











Figure 14: Localization of CheY4-YFP in different genetic backgrounds.
CheY4 localizes to the poles in Sp7. Localization to the poles is weaker in
Achel and Ache4, but it does not localize to the poles in the Achelche4
strain. Results were quantified by measuring the ratio of fluorescence
intensity in the foci to the cell body. **** indicates a significant (p < 0.001)
difference in the mean ratios between different genetic backgrounds (One-Way
ANOVA with Bonferroni post-hoc analysis).
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Figure 15: Localization of CheD4-YFP in different genetic backgrounds.
CheY4 localizes to the poles in Sp7 and Che4 deletion background.
Localization to the poles is weaker in Achel and the Achelche4 strain.
Results were quantified by measuring the ratio of fluorescence intensity
in the foci to the cell body. ***, ** indicate a significant (p <0.001, 0.01)
difference in the mean ratios between different genetic backgrounds (One-
Way ANOVA with Bonferroni post-hoc analysis).
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CHAPTER YV
CONCLUSIONS AND FUTURE PERSPECTIVES

Our work has significantly advanced our understanding of the controls of the
motility behavior in Azospirillum brasilense, and will potentially be applicable to
other bacterial species that also possess multiple chemotaxis systems. Noticeably,
this work has revealed astonishing complexities and intricate connections between
multiple pathways to control the swimming behavior in this organism.

We have characterized the Che4 pathway of A. brasilense, which previously
had no assigned function and find that it plays a dominant role in taxis behavior. The
histidine kinase (CheA4) encoded in this pathway is crucial for responding to
chemical (chemotaxis) and oxygen (aerotaxis) gradients. Chemotaxis is vital for the
survival of A. brasilense in the rhizosphere, where it must competitively forage for
food. Similarly, aerotaxis is an essential trait not only because the oxidative
metabolism of this organism is adapted to microaerophilic conditions but also
because A. brasilense is a diazotroph and the nitrogenase enzyme responsible for
nitrogen fixation is inhibited by high oxygen concentrations.

Mutants lacking CheA4 and its cognate response regulator (CheY4) have a
smooth swimming bias and are unable to change their swimming direction under
steady state conditions as well as in the presence of a chemoeffector gradient
(oxygen or malate). This strongly supports our hypothesis that the Che4 pathway is
essential for modulating swimming behavior in A. brasilense. However, a Ache4

mutant, lacking the entire Che4 pathway components was shown to be able to
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change swimming direction in steady state conditions, though they do not respond
to chemoeffector gradients. These findings are consistent with the hypothesis that
Che4 is the central pathway for the control of the chemo- and aerotaxis responses in
A. brasilense. However, the results also indicate that other proteins or pathway(s)
contribute to setting the steady-state swimming reversal frequency, in the absence
of Che4 proteins. The data also indicate that these other proteins are not active or
suppressed in a AcheA4 or a AcheY4 mutant background. Candidate Che4 proteins
for this function in regulating the steady state swimming bias include CheB4, CheD4
and CheR4, which are predicted to function as chemotaxis receptor-specific
modifying enzymes that facilitate adaptation. Proteins that function in adaptation
have been shown in most bacteria, including A. brasilense (Stephens et al, 2006) to
contribute to the steady state swimming bias (Szurmant & Ordal, 2004).
A similar situation was encountered previously while characterizing the role of
Chel in A. brasilense. Chel mutants (AcheAl, AcheY1, Achel) are capable of
changing swimming direction, while other Chel (AcheB1, AcheR1) mutants were
defective (Bible et al, 2008; Stephens et al, 2006). These results suggested that these
Che pathways (Chel and Che4) might function together to control swimming bias,
and that cross-talk probably occurred at the level of receptors via receptor
modifications required for adaptation.

To test this, we analyzed double mutants that lacked components of both
pathways. The AcheAlcheA4 mutant was null for all behaviors and cells showed

clumping (a stress response displayed by cells, when aerotaxis fails (Bible et al,
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2012)). This result was not surprising given the central role played by CheA4 in
chemo- and aerotaxis.

We found that AcheY1cheY4 formed rings in chemotaxis swarm plates and
that it did in fact respond to changes in chemical gradient. This result was most
intriguing since it indicates that in the absence of both CheY4 and CheY1 but not
when CheY4 alone is missing, another protein is capable of binding to the flagellar
motor. It is possible that greater affinity of CheY4 and CheY1 to the flagellar motor
switch complex is why this alternate mechanism is only active in the AcheY1cheY4
background. Another possibility is that this unknown protein may be regulated in a
manner that depends on the activity of CheY1 and/or CheY4, for example by a
phosphatase that would target the flagellar-motor- bound CheY homologs. This
protein also appears to be regulated by a chemotaxis system since the changes in
the swimming direction could be detected in gradients of chemoeffectors. Together,
the data however are consistent with CheY4 being the major protein that binds to
the flagellar motor and the switch complex.

