnR

∑mnR
i=1 M̃

n
j (X i, s)(λk(X

i(Rδ))− 1).

Since C1 ≤ λk ≤ C2 and
∑mnk

i=1 M̃(X i, s) = mn
k , we have C1 ≤ h̄s + 1 ≤ C2. Thus,

Ê|M̃n(X i, t)|2 ≤ 2 + 2Ê
∣∣∣ ∫ t

kδ

M̃n(X i(Rδ))
w∑
k=1

[
λk(X

i(Rδ))

h̄k(s−) + 1
− 1

]
dYk(s)

∣∣∣2
≤ 2 + 4Ê

∣∣∣ ∫ t

Rδ

M̃n(X i, s)
w∑
k=1

[
λk(X

i(kδ))

h̄k(s−) + 1
− 1

]
(dYk(s)− ds)

∣∣∣2
+4Ê

∣∣∣ ∫ t

Rδ

M̃n(X i, s)
w∑
k=1

[
λk(X

i(Rδ))

h̄k(s−) + 1
− 1

]
ds
∣∣∣2

≤ 2 + 4Ê
∫ t

Rδ

(
M̃n(X i, s)

)2
(

w∑
k=1

[
λk(X

i(Rδ))

h̄k(s−) + 1
− 1

])2

ds

+4δÊ
∫ t

kδ

(
M̃n(X i, s)

)2
(

w∑
k=1

[
λk(X

i(Rδ))

h̄k(s−) + 1
− 1

])2

ds

≤ 2 + 4w(1 + δ)
C2 − C1

C1

∫ t

Rδ

Ê
(
M̃n(X i, s)

)2

ds
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By Gronwall’s inequality,

Ê|M̃n(X i, t)|2 ≤ K2.

Then

Ê|M̃n(X i, t)− 1|2 = Ê
∣∣∣ ∫ t

Rδ

M̃n(X i, s)
w∑
k=1

[
λk(X

i(Rδ))

h̄k(s−) + 1
− 1

]
dYk(s)

∣∣∣2
≤ 2Ê

∣∣∣ ∫ t

Rδ

M̃n(X i, s)
w∑
k=1

[
λk(X

i(Rδ))

h̄k(s−) + 1
− 1

]
(dYk(s)− ds)

∣∣∣2
+2Ê

∣∣∣ ∫ t

Rδ

M̃n(X i, s)
w∑
k=1

[
λk(X

i(Rδ))

h̄k(s−) + 1
− 1

]
ds
∣∣∣2

≤ 2Ê
∫ t

Rδ

(
M̃n(X i, s)

)2
(

w∑
k=1

[
λk(X

i(Rδ))

h̄k(s−) + 1
− 1

])2

ds

+2δÊ
∫ t

Rδ

(
M̃n(X i, s)

)2
(

w∑
k=1

[
λk(X

i(Rδ))

h̄k(s−) + 1
− 1

])2

ds

≤ K3δ. (4.15)

On the other hand,

Ê|X i
t −X i

Rδ|2 = Ê
∣∣µ(X i(Rδ))(t− kδ) + σ(X i(Rδ))(Bi(s)−Bi(Rδ)

∣∣2
≤ 2δÊ

∫ t

Rδ

|µ(X i
s)|2ds+ 2Ê

∫ t

Rδ

|σ(X i
s)|2ds

≤ K4δ, (4.16)

where the last inequality follows the linear growth condition of coefficients and

stationary assumption.

Therefore,

Ê 〈πnt − πnRδ, f〉
2 ≤ KÊ

1

mn
R

mnR∑
i=1

Ê(|M̃n(X i, t)− 1|2 + |X i
t −X i

Rδ|2|FRδ)

≤ K5δ.
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Let

Ms,t ≡ exp

(
w∑
k=1

∫ t

s

λk(Xs)dYk(s)−
1

2

∫ t

s

[λk(Xs)− 1]ds

)
.

