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Abstract

Energy and power density concerns in modern processors have led to significant

computer architecture research efforts in power-aware and temperature-aware com-

puting. With power dissipation becoming an increasingly vexing problem, power

analysis of Graphical Processing Unit (GPU) and its components has become crucial

for hardware and software system design. Here, we describe our technique for a

coordinated measurement approach that combines real total power measurement and

per-component power estimation. To identify power consumption accurately, we

introduce the Activity-based Model for GPUs (AMG), from which we identify activity

factors and power for microarchitectures on GPUs that will help in analyzing power

tradeoffs of one component versus another using microbenchmarks. The key challenge

addressed in this thesis is real-time power consumption, which can be accurately

estimated using NVIDIA’s Management Library (NVML) through Pthreads. We

validated our model using Kill-A-Watt power meter and the results are accurate

within 10%. The resulting Performance Application Programming Interface (PAPI)

NVML component offers real-time total power measurements for GPUs. This thesis

also compares a single NVIDIA C2075 GPU running MAGMA (Matrix Algebra on

GPU and Multicore Architectures) kernels, to a 48 core AMD Istanbul CPU running

LAPACK.
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Chapter 1

Introduction

With power consumption and heat dissipation issues pushing multi-core CPUs to the

limit the importance of a Graphical Processing Unit (GPU) cannot be emphasized

enough. Figure 1.1 from [22] shows us a time line of the beginning of heat dissipation

and cooling problems. One thing to note about this figure is that, while the single core

era ends, the multi-core core era begins. The two forms of scalability are strong scaling

(Amdahls Law) and weak scaling (Gustafsons Law). Strong scaling is defined as how

the solution time varies with the number of processors for a fixed total problem size.

Weak scaling is defined as how the solution time varies with the number of processors

for a problem size that scales per processor. These two laws are very important for

machine processing speed. While the memory bandwidth and latency issues stall a

CPU, a GPU may outperform a CPU in these aspects. For example the memory

bandwidth for Nvidia C2075 is 144 GB/s. The growth rate of performance of GPUs

has increased by at least a factor of 2 compared to that of CPU. A GPU can be used for

parallel computing using stream processing [16]. Stream processing is related to Single

Instruction Multiple Data (SIMD). GPU accelerated computing systems have drawn

the attention of researchers because they have tremendous computational power and

high memory bandwidth, and are inherently well suited for massively data parallel

computation. In the November 2011 ranking, 39 of the Top 500 computer systems
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utilized GPUs, up from 17 systems listed in the June 2011 ranking [7]. The Top

500 lists the fastest supercomputers in the world, and the performance benchmarks

and statistics are of major interest to users and manufacturers. Every six months,

in June and November, a new Top 500 list is released. The Top 500 list is compiled

based on results from the LINPACK benchmark, which solves dense linear equations,

and measures the number of floating point instructions per second (FLOPS) that the

benchmarked machine can run. We show performance improvement achieved in 5

decades [7] in Figure 1.2. From 2001-2010, performance on LINPACK for the #1

system on the Top500 list grew at compound rates of 92% , which is astounding.

Coming along with this exciting computational capability, the power consumption

of supercomputers has become a serious issue. For example, the average power

Figure 1.1: Multicore Era [22]
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consumption of the TOP 10 supercomputing centers was 1.32 MW in 2008, and

climbed to 3.2 MW in 2010, translating to a multi-million-dollar electric bills.

Designers must employ aggressive techniques to keep the ballooning energy cost

under control. The consequences of growing energy consumption are more complex

cooling solutions and noisier fans. Cooling modern video cards is becoming much

more difficult, especially when users are asking for quiet cooling solutions.

Figures 1.3 and 1.4 show us the performance and power consumption of the top

20 systems. The power consumption increases with performance, and engineers are

now paying more attention to power consumption for new GPU designs. The cost to

maintain such huge machines is expensive too, e.g. 12MW at $0.10/kW-h is $1200

an hour or about $10.5 million per year.

Figure 1.5 shows us GFLOPS to power consumption [7]. For example, the latest

number 1, i.e, the K supercomputer, has achieved maximum LINPACK performance

of 10510.00 TFLOPS, but consumes 12.659 MW [7]. The Green 500 [35] provides a

Figure 1.2: 5 Decades of Linpack [22]
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ranking of the most energy efficient supercomputers in the world, in order to encourage

users and vendors to be more energy efficient. This list tries to emphasize that energy

efficiency is as important as performance. On the Green 500 list a supercomputer has

to be at least a supercomputer on the Top 500 list.

With the announcement of the Titan [21], which promises to deliver 10-20

PFLOPS and the fact that 85% of its peak performance comes from GPUs, we

simply cannot ignore the energy consumed by GPUs. The current Nvidia C2075 GPU

consumes 220W Thermal Design Power (TDP) and delivers 515 GFLOPS theoretical

peak of which 300 GFLOPS can be achieved for Double Precision General Purpose

Figure 1.3: Performance of top 20 systems
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Matrix Matrix Multiply (DGEMM) performance compared to the previous generation

C1060 which consumes 200W but delivers only 78 GFLOPS of DGEMM performance.