Interestingly, the mutant lacking both Chel and Che4 pathway components
had a smooth swimming bias in steady state conditions. This was surprising given
the fact that both Achel and Ache4 had a ‘tumbly bias’ in steady state conditions, but
it also indicated that both Chel and Che4 were required for setting up the steady
state swimming bias. This result provides evidence of cross-talk occurring between
Chel and Che4 pathways. Furthermore, analysis of individual tactic behaviors, i.e.

swimming velocity and swimming reversal frequency of the Achelche4 mutant
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indicated that an additional chemosensory mechanism comes into play in the
absence of both chemotaxis pathways. However, our results also suggest that this
chemosensory mechanism is defective in adaptation, one of the hallmarks of a true
chemotactic response. Thus, this weaker mechanism might be a minor contributor
to the taxis behavior of A. brasilense since it was revealed only when both Chel and
Che4 were deleted. This system also appears to allow cells to respond briefly to
chemoeffector gradients but the response is not sustained and the cells seem unable
to adapt to the new conditions. While this behavior might explain the formation of
unstable “aerotactic” bands and of chemotactic rings observed in spatial gradient
assays, they also suggest that the candidate proteins or pathway for this function
lacks proteins for adaptation.

Given the behavior of the mutants described above, essential features of the
proteins or pathways that may contribute to taxis responses would include the
following: A protein (or proteins) capable of receiving sensory signals from
receptors and a protein capable of eliciting a change in the swimming direction by
binding to the flagellar motor. Given the lack of sensory adaptation, it is likely that
these set of proteins or pathway may have a defective adaptation system, either
because it is absent (i.e. no CheB, CheR or CheD) or because it is defective (some
receptors require other changes than methylation to adapt or some receptors or
adaptation mechanisms include complex feedback loops with CheBs, CheCs (Kirby,

2009))
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What other proteins are possible candidates for this function in A. brasilense?
Sequence homology suggests that the Che2 pathway is involved in flagella
biosynthesis (Wisniewski-Dye et al, 2011). However, this has not yet been verified
experimentally and this pathway could contribute to a minor chemotaxis response.
Additionally, there are three more orphan CheY response regulators encoded
elsewhere in the A. brasilense genome, which might also be involved in regulating
taxis behaviors. If these are candidates, that would also imply that they are activated
via a chemotaxis histidine kinase other than CheA4 or CheAl, (possibly CheA2 from
Che2 or CheA3 from Che3). An implication from these findings is that all of these
proteins would interact with a similar set of receptors.

As a preliminary work to test this hypothesis, we analyzed the localization of
these chemotaxis proteins in A. brasilense in different genetic backgrounds. It is
possible that structural roles played by key proteins (such as CheA4 or CheA1l) are
partly responsible for cross-talk between these pathways. Our localization results
provide additional support to our hypothesis of cross-talk between Chel and Che4.
The fact that CheA4 and CheY4 subcellular localization is most affected in the
absence of both Chel and Che4 components, but not in Achel or Ache4 backgrounds
is strong evidence to support our hypothesis. Moreover, localization analysis of
CheD4 suggests that it does not just interact with receptors encoded in the Che4
pathway, which indicates that cross-talk probably occurs at the level of receptors.

Future work will aim to characterize the additional CheYs present in the

genome and the Che2 pathway in order to elucidate their contribution, if any, to
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swimming motility behaviors in A. brasilense. Analyzing swimming velocity and
reversal frequencies under different environmental conditions could shed light on
the role of multiple pathways and chemotaxis proteins in this organism. It is
interesting that different aspects of swimming behavior are controlled by different
pathways in this organism. While the underlying advantages that such an intricate
control may provide a cell with are unclear at this time, we can speculate that it may
result from several events of lateral gene transfers in this organism (Wisniewski-
Dye et al, 2011). It is interesting to note that chemotaxis pathways have been
transferred laterally between various bacterial species, especially those inhabiting
soil environments, and that, in these cases, the functions of the pathways are not
lost but rather diverge once in a new genomic context (Wuichet et al, 2007; Wuichet
& Zhulin, 2010). While it remains difficult to predict the function of these systems as
illustrated here, we expect such complexities to be found in other soil
microorganisms with multiple chemotaxis pathways since lateral gene transfer
events have been extensive in these species and motility and taxis behaviors are

known to provide competitive advantages.
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