Then by the boundness of λk, we have

ÊM2
s,t ≤ eK(t−s). (4.17)

By Cauchy-Schwarz inequality, we have

Ed(πnt , π
n
Rδ) = Ê(d(πnt , π

n
Rδ)MRδ,t)

≤ (Êd(πnt , π
n
Rδ)

2)1/2(ÊM2
Rδ,t)

1/2

≤ (
∞∑
i=0

2−iÊ 〈πnt − πnRδ, fi〉
2)1/2(ÊM2

Rδ,t)
1/2

≤ K
√
δ.

Finally, we estimate the middle term of (4.12).

Lemma 4.2.4. There exists a constant K such that

sup
0≤l≤R

Ed(πnlδ, πlδ) ≤ Kn−1, (4.18)

where R is a finite number.

Proof. Let ψ be the solution of (4.6) with final condition ψkδ = φ, where φ ∈ C4
b (R)∩

W 4
2 (R) with ‖φ‖4,∞ ≤ 1 and also ‖φ‖4,2 ≤ 1. Then

|〈πlδ, φ〉 − 〈πnlδ, φ〉| ≤
| 〈Vlδ, φ〉 − 〈V n

lδ , φ〉 |
〈Vlδ, 1〉

+
| 〈Vlδ, 1〉 − 〈V n

lδ , 1〉 |
〈Vlδ, 1〉

(4.19)

First we show that

sup
0≤l≤R

Ed(V n
lδ , Vlδ) ≤ Kn−1 (4.20)
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As ψlδ = φ, we get

〈Vlδ, φ〉 − 〈V n
lδ , φ〉 = (〈Vlδ, φ〉 − 〈V n

0 , ψ0〉)−
l∑

j=1

(〈
V n
jδ, ψjδ

〉
−
〈
V n

(j−1)δ, ψ(j−1)δ

〉)
= 〈Vlδ, φ〉 − 〈V n

0 , ψ0〉

−
l∑

j=1

(〈
V n
jδ, ψjδ

〉
− Ê

(〈
V n
jδ, ψjδ

〉 ∣∣∣Fjδ− ∨ Gjδ,kδ))
−

l∑
j=1

(
Ê
(〈
V n
jδ, ψjδ

〉 ∣∣∣Fjδ− ∨ Gjδ,kδ)− 〈V n
(j−1)δ, ψ(j−1)δ

〉)
≡ In1 − In2 − In3 ,

where Gs,t = σ(~Yu − ~Ys : s ≤ u ≤ t).

By corollary 6.22 in [33], we have

Ê |〈Vkδ, φ〉 − 〈V n
0 , ψ0〉|2 = Ê |〈V0, ψ0〉 − 〈V n

0 , ψ0〉|

≤ Kn−1 (4.21)

By the proof of Theorem 4.1 in [34], we have

Ê(In2 )2 = Ê

∣∣∣∣∣∣
l∑

j=1

ηnj
1

n

mnj−1∑
i=1

ψjδ(X
i
jδ)(ξ

i
j − M̃n

j (X i))

∣∣∣∣∣∣
2

≤ Ê
l∑

j=1

1

n2

mnj−1∑
i=1

Ê
(
‖ψjδ‖2

0,∞γ
n
j (X i)(ηnj )2

∣∣∣F(j−1)δ

)
≤ Kn−1 (4.22)
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By the definition of V n and (8.26) in [33], we have

In3 =
l∑

j=1

ηnj−1

1

n

mnj−1∑
i=1

(
ψjδ(X

i
jδ)M

n
j (X i)− ψ(j−1)δ(X

i
(j−1)δ)

)
=

l∑
j=1

ηnj−1

1

n

mnj−1∑
i=1

(∫ jδ

(j−1)δ

Msψ
′
sσ(X i

s)dB
i
s

+

∫ jδ

(j−1)δ

MsΘs(X
i
s)

w∑
k=1

(apk(X
i
0)− apk(X i

s))dỸk(s)
)

Note that

Ê
(∫ jδ

(j−1)δ

Msψ
′
sσ(X i

s)dB
i(s)
∣∣∣F(j−1)δ ∨ Gjδ

)
= 0

and

Ê

(∫ jδ

(j−1)δ

MsΘs(X(s))
w∑
k=1

(apk(X
i
0)− apk(X i

s))dỸk(s)
∣∣∣F(j−1)δ

)
= 0.