Energy consumption concerns HPC systems, with systems requiring more and

more computational power. With the increase in computational power the power

consumed by the system tends to increase. With voltage scaling slowing down and

leakage current increasing, the answers to this problem seem limited. Figure 1.5

shows the 50 most energy efficient systems according to the Green 500 [35]. With the

evolution of GPUs systems become more energy efficient.

Though prior work has been done on power measurement of GPUs, [26, 23, 8], the

real-time measurement of individual GPU components using a software approach, is

Figure 1.4: Power of top 20 systems
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new. In this work, we develop our model to measure real-time power usage of micro-

architectures running representative computational kernels through the use of NVML

(Nvidia Management Library) [19].

We refer to estimating at this granularity as per-structure power estimation. Per-

structure power estimation is useful for selectively enabling and disabling micro-

architectural resources. As power-management becomes increasingly important,

coarse-granularity power estimation is likely to become inadequate to manage and

continuously reallocate power budgets for individual micro-architectural structures.

To address the challenges of estimating per-structure power in hardware, we propose a

new analytical model, called the Activity-based Model for GPUs (AMG), to estimate

Figure 1.5: Top 20 systems which have highest performance/power
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activity factors and power for micro-architectural structures on GPUs. This model

does not rely on real-time current monitoring or simulating hundreds of utilization

statistics similar to [27].

We maintain that only a few input statistics are sufficient to estimate per-structure

dynamic power of a GPU because the myriad per-structure events are related to a

small set of global parameters, such as load rate or the execution time of that unit. We

use this key observation to drive the development of AMG. Using minimal input data,

AMG′s linear-regression-based methodology can estimate activity for tens or hundreds

of micro-structures. We first analyze the correlation of a variety of performance

metrics. Then we monitor only the least correlated metrics and use the monitored

metrics to extrapolate the metrics of interest. After we get all the desired metrics

about the structure events, we apply a per-event energy model derived from a circuit

model, to those structures to calculate the power consumption of each structure. We

also show power vs temperature of several kernels.

Researchers in various fields have investigated the advantages of using GPUs as

compared to CPUs, GPUs not only provide high performance, but they are also

more energy efficient than CPUs [12]. High-end GPUs do consume more power than

CPUs, but the GPU/CPU performance ratio is higher than the power consumption

ratio, and thus a GPU can complete more computations per watt than a CPU. We

demonstrate this fact by comparing an Nvidia TESLA C2075 GPU running MAGMA

[29] with a 48 core AMD Istanbul CPU running LAPACK.

1.1 Nvidia Management Library

NVML is a C-based interface for monitoring and managing various states within

Nvidia Tesla GPUs [19]. NVML has several functions that can measure characteristics

of GPUs, such as device power, device temperature, unit power, unit temperature, and

clock frequency. Using NVML, we measure power and temperature. We implemented

a PAPI (Performance application Programming Interface) component that measures

7



power and temperature using NVML, thus allowing power and energy consumption

measurements to be obtained from the familiar PAPI interface, with the capability of

reading other, simultaneously obtained, PAPI metrics. More about the Fermi C2075

and NVML can be found in chapter 3

1.2 Primary Contributions of this work

• The AMG model for real-time measurement of power and energy consumption

on GPUs;

• Per-component analysis of power consumption of different GPU components

like floating point units, shared memory, and global memory;

• PAPI NVML component that offers a way to measure power and energy

consumption in real-time;

• Energy consumption comparison of linear algebra routines between a GPU and

a multi-core system.
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Chapter 2

Related Work

Early work focussed on measurement of power dissipation using external devices such

as clamp probes [26]. Use of probes to measure voltage and current is a very tedious

and time consuming process as a probe requires direct connection to PCI-Express and

auxiliary Power lines. A considerable amount of power is spent on data acquisition

and control of measurement equipment. The use of markers is clearly explained and

they have used previous marker positions to estimate the next marker position using

the matching method by [26]. The performance and power relationship they have

derived is

W = 72 + 1.02 ∗ 1010ρ (2.1)

ρ =

1 if the threads per block is a multiple of 16,

1 + 0.71× (16− (θ mod 16))/θ otherwise

(2.2)

where θ is the number of threads per block

The root mean square error of their approximation is 0.29 W [26].

Using hardware devices might be problematic especially since we need a separate

9



power supply and devices like Kill-A-Watt lack a method to log the data automati-

cally. [11]

There has been other research on the power consumption of hybrid architectures

such as CPU-GPU platforms, but our work emphasizes the GPU as an independent

component. [23] used a LEAP-Server to monitor power of subcomponents of a

system such as GPU with micro-scale capability. Their analysis was based on Low

Power, Energy based Processing (LEAP2) which has a resource multiplexer that adds

components through a set of peripherals and sensors, but the downside of this is we

cannot have an accurate estimate of power consumption as, the host processor does

not facilitate dedicated point-to-point connections. Their method requires hardware

expertise of not only the LEAP-Server but also of the complete system.