Hence,

Ê(In3 )2 =
l∑

j=1

Ê
(
ηnj−1

1

n

mnj−1∑
i=1

(∫ jδ

(j−1)δ

Msψ
′
sσ(X i

s)dB
i(s)

+

∫ jδ

(j−1)δ

MsΘs(X
i
s)

w∑
k=1

(apk(X
i
0)− apk(X i

s))dỸk(s)
))2

=
l∑

j=1

Ê
(

(ηnj−1)2 1

n2
Ê
(mnj−1∑

i=1

(∫ jδ

(j−1)δ

Msψ
′
sσ(X i

s)dB
i(s)

+

∫ jδ

(j−1)δ

MsΘs(X
i
s)

w∑
k=1

(apk(X
i
0)− apk(X i

s))dỸk(s)
)∣∣∣F(j−1)δ ∨ Gjδ

)2)
(4.23)
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=
l∑

j=1

Ê
(

(ηnj−1)2 1

n2

mnj−1∑
i=1

(∫ jδ

(j−1)δ

Msψ
′
sσ(X i

s)dB
i(s)

+

∫ jδ

(j−1)δ

MsΘs(X
i
s)

w∑
k=1

(apk(X
i
0)− apk(X i

s))dỸk(s)
)2)

≤ 2
l∑

j=1

Ê
(

(ηnj−1)2 1

n2

mnj−1∑
i=1

(∫ jδ

(j−1)δ

M2
s |ψ′sσ(X i

s)|2ds

+

∫ jδ

(j−1)δ

M2
s |Θs(X

i
s)|2

w∑
k=1

(apk(X
i
0)− apk(X i

s))
2ds
))

≤ Klδn−2Ê
(
mn
j−1(ηnj−1)2

)
≤ Kn−1, (4.24)

where the last inequality follows from (4.5).

Combining (4.21), (4.22) and (4.24), we have

Ê
(
| 〈Vlδ, φ〉 − 〈V n

lδ , φ〉 |2
)
≤ Kn−1. (4.25)

Therefore,

sup
0≤l≤R

Êd(V n
lδ , Vlδ)

2 ≤ Kn−1.

As

d 〈Vt, φ〉 = 〈Vt, Lφ〉 dt+
w∑
k=1

〈Vt−, (λk − 1)φ〉 dỸk(t),

we have

d 〈Vt, 1〉 =
w∑
k=1

〈Vt−, (λk − 1)〉 dỸk(t). (4.26)
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By Itô’s formula (see page 78 of [30]), we have

log 〈Vt, 1〉 =

∫ t

0

〈Vs−, 1〉−1 d 〈Vs, 1〉 −
1

2

∫ t

0

〈Vs−, 1〉−2 d [〈Vs, 1〉 , 〈Vs, 1〉]c

+
∑

0<s≤t

{
log 〈Vs, 1〉 − log 〈Vs−, 1〉 − 〈Vs−, 1〉−1 ∆ 〈Vs, 1〉

}
=

∫ t

0

w∑
k=1

〈Vs−, (λk − 1)〉
〈Vs−, 1〉

dỸk(s) +
∑

0<s≤t

log
〈Vs, 1〉
〈Vs−, 1〉

−
∑

0<s≤t

∆ 〈Vs, 1〉
〈Vs−, 1〉

=

∫ t

0

w∑
k=1

〈πs−, (λk − 1)〉 dỸk(s) +
∑

0<s≤t

log
〈Vs, 1〉
〈Vs−, 1〉

−
∑

0<s≤t

∆ 〈Vs, 1〉
〈Vs−, 1〉

≡ I1 + I2 − I3 (4.27)

By (4.26), we have

〈Vt, 1〉 = 〈Vt−, 1〉+

∫ t

t−

w∑
k=1

〈Vs−, (λk − 1)〉 dỸk(s)

= 〈Vt−, 1〉+
w∑
k=1

〈Vt−, (λk − 1)〉∆Ỹk(t) (4.28)

Plugging (4.28) in I2 and I3, we have

I2 =
∑

0<s≤t

log

(
〈Vs−, 1〉+

∑w
k=1 〈Vs−, (λk − 1)〉∆Ỹk(t)
〈Vs−, 1〉

)

=
∑

0<s≤t

log

(
1 +

w∑
k=1

〈πs−, (λk − 1)〉∆Ỹk(t)

)
(4.29)
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and

I3 =
∑

0<s≤t

∑w
k=1 〈Vs−, (λk − 1)〉∆Ỹk(t)

〈Vs−, 1〉

= Ê

(∑
0<s≤t

w∑
k=1

〈
πns−, (λk − 1)

〉
∆Ỹk(t)

)
(4.30)

Combining (4.27), (4.29) and (4.30), we have

〈Vt, 1〉 = exp

{∫ t

0

log

(
1 +

w∑
k=1

〈πs−, λk − 1〉

)
dYk(s) +

∫ t

0

w∑
k=1

〈πs−, (λk − 1)〉 ds

}

Therefore,

sup
0≤t≤S

Ê 〈Vt, 1〉−4 ≤ ∞ (4.31)

By the boundness of λk, we have sup0≤t≤S ÊM4
S <∞. Therefore,

sup
0≤l≤R

Ed(πlδ, π
n
lδ) ≤ sup

0≤l≤R
Ê
{
| 〈Vlδ − V n

lδ , 1〉 |
〈Vlδ, 1〉

+
d(Vlδ, V

n
lδ )

〈Vlδ, 1〉

}
MS

≤
(

sup
0≤l≤R

Ê| 〈Vlδ − V n
lδ , 1〉 |2

)1/2(
sup

0≤l≤R
Ê

M2
S

〈Vlδ, 1〉2

)1/2

+

(
sup

0≤l≤R
Êd(Vlδ, V

n
lδ )2

)1/2(
sup

0≤l≤R
Ê

M2
S

〈Vlδ, 1〉2

)1/2

≤ Kn−1

Theorem 4.2.1. For any finite positive number S, we have

lim
n→∞

sup
0≤t≤S

Ed(πt, π
n
t ) = 0. (4.32)
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Proof. Combining (4.12), (4.12), (4.18) and (4.14), we have

sup
0≤t≤S

Ed(πt, π
n
t ) ≤ n−α.

This implies (4.32).

4.3 Uniform convergence over the real line

In this section, we consider the uniform convergence of the branching particle filter

over the real line.

Theorem 4.3.1. Under assumptions 3.1.1, 3.1.2, 3.1.3 and 4.1.1, the branching

particle filter uniformly converges to the optimal filter in the following sense:

lim
n→∞

sup
t>0

Ed(πt, π
n
t ) = 0. (4.33)

Let p(t, x, A) be the transition probability of the Markov process Xt. There exists

a probability measure Ps,x on C(R+,Rd) such that for t > s and A ∈ B(Rd),

Ps,x(ξt ∈ A|F ξs ) = p(t− s, x, A), Ps,x − a.s.,

and

Ps,x(ξu = x, 0 ≤ u ≤ s) = 1

where ξt is the co-ordinate process on C(R+,Rd), i.e. ξt(θ) = θt for all θ ∈ C(R+,Rd).