Isci et al. developed a hardware based counter model for power estimation of sub-

components of a CPU [10]. A combination of P4 hardware performance events were

used to estimate the power. The counter based run time for power monitoring is based

on access rate heuristics, which can be used as weights to analyze power from run-

time power. Although the model they developed is for a Pentium P4 CPU, the model

itself fits well with the GPU architecture. Power consumption of 22 sub-components

that include bus control, L1 cache, L2 cache, L1 branch prediction unit (BPU), L2

BPU, instruction TLB & fetch, memory order buffer, memory control, data TLB,

integer execution, floating point execution, integer register file, floating point register

file, instruction decoder, trace cache, microcode ROM, allocation, rename, instruction

queue1, instruction queue2, schedule, and retirement logic, was derived using counter-

based profiling. Breakdown of components was based on physical attributes rather

than conceptual grouping. Power of each sub-component was derived using the

formulae below:

10



Power(Ci) = AccessRate(Ci)× ArchitecturalScaling(Ci)

×MaxPower(Ci) +NonGatedClockPower(Ci) (2.3)

TotalPower =
22∑
i=1

Power(Ci) + IdlePower (2.4)

The breakdown of sub-components shown by [10] is the basis of our component

analysis. In our analysis of the GPU’s power consumption we do not take non-gated

clock power consumption as Nvidia Fermi C2075’s is not a gated clock.

Hong et al. estimated the number of cores needed for optimal power and

performance using GPGPUs [8]. The theory behind this is that when a memory

bound application is executed, performance does not increase proportionally with the

number of cores. Their conclusions show us that by not using all the cores we can

save energy up to 22.09%. They have also estimated the power consumption of sub

components using micro-benchmarks in such a way that the floating point benchmark

has a high number of floating point operations.

Power consumption can be divided into two parts: dynamic power and static power:

Power = Dynamicpower + Staticpower. (2.5)

Power consumption of sub-component of GPU can be modelled:

Power(Ci) = AccessRate(Ci)× ArchitecturalScaling(Ci)

×MaxPower(Ci) +NonGatedClockPower(Ci) (2.6)
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StaticPowerPstatic = Vcc ×N ×Kdesign × Ileak (2.7)

RP SMs = Max SM × log10(α× Active SMs+ β) (2.8)

α = (10− α)/NUM SMs and β = 1.1

Max SM = (Num SM ×
n∑

i=1

SM Componenti) (2.9)

Runtime power = (Max SM +RP Memory)× log10(α× Active SMs+ β)

(2.10)

The maximum power derived from these micro-benchmarks is then multiplied by

the access rate, and the run time power is derived. They show us that the memory

operations from global memory are not only very time consuming but also power

consuming. Work has also been conducted on the number of active SMs (Streaming

Processors) vs power consumption on a GTX 280 GPU, which has 240 CUDA cores

and 30 SMs. Temperature modeling using the RC model, [25], shows us the relation

between power and temperature. Evaluations have been conducted between memory

bound kernels and kernels which are not memory bound.

Chen et al. showed us that in the previous generation GPUs there was no support

for sensors to measure power, but with the evolution of the new Fermi architecture

this has changed [4]. The older Fermi GPUs, like the C2050, have partially supported

power measurement using power states P0-P15 where P0 is the power state when the

GPU is running under full load and P15 is the idle state power consumption, while

newer generations such as the C2075 have sensors which output power in watts. Chen

et al. developed a GPU power consumption model based on a linear regression tree

12



[3], and random forest methods [2]. A regression is a statistical analysis assessing

the relationship between two variables. Random forest uses various models to obtain

performance, which is better than any individual method, and in this case consists

of many decision trees, and returns the class that is the mode of classes output by

individual trees. The most influential variables and several performance-sensitive

architecture metrics were identified using the random forest model. Verification of

their model was done using leave-one-out cross validation with an average percentage

error of 7.77%.

Sheaffer et al. proposed the use of Qsilver to develop thermal management

methods such as dynamic voltage scaling (DVS), clock gating, multiple clock domains,

and temperature-aware floor plans [24]. They developed a tool for analysis of power

and performance of graphics hardware and software. Chromium, which is used by

Qsilver, can be used to maneuver graphics API commands on clusters of workstations

[9]. The simulations which the authors developed run to evaluate different functional

units which can be time-dependent. Qsilver can also be used to identify and

understand performance bottlenecks and Sheaffer et al. also show us the use of

dynamic voltage scaling for reducing considerable energy consumption.

The GPU architecture using micro benchmarks was explained [34]; we would

like to use the same approach, but use it to characterize GPU power consumption.

Branch divergence is a very important aspect which we would like to explore, and

a detailed analysis is available [34]. The authors measured the execution time line

for two concurrent warps in a block whose threads diverge 32 ways. This paper

emphasizes some of the aspects of GPU architecture such as re-convergence, barrier

synchronization in a single warp, and barrier synchronization across multiple warps.

We can deduce a lot of cache characteristics using the technique they described and

as long as the array fits in the cache, the latency remains the same. We used the

same technique for our power analysis, which, as long as the GPU uses a single SM,

the power should remain the same, and power scales with respect to the number of

SMs used.
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2.1 Summary

This chapter explains the related work. We have adapted parts of work from different

papers such as equation 2.5 has been adopted from [10]. Our work is also unique in

developing a model for the latest Fermi architecture and the model’s power estimation

is based on NVML-based sensors. The next chapter describes the Nvidia C2075 GPU

architecture, validation using an external power monitoring device, and the Nvidia

Management library.
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Chapter 3

Power Measurement on Nvidia

Fermi C2075

3.1 Fermi C2075 GPU

The Fermi C2075 GPU offers excellent solutions for high performance problems with

14SMs, 448 CUDA cores and 6GB of GDDR5 DRAM [17]. Each SM supports 32

CUDA cores and a fully pipelined Integer Arithmetic Logic unit (ALU), Floating

Point Unit (FPU), and various levels of memory such as global memory, constant

memory, texture memory, registers, shared memory, and local memory.

The release of the Fermi architecture shows the CUDA architecture is ever

changing and evolving, and in each architectural generation there is major change

in the way the GPU works. For example, execution of threads is different in the

Fermi and Tesla architectures; on a Fermi architecture, groups of 16 cores execute

warps; in Tesla 8 cores execute an instruction for a warp every four cycles. This

makes the Fermi architecture a much better solution if all the threads execute the

same code in a warp. The Fermi architecture can run several kernels simultaneously.
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3.1.1 Memory

Global Memory

Global memory is used to allocate or copy data between the host and device

(GPU). Bandwidth between host and device memory is very low compared to data

transfer within the GPU, therefore communication between host and device should

be minimized. There is an overhead per communication, so single large transfers

are better than many small transfers. For example, in the floating point operation

benchmark we use registers most of the time and write the result back to global

memory.

Global memory is located in the main device memory, and data accesses from

the SM to global memory are high latency (400-800 clock cycle) and low bandwidth

(compared to on chip memory). The latency can be hidden to some extent if there

Figure 3.1: Memory Layout
[20]
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are a large number of active threads. Access to global memory from the SM can be

improved using coalescing. We use these rules to show power consumed by coalesced

memory.

Registers

Registers are associated with each SM and give the fastest access. Registers can

store scalars and built-in vector types. Arrays indexed by constant values known at

compile time typically reside in registers. For our floating point benchmark we declare

an array of constant values and make sure the size of the registers do not exceed 32

K since 32 K is the register space allocated per SM. Register spilling is very costly as

it may result in data being placed in local memory rather than registers.

Shared Memory

Shared memory, which is software managed cache, is on chip memory which has high

bandwidth and low latency. It can be used for thread cooperation as this memory is

shared between all threads within a block. Shared memory is divided into successive

equal sized banks, i.e. 32 x 32-bit for C2075, that can be accessed simultaneously.

Shared memory can be as fast as the registers if bank conflicts are avoided. Multiple

requests to the same bank result in serialization unless all threads read the same

address.

3.2 Measuring Power Consumption using external

device

We used Kill A Watt to validate our power model [11]. The Nvidia C2075 GPU is

connected via PCI-Express to the main processor, but the power delivered through

PCI-Express to the C2075 is not sufficient since PCI-Express can deliver only small

amounts of power. We connected the C2075 to an external N110EF-00 power supply
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so we can attach a power meter and validate our results. Figure 3.2 shows us the

power management connections and gives a clear idea of how we validate our model.

3.3 Power Measurement using NVML

Nvidia Management Library (NVML) high level utility called nvidia-smi not only

provides a way to measure power but also various other features like the ability to set

ECC (Error Correction Code) to zero if it is not needed, or to monitor memory usage,

among other things. For a full list of features available via nvidia-smi utility please

refer to NVML manual [19]. NVML can be used to measure power when running

the kernel but since nvidia-smi is a high level utility the rate of sampling power

usage is very low and unless the kernel is running for a very long time we would not

notice the change in power. NVML offers a lot of useful utilities for not only GPUs

such as C2075 but also the Nvidia Tesla C2050 GPU where one would see power

in states rather than in milliwatts. The nvmlDeviceGetPowerUsage function in the

Figure 3.2: Validation using external power supply
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NVML library retrieves the power usage reading for the device, in milliwatts. This

is the power draw for the entire board, including GPU, memory, etc. The reading is

accurate to within a range of +/- 5 watts error with milliwatt precision. It is only

available if power management mode is supported.

We can also query for power management support using nvmlDeviceGetPower-

ManagementMode. For a C2050 GPU we would observe power states P0-P15 using

the NVML function call nvmlDeviceGetPowerState where P0 is the power state

when the GPU is running under full load and P15 is the power state when the

GPU is completely idle for a long time. We can also retrieve temperature using

the NVML high level utility or using the Nvidia Management Library’s function call

nvmlDeviceGetTemperature.

Kill-A-Watt is a power meter that we use to verify our results [11]. Kill-A-Watt

allows us to check power usage when connected to an external power supply. Since

we are measuring the power at the PSU (Power Supply Unit) level we have to take

the efficiency of the the PSU into account. Our PSU which is a N110EF-00 has a loss

of 11% of power.

3.4 PTX analysis

PTX stands for Parallel Thread eXecution, which is a pseudo-assembly code for GPUs

[20]. PTX provides us with insight about how our code gets mapped into the CUDA

architecture. It provides a machine independent ISA for C/C++.