Let λ be the initial distribution of Xt and η ∈ C(R+,Rm). We define anMF (Rd)-

valued process Γs,t(λ) and a P(Rd)-valued process Λs,t(λ) on C(R+,Rm) as

〈Γs,t(λ)(η), f〉 =

∫
Rd

∫
C(R+,Rd)

f(ξt(θ))qst(θ, η)Ps,x(dθ)λ(dx),
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and

Λs,t(λ)(η) =
〈Γs,t(λ)(η), f〉
〈Γs,t(λ)(η), 1〉

,

where qst(θ, η) = exp
(∫ t

s
h(ξu(θ))

∗dβu(η)− 1
2

∫ t
s
|h(ξu(θ))|2du

)
and βt(η) = ηt is the

co-ordinate process on C(R+,Rm).

Let ΛRδ,(R+1)δ(λ)(~Y ) be the optimal filter at time (R + 1)δ using the observation

σ(~Yt, Rδ ≤ t ≤ (R+ 1)δ) starting with λ at time Rδ. We define the following P(Rd)-

valued processes

πnRδ,(R+1)δ := ΛRδ,(R+1)δ(π
n
Rδ)(~Y ),

and for j < R

πnjδ,Rδ := Λjδ,Rδ(π
n
jδ)(~Y ) = Λ(R−1)δ,Rδ ◦ · · · ◦ Λjδ,(j+1)δ(π

n
jδ)(~Y ),

πn0,jδ := πjδ = Λ(j−1)δ,jδ ◦ · · · ◦ Λ0,δ(π0)(~Y ), (4.34)

πnjδ,jδ := πnjδ (4.35)

The following is our strategy of the proof. For Rδ ≤ t < (R + 1)δ, we write the

distance between πt and πnt as a sum of three distances: d(πRδ, πt), d(πRδ, π
n
Rδ) and

d(πnRδ, π
n
t ) by the triangle inequality. The estimates of d(πRδ, πt) and d(πnRδ, π

n
t ) are

showed in previous section. The following lemma and exponential stability which is

proved in chapter 3 are used to estimate d(πRδ, π
n
Rδ).

Lemma 4.3.1. There exists a constant K8 such that

lim
δ→0

EdTV (πnjδ,(j+1)δ, π
n
(j+1)δ) = 0 (4.36)

Proof. Note that πnjδ,(j+1)δ and πn(j+1)δ have the same initial distribution πnjδ at time jδ.

Let V n
jδ,(j+1)δ and V n

(j+1)δ be the unnormalized optimal filter and unnormalized particle

83



filter, respectively, with the same initial distribution πnjδ. Note that for continuous f

bounded by 1, we have

∣∣〈πnjδ,(j+1)δ − πn(j+1)δ, f
〉∣∣ ≤ ∣∣〈πnjδ,(j+1)δ, f

〉
−
〈
πnjδ, f

〉∣∣+
∣∣〈πnjδ, f〉− 〈πn(j+1)δ, f

〉∣∣

By using Kushner-FKK equation, we have

Ê
∣∣〈πnjδ,(j+1)δ, f

〉
−
〈
πnjδ, f

〉∣∣ ≤ Kδ1/2

On the other hand,

Ê
∣∣〈πnjδ, f〉− 〈πn(j+1)δ, f

〉∣∣ ≤ Ê

∣∣∣〈V n
(j+1)δ − V n

jδ, f
〉∣∣∣〈

V n
jδ, 1

〉 + Ê

∣∣∣〈V n
(j+1)δ − V n

jδ, 1
〉∣∣∣〈

V n
jδ, 1

〉
Now we show

Ê

∣∣∣〈V n
(j+1)δ − V n

jδ,(j+1)δ, f
〉∣∣∣〈

V n
jδ, 1

〉 ≤ Kδ1/2. (4.37)