We look at the PTX code to analyze the number of registers used, number of

branches, global memory accesses, and floating point operations which is the key for

our micro-benchmarks. This analysis is of particular interest to us because, if we

wrote a micro-benchmark to test floating point operations, we would like to minimize

data transfer and stress the floating point operations using registers. PTX allows us

to analyze memory usage using –ptxas-options=-v and the output would be:
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1 ptxas i n f o : Compiling entry func t i on ’ \ Z9 l o g a r i t hmP f f i i ’ for ’sm\ 20 ’

2 ptxas i n f o : Function p r op e r t i e s for \ Z9 l o g a r i t hmP f f i i

3 4096 bytes s tack frame , 0 bytes s p i l l s t o r e s , 0 bytes s p i l l l oads

4 ptxas i n f o : Used 23 r e g i s t e r s , 52 bytes cmem [ 0 ] , 16 bytes cmem[ 1 6 ]

Listing 3.1: PTX reporting memory usage

3.5 Frequency measurement of NVML Sensor

Frequency measurement is an important part of our analysis because if we measure

power readings at a higher frequency than proposed, we observe the power reading

repeating in a regular fashion. For example, if one calls NVML at 200 Hz frequency,

one would observe 21 power measurement values repeating three times for our

benchmark. To validate this, we have conducted a series of experiments where we

measured Taylor series benchmark power at 200 Hz in Figure 3.4 and at 625 Hz in

Figure 3.5 and each value repeats 3 and 6 times, respectively. So the maximum power

measurement frequency is 62.5 Hz (Figure 3.3). These experiments show that over

sampling the sensor will provide us with no additional information.

Figure 3.3: Power sampling frequency 62.5 Hz
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Figure 3.4: Power sampling frequency 200 Hz

Figure 3.5: Power sampling frequency 625 Hz
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3.6 Summary

This chapter explained the Nvidia C2075 architectural components such as registers,

shared memory, global memory, and floating point units. The maximum frequency of

the NVML power sensor is measured. Connections to Kill-A-Watt from an external

power supply to validation our power measurements is also explained. PTX code

is used to analyze the number of integer and floating point operations, shared and

global memory accesses, and register accesses. The next chapter explains about our

AMG model and each micro-benchmark in detail.
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Chapter 4

Activity-based Model for GPUs

(AMG)

A key challenge to effective runtime power management is to know the real-time

power consumption. Although the power estimation for processors, memories, disks,

and fans has been introduced, the power estimation technique of GPUs is relatively

less addressed. However, runtime power estimation for individual micro-architectural

structures on GPUs, such as caches and ALUs, would be useful for fine-grain

management of package temperature and power requirements. We refer to estimating

at this level as per-structure power estimation. Per-structure power estimation is

useful for selectively enabling and disabling of micro-architectural resources.

To address the challenges of estimating per-structure power in hardware, we

propose a new analytical model, called Activity-based Model for GPUs (AMG),

to estimate activity factors and power for micro-architectural structures on GPUs.

This model does not rely on real-time current monitoring or simulating hundreds of

utilization statistics. We expect only a few input statistics are sufficient to estimate

per-structure dynamic power of a GPU because the myriad per-structure events are

related to a small set of global parameters, such as execution time and load rate.

We use this key observation to drive the development of AMG. In spite of limited
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input data, AMG′s linear-regression-based methodology can estimate activity for

tens or hundreds of micro structures. We first analyze the correlation of a variety

of performance metrics. Then we monitor only the least correlated metrics and

use monitored metrics to extrapolate the concerned metrics. After we get all the

concerned metrics about the structure events, we apply a per-event energy model

to those structures to calculate the power of each structure. We believe that AMG

makes a further step towards understanding and reducing the power of GPU systems

through the usage of architecture level performance counters.

Power consumption can be divided into run-time power and idle power.

4.1 Idle Power

Idle power is the power consumed by the GPU when the GPU is turned on but no

kernel is running. We measured the short idle power of a C2075 when the GPU is just

turned on and does not do any work at 80W, which is also known as startup power

for any kernel to be launched. When the GPU is in a long idle state, i.e., when the

GPU is doing nothing for a long period of time, we measured the power consumed at

35W. The TDP (Thermal Design Power), as reported by NVIDIA, for the C2075 is

225W [18].

4.2 Run-time Power Consumption

We measure the run-time power of a kernel with the NVML library by running the

kernel on a thread and NVML on another thread using Pthreads. We have chosen

Pthreads because we would like to reduce overhead, and the only communication we

would like to have with the main thread is a flag variable and variable to store power

readings that are set to be volatile. The thread that is running NVML stops when the

flag is reset, which is when the GPU kernel stops executing. For our run-time power

consumption measurements of different micro-architectures, such as floating point,

24



shared memory, and global memory, we have designed micro-benchmarks such as

memory copy with coalesced memory and with noncoalesced memory. For the floating

point benchmark derived from a Taylor series, we run 1 million operations with

measure power of 14 blocks and each block running 1024 threads. We used enough

threads to cover the arithmetic latency of the SMs (Streaming Multiprocessors), which

means that on a Compute Capability 2.0 GPU, we need about 10 warps (groups of

32 threads) per SM. So that means, for example, on a Fermi C2075 GPU with 14

SMs, we would need at least 4480 threads, divided into at least 14 blocks. The way to

manage the number of active SMs is changing the number of active blocks [8]. We use

14 blocks to run each benchmark since the C2075 has 14 SMs that run simultaneously.

If more than 14 blocks are assigned, the next blocks waits for one of the blocks to

finish working and then starts working. Energy consumption varies with the number

of SMs because of the low activity factors, as idle SMs do not consume as much energy

as active SMs.