By the definition of V n, we have

Ê

∣∣∣〈V n
(j+1)δ, f

〉
−
〈
V n
jδ, f

〉∣∣∣〈
V n
jδ, 1

〉
= Ê

∣∣∣ 1
n
ηj
∑mnj

i=1

(
f(X i

(j+1)δ)M
n
j+1(X i)− f(X i

jδ)
)∣∣∣

1
n
ηjmn

j
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≤ Ê

 1

mn
j

mnj∑
i=1

(∣∣f(X i
(j+1)δ)M

n
j+1(X i)− f(X i

(j+1)δ)
∣∣+
∣∣f(X i

(j+1)δ)− f(X i
jδ)
∣∣)

= Ê

 1

mn
j

mnj∑
i=1

Ê
(∣∣f(X i

(j+1)δ)(M
n
j+1(X i)− 1)

∣∣+
∣∣f(X i

(j+1)δ)− f(X i
jδ)
∣∣ ∣∣∣Fjδ)


≤ Ê

 1

mn
j

mnj∑
i=1

Ê
(∣∣Mn

j+1(X i)− 1
∣∣ ∣∣∣Fjδ)+

1

mn
j

mnj∑
i=1

Ê
(∣∣f(X i

(j+1)δ)− f(X i
jδ)
∣∣ ∣∣∣Fjδ)


≤ e(δ),

where the last inequality is from (4.15) and e(δ) approaches 0 as δ tends to 0.

Then by (4.17), we have

EdTV (πnjδ,(j+1)δ, π
n
(j+1)δ) ≤ Ê(dTV (πnjδ,(j+1)δ, π

n
(j+1)δ)Mjδ,(j+1)δ)

≤ (ÊdTV (πnjδ,(j+1)δ, π
n
(j+1)δ)

2)1/2(ÊMjδ,(j+1)δ)
2)1/2

≤ (K
√
δ + e(δ))1/2eKδ

Let δ tend to 0, we have (4.36).

To estimate d(πRδ, π
n
Rδ), we rewrite as

d(πRδ, π
n
Rδ) =

R∑
j=1

d(πnjδ,Rδ, π
n
(j+1)δ,Rδ). (4.38)

By the exponential stability which is proved in chapter 3, ∀ε > 0, there exist positive

constants K1, K2 and T (ε), such that when t ≥ T , we have

EdTV (πt, π̄t) ≤ K1EdTV (π0, π̄0)e−K2tα . (4.39)

Note that, πnjδ,Rδ is the optimal filter at time Rδ starting at time (j+1)δ with measure

πnjδ,(j+1)δ. Similarly, πn(j+1)δ,Rδ is the optimal filter at the same time but with initial
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πn(j+1)δ at the initial time (j + 1)δ.Therefore, when (R− j − 1)δ > T (ε), we have

EdTV (πnjδ,Rδ, π
n
(j+1)δ,Rδ) ≤ K1e

−K2((R−j−1)δ)αEdTV (πnjδ,(j+1)δ, π
n
(j+1)δ)

≤ K1(K
√
δ + e(δ))1/2e−K2((R−j−1)δ)α (4.40)

Let j0 be the largest j such that (R− j − 1)δ > T (ε) , we have

Ed(πt, π
n
t ) ≤ Ed(πt, πRδ) + Ed(πRδ, π

n
Rδ) + Ed(πnRδ, π

n
t )

≤ Ed(πt, πRδ) +
R−1∑
j=0

Ed(πnjδ,Rδ, π
n
(j+1)δ,Rδ) + Ed(πnRδ, π

n
t )

≤ dE(πt, πRδ) +
R∑

j=R−j0

Ed(πnjδ,Rδ, π
n
(j+1)δ,Rδ)

+

R−j0−1∑
j=0

Ed(πnjδ,Rδ, π
n
(j+1)δ,Rδ) + Ed(πnRδ, π

n
t )

≤ Ed(πt, πRδ) +
R∑

j=R−j0

Ed(πnjδ,Rδ, π
n
(j+1)δ,Rδ)

+
∞∑
j=0

EdTV (πnjδ,Rδ, π
n
(j+1)δ,Rδ) + Ed(πnRδ, π

n
t )

≤ +K3

√
δ +

R∑
j=R−j0

Ed(πnjδ,Rδ, π
n
(j+1)δ,Rδ)

+K1(K
√
δ + e(δ))1/2

∞∑
j=0

e−K2((R−j−1)δ)α +K4

√
δ, (4.41)

where the last inequality follows from (4.12) and (4.14).

Similarly to (2.41), for finite time t, there exists a constant K such that

Ed(πt, π̄t) ≤ KEd(π0, π̄0).
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Therefore, for R− j0 ≤ j ≤ R, we have

Ed(πnjδ,Rδ, π
n
(j+1)δ,Rδ) ≤ KEd(πnjδ,(j+1)δ, π

n
(j+1)δ,(j+1)δ)

≤ Kn−1, (4.42)

where the last inequality follows from (4.18).

Combining (4.41) and (4.42), we have

lim
n→∞

sup
t>0

Ed(πt, π
n
t ) = 0.
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Appendix A

Important estimates for interest

rate processes

Without loss of generality, we assume a = 0 in this section. The following tail

estimate (see remark 2.20 on page 54 of [27]) plays an important role in the proofs of

this section:

P( sup
0≤s≤t

B(s) > a) ≤
√

2t

a
√
π

exp

{
−a

2

2t

}
(A.1)

Theorem A.0.2. Let X(t) be an Ornstein-Uhlenbeck process defined by (3.8), we

have the estimate for large x:

P
(

inf
0≤s≤b

X(s) ≤ c
∣∣∣X(b) = x

)
≤ K(c)b1/2 exp{−K ′x2},

where K(c) is a constant depends on c and K ′ is a constant.

Proof. It is well known that the solution of the SDE (3.8) can be represent

conditionally (given initial value x) as:

X(t)eθt = X(s)eθs + µ(eθt − eθs) +
σ

2
√
θ
B̃(e2θt − e2θs),
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where B̃ is a standard Brownian motion.

Let K1(c) = −2c
√
θ

σ
we have

P
(

inf
0≤s≤b

X(s) ≤ c
∣∣∣X(b) = x

)
= P

(
inf

0≤s≤b
xeθ(b−s) + µ(eθ(b−s) − 1) +

σ

2
√
θ
B̃(e2θ(b−s) − 1) ≤ c

)
≤ P

(
inf

0≤s≤b
B̃(e2θ(b−s) − 1) ≤ 2

√
θ

σ
(c− x))

)

= P

(
sup
a≤s≤b

B̃(e2θ(b−s) − 1) ≥ K1(c) +
2
√
θ

σ
x

)

≤ P

(
sup

0≤s≤e2θb−1

B̃(s) ≥ K1(c) +
2
√
θ

σ
x

)

≤
√

2(e2θb − 1)

(K1(c) + 2θ
σ
x)
√
π

exp

{
−

(K1(c) + 2
√
θ

σ
x)2

2(e2θb − 1)

}
≤ K(c)b1/2 exp{−K ′x2}.

Theorem A.0.3. Let X(t) be a CIR process which follows (3.10) with the initial

state x0, then X(t) satisfies assumption 3.2.1.

Proof.

P( inf
0≤s≤b

Xs ≤ c|X(b) = x)

≤ P( sup
0≤s≤b

|X(s)− x| ≥ x− c)

≤ P
(

sup
0≤s≤b

∣∣∣∣∫ b

s

θ(µ−X(u))du+

∫ b

s

σ
√
X(u)dB(u)

∣∣∣∣ ≥ x− c
)

≤ P
(

sup
0≤s≤b

∣∣∣∣∫ b

s

θ(µ−X(u))du+

∫ b

s

σdB(u)