A Unit is defined as an architectural component such as a floating point unit

(FPU), shared memory, or global memory. We construct our model as

Total power consumption = Idle Power + Runtime Power (4.1)

Runtime Power =
e∑

i=1

(NSM × Pu,i × Uu,i) +Bu,i × Uu,i (4.2)

NSM Number of units

Pu,i Power consumption of active unit

e number of architectural component types

Bu,i Base power of unit

Uu,i Utilization
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Table 4.1: Power consumption of various units

Pu,i Values for different Units Value
Floating Point Unit 2.2

Shared Memory 1
Global Memory 3.0

Table 4.2: Base power for various units

Bu,i Values for different Units Value
Floating Point Unit 6

Shared Memory 3.85
Global Memory 10

4.2.1 Floating Point Operations

The intent of this benchmark is to create kernels that use the floating point units,

but with little or no other parts of SPs used. The benchmark scales from 1 to 14

SMs, with each of their floating point ALUs heavily used. The power contribution

of floating point units is to fit a line parameterized by the number of SMs that are

busy. We designed our floating point benchmark based on a Taylor series in such

a way that each thread computes the Taylor series of an element. We iterate each

calculation 16000 times to make the kernel run long enough so that we can get stable

power readings. During this process of measuring floating point instructions, we only

use registers for storage. The memory usage reported by cudaMemGetInfo is found

to be 80 MB mainly because that is the memory that is set apart by the compiler for

the GPU usage. We expect the memory usage to be much lower than that since most

of the variables are reused in an iterative way by each thread. We use cublasSasum

to add the thread’s results together so that the compiler will not be able to optimize.
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Figure 4.1: Average Power consumption of Floating point operations

4.2.2 Shared Memory

We use shared to allocate shared memory as explained in the CUDA manual [17].

We wrote micro-benchmarks for shared memory with and without bank conflicts.

We use the cudaFuncSetCacheConfig function to increase the shared memory size

from 16K to 48K. This allows us to estimate average power consumed by the kernel

when we use the shared memory completely. The default is 48 KB for shared cache

and 16 KB for L1. Shared memory is divided into 32 banks and each bank holds a

32-bit value (integer or float), so we write micro-benchmarks to exhibit the energy

difference between shared memory with bank conflicts and without bank conflicts.

Shared memory without bank conflicts is designed to have regular access patterns. A

set of micro-benchmarks is designed to analyze shared memory.

The advantages of using shared memory over global memory are many:

1. Cooperation between threads.

2. Much faster than global memory.
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3. If one thread loads data it can be used all the threads.

4. The amount of shared memory is configurable via the cudaFuncSetCacheConfig

function.

Table 4.3: Shared Memory

Case1 No bank conflicts
Case2 two bank conflicts
Case3 four bank conflicts
Case4 eight bank conflicts
Case5 sixteen bank conflicts

Figure 4.2: Power consumed by shared memory without bank conflicts
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4.2.3 Global Memory

Global memory space is the largest memory available on a GPU. For example, on

NVIDIA C2075 there are 6 GB of GDDR5, which is global memory implemented

with Dynamic Random Access Memory (DRAM). The latency of global memory is

on the order of hundreds of cycles, and the bandwidth is also very limited. By looking

at the PTX code we can actually identify the global memory accesses.

Coalesced Memory

Since access to global memory is via 32, 64, or 128 byte accesses, we design our

benchmark in such a way each thread can access it in a regular pattern of 128 bytes.

Coalesced memory accesses are very important for instruction throughput. The local

and global variables use global memory. If we declare an array of large size without

using shared memory, it resides in global memory and accesses of strides of 128 are

actually better than an irregular pattern. Figure 4.3 shows power consumption of

coalesced memory.

Figure 4.3: Power consumed by global memory with coalesced memory accesses
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Figure 4.4: Power consumed by global memory with noncoalesced memory access

Noncoalesced Memory

If memory accesses to global memory which are not regular patterns to global memory

are called noncoalesced accesses. Our results show that the noncoalesced memory

consumes at least twice the energy consumed for 16k writes and 16k reads compared

to coalesced memory accesses. Figure 4.4 shows power consumption of noncoalesced

memory accesses. The noncoalesced memory accesses are at least 4 times slower than

coalesced memory accesses which results in huge energy consumption.

4.3 Validation

The first step in validating out model is to plot the predicted values. To validate our

model we use two versions of matrix matrix multiply from the CUDA SDK, i.e. one

which uses shared memory and one which does not use shared memory. For matrix

multiply which does not use shared memory the number of global memory reads is N2

and writes for the kernel is N since we consider two matrices of N * N. The average
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power consumed by this kernel of size 14K is 130 W. We choose matrix of size 14K

because C2075 GPU has 14 SM and each SM has 1024 threads so for a matrix of size

14K all the threads in each SM are working. The average power consumed by the

kernel that uses shared memory is 120 W since the number of reads and writes to

global memory decrease by a large factor.

1 for ( e = 0 ; e < A. width ; ++e )

2 {

3 Cvalue += A. e lements [ row ∗ A. width + e ]

4 ∗ B. e lements [ e ∗ B. width + co l ] ;

5 }

6 C. e lements [ row ∗ C. width + co l ] = Cvalue ;

Listing 4.1: Naive Matrix Matrix multiply

The naive implementation shown above does not use shared memory. As a result

is a performance penalty and power consumption also increases.