∣∣∣∣ ≥ x− c
2

)
+P
(

sup
0≤s≤b

∣∣∣∣∫ b

s

σ(
√
X(u)− 1)dB(u)

∣∣∣∣ ≥ x− c
2

)
≡ I1 + I2
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Note that the process in I1 is an Ornstein-Uhlenbeck process with initial value X(s) =

0. Similarly to the discuss in the previous theorem, we have the estimate of it as

following:

P
(

sup
0≤s≤t

∣∣∣∣∫ b

s

θ(µ−X(s))ds+

∫ b

s

σdB(s)

∣∣∣∣ ≥ x− c
2

)
≤ K1b

1/2 exp{−K2x
2} (A.2)

By Doob’s inequality, we have

P
(

sup
0≤s≤b

∣∣∣∣∫ s

0

σ(
√
X(s)− 1)dB(s)

∣∣∣∣ ≥ x− c
2

)
≤ 4

(x− c)2
E

(∣∣∣∣∫ b

0

σ(
√
X(s)− 1)dB(s)

∣∣∣∣2
)

=
4

(x− c)2
E
(∫ b

0

∣∣∣σ(
√
X(s)− 1)

∣∣∣2 ds)
=

4σ2

(x− c)2

∫ b

0

E(
√
X(s)− 1)2ds (A.3)

It’s known that 2a(t)X(t) follows a non-central chi-squared distribution with degree

4θµ
σ2 and non-centrality parameter 2a(t)xe−θt, where a(t) = 2θ

σ2(1−e−θt) . Therefore,

E(
√
X(s)− 1)2 is bounded. Then, we have

I2 ≤ K3b(x− c)2 (A.4)

Combining (A.2) and (A.4), we can prove the assumption 5.

Theorem A.0.4. Let X(t) be a geometric Brownian motion which is defined by

(3.11), then X(t) satisfies assumption 3.2.1.
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Proof. By (3.12) and θ < σ2

2
, we have

P
(

inf
0≤s≤b

X(s) ≤ c
∣∣∣X(b) = x

)
= P

(
inf

0≤s≤b
x exp

{
−(θ − σ2

2
)(b− s) + σ(B(b)−B(s))

}
≤ c

)
≤ P

(
inf

0≤s≤b
exp{σ(B(b)−B(s)} ≤ cx−1

)
= P

(
sup

0≤s≤b
(B(s)−B(b)) ≥ − 1

σ
log
{
cx−1

})
≤ K(c)b1/2 exp

{
−K

′

σ2

{
log
{
cx−1

}}2
}

Notice that

lim
x→∞

exp

{
−K

′

σ2

{
log
{
cx−1

}}2
}

= 0,

this means that X(t) satisfies assumption 3.2.1.

Theorem A.0.5. The process defined as (3.13) satisfies assumption 3.2.1.

Proof. Let K1 be the bound of two coefficients µ and σ.

P
(

inf
0≤s≤b

X(s) ≤ c
∣∣∣X(b) = x

)
≤ P( sup

0≤s≤b
|X(s)− x| ≥ x− c)

≤ P
(

sup
0≤s≤b

∣∣∣∣∫ b

s

µ(X(u))du

∣∣∣∣+ sup
0≤s≤b

∣∣∣∣∫ b

s

σ(X(u))dB(u)

∣∣∣∣ ≥ x− c
)

≤ P
(
K1b+ sup

0≤s≤b

∣∣∣∣∫ b

s

σ(X(u))dB(u)

∣∣∣∣ ≥ x− c
)

≤ 2P
(

sup
0≤s≤b

∣∣∣∣∫ s

0

σ(X(u))dB(u)

∣∣∣∣ ≥ 1

2
(x− c−K1b)

)
≤ 8

(x− c−K1b)2
E

(∣∣∣∣∫ b

0

σ(X(u))dB(u)

∣∣∣∣2
)

≤ K2b

(x− c−K1b)2
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Therefore, assumption 3.2.1 is satisfied.
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