1 s h a r e d f loat Mds [TILE WIDTH ] [ TILE WIDTH ] ;

2 s h a r e d f loat Nds [TILE WIDTH ] [ TILE WIDTH ] ;

3 int bx=blockIdx . x , by=blockIdx . y , tx=threadIdx . x , ty= threadIdx . y ;

4 int Row = by ∗ TILE WIDTH + ty ;

5 int Col = bx ∗ TILE WIDTH + tx ;

6 f loat Pvalue = 0 ;

7 for ( int k = 0 ; k < Width/TILE WIDTH; ++k)

8 {

9 Mds [ ty ] [ tx ]=Md[Row∗Width + (k∗TILE WIDTH + tx ) ] ;

10 Nds [ ty ] [ tx ]=Nd [ ( k∗TILE WIDTH + ty ) ∗ Width + Col ] ;

11 sync th r ead s ( ) ;

12 for ( int k = 0 ; k < TILE WIDTH; ++k )

13 Pvalue+=Mds [ ty ] [ k ]∗Nds [ k ] [ tx ] ;

14 sync th r ead s ( ) ;

15 }

16 Pd [Row∗ Width + Col ] = Pvalue ;

Listing 4.2: Matrix Matrix multiply with shared memory
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This implementation uses shared memory, the surprising fact is that the kernel

with shared memory is faster as well as consumes less power so we can conclude that

that global memory consumes a lot of power.

Predicting power using AMG is an important step since previous generation GPUs

such as Nvidia C2050 do not fully support NVML. To predict power we need the

execution time of each unit

We split the matrix matrix multiply so that we can tease out computation and

memory. We write a CUDA kernel which performs the same number of floating point

operations as the matrix multiply and measure the time taken and average power

consumed by the kernel and we follow the same rule for memory operations.

Table 4.4: Matrix Matrix Multiply example

Kernel Run time Power(W) Processing Time (sec)
Matrix Matrix Multiply 50 111

Floating point 37 45
Memory 45 47

Floating Point Unit

Time taken by floating point unit = 45 seconds

Number of SMs used M = 14

Power consumed/SM by active Unit = 2.2

Global memory

Time taken by floating point unit = 47 seconds

Number of SMs used M = 14

Power consumed/SM by active Unit = 3

Table 4.5: Matrix Matrix Multiply evaluated using AMG

Parameter FPU Global
M 14 14
Pu,i 2.2 3
Bu,i 6 10
Uu,i 0.405 0.423
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Run time power = (((14× 2.2× 0.405) + 6× 0.405)+ (4.3)

((14× 3× 0.423) + 10× 0.423)) (4.4)

Runtime Power = 36.9 W Idle Power = 80 W

Total Power for Matrix Multiply = 116.9 W

%Error =
|ActualV alue− PredictedV alue|

ActualV alue
∗ 100 (4.5)

%Error =
13.91

130
∗ 100 (4.6)

%Error = 10.7%

Using matrix matrix multiply we have shown that our model predicts power

consumption if we know the execution rates. The execution time of each individual

components do not add to the total execution time, so that is the primary reason for

the error. If we could obtain more precise execution rates of each individual units we

might be able to obtain higher accuracy.

4.4 Power and Temperature relationship

The power consumption is a very critical parameter of contemporary integrated

circuits. It is obvious that a circuit should consume as little power as possible and

ought to work with maximum speed and efficiency. However, power parameters are

dependent on temperature, which can change with power dissipated in the circuit. In

a GPU there are several SMs working simultaneously which further increases power.

With rising temperature, power consumption becomes higher, too. The principal

reason for that behavior is the increased amount of leakage current with higher

temperatures, and the negative temperature coefficient of the transistors [5].
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Figures 4.5 and 4.6 show the increase in power consumption when Taylor series

and memory copy benchmarks are executed at various startup temperatures. To

figure out the temperature influence on power, a kernel is executed applies a workload

to the GPU in order to raise the temperature of the GPU to a certain value. The

power consumption of FLOPs benchmark increases by 4 W when startup temperature

increase from 50 C to 80 C. Because the NVML power measurments are only accurate

to within 5 W, we don’t consider temperature hereafter. The temperature influence on

power consumption is only 3-4% for the current generation GPU. Thermal slowdown

occurs at 90 C and thermal shutdown at 100 C.

Figure 4.5: Increase in power consumption with temperature for FLOPs benchmark

4.5 Summary

In this chapter we present our AMG model which can used to predict power

consumption. We explain micro-benchmark for each architectural unit such as floating

point unit, shared memory, global memory. We have validated our model using

matrix-matrix multiply and the error is only 10.07%. We have also analyzed power

and temperature relationship and found that temperature influence on power is only
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Figure 4.6: Increase in power consumption with Temperature for Global Memory
benchmark

3-4%. The next chapter discusses MAGMA BLAS2 kernels, BLAS3 kernels, LU

factorization, and Hessenberg and we estimate power for these kernels based on our

model.
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Chapter 5

Power Analysis of MAGMA

Kernels

In the 1970’s, vector machines were introduced; to take advantage of the vector

processors, matrix vector operations were introduced. Next came the RISC

processors, and to take advantage of memory heirarcy, cache optimized matrix matrix

operations were introduced. Improvement in performance in current GPUs were as

a result of adding different levels of cache and improvements in memory bandwidth

compared to the previous generation of GPU [6]. Block operations can be optimized

for each architecture to account for its memory hierarchy, and therefore provide a

transportable way to achieve high efficiency on diverse modern machines.

The energy consumption of linear algebra kernels is of vital importance, as

these kernels are widely used, so we measured some of the MAGMA kernels

that are both memory and computationally intensive. We analyzed the real

time power consumption of two fundamental linear algebra algorithms; the LU

factorization (MAGMA Dgetrf) for solving dense linear systems of equations, and

the upper Hessenberg reduction (magma Dgehrd) for solving the general eigenvalue

problem. Results show that the MAGMA implementations of these algorithms achieve

astounding energy efficiency. We have demonstrated that, depending on hardware
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and software configuration, MAGMA uses as little as 1/50th the energy of traditional

multicore CPUs. Shown below are the performance charts for the two algorithms

along with the real-time power consumption traces. The MAGMA LU factorization

is a compute bound algorithm (expressed in terms of GEMMs), and the MAGMA

Hessenberg reduction is memory bound (expressed in terms of GEMVs and GEMMS,

respectively 20% and 80% of the flops). The real-time power consumption for these

kernels (GEMM and GEMV) is also also measured, and power consumed by the

MAGMA DGEMM and SGEMM algorithm are found to be 180 W and 180 W and

for DGEMV power consumption is 135 W and SGEMV is 135 W.

The advantages of using the Fermi architecture vs. older generation GPUs are

numerous. For example, the LU factorization takes full advantage of the increased

shared memory, number of registers, number of CUDA cores in a multiprocessor, and

some other changes that were also introduced. For example, register blocking was

introduced especially for Fermi architecture to take advantage of memory hierarchy.

Figure 5.1, according to [13], shows the computation is divided into NT = NTX ∗NTY

so that each sub-matrix can load in shared memory. The MAGMA GEMM takes

advantage of coalesced memory to write final results from registers to global memory.

5.1 BLAS 2 and BLAS 3 Kernels

The MAGMA kernels utilize CPU and GPU for the computations. The measuring

frequency is 125 KHz which is twice the maximum frequency. The impact on CPU

computations while spawing Pthreads to measure power using NVML is small as

frequency is not very high. Figure 5.2 shows the performance of SGEMM and

DGEMM. The DGEMM performance for a matrix of size 9K is 296.11 GFLOPS,

which is 58% of the theoretical peak, and the performance of SGEMM for a size 9K

matrix is 632 GFLOPS.

The performance of SGEMV and DGEMV is considerably less compared to

SGEMM and DGEMM because the BLAS 2 kernels do not utilize the GPU as
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efficiently as BLAS 3 kernels. Figure 5.3 shows the performance numbers for a

9K matrix is 60 GFLOPS for SGEMV and for DGEMV the performance is 30.47

GPLOPS.

Figure 5.1: GPU GEMMs on Fermi architecture
[13]

Figure 5.2: Performance of single and double precision MAGMA BLAS 3 Kernels
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Figure 5.3: Performance of single and double precision MAGMA BLAS 2 Kernels

Figure 5.4 shows the power consumed by single and double precision MAGMA

GEMMs. The same amount of power is consumed by both the BLAS 3 kernels because

an SP can issue two single precision instructions or one double precision every two

clocks, but energy varies since single precision MAGMA GEMMs and GEMVs are

twice as fast as double precision.

Figure 5.4 shows us the performance and power consumption of MAGMA

DGEMM and MAGMA SGEMM with NVML. The GFLOPS per Watt for a matrix

of size 10112 is 1.49; this proves that the GPU not only has better performance, but

also saves on energy.

5.1.1 Measuring time taken in MAGMA Kernels

The function get current time() calls gettimeofday(), so the resolution is a microsec-

ond. Before calling the gettimeofday() there is a call to cudaThreadSynchronize() to

make sure previous GPU tasks have completed. Thus one can measure the time of
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Figure 5.4: Average Power consumption of single and double precision MAGMA
BLAS3 Kernels

40



Figure 5.5: Average Power consumption of single and double precision MAGMA
BLAS2 Kernels

Figure 5.6: Energy consumption of double precision MAGMA BLAS3 Kernels
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Figure 5.7: Energy consumption of single precision MAGMA BLAS3 Kernels

Figure 5.8: Energy single precision MAGMA BLAS2 Kernels
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a particular GPU kernel by surrounding it by calls to get current time(). If between

two get current time() calls there are functions transferring data, the time measure

will include the time for the transfer. We measure the time for DGEMM on the GPU,

i.e., we assume the data and the result will be in the GPU memory.

Table 5.1: Power consumption of MAGMA BLAS2 and BLAS3 kernels

MAGMA Kernel Average power consumed (W) of matrix size 8K
DGEMM 180
SGEMM 180
DGEMV 135
SGEMV 135

Figure 5.9: Energy consumed by double precision MAGMA BLAS2 Kernels
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5.2 MAGMA LU Factorization and Hessenberg

Let A be a square matrix, then A can be decomposed into LU, where L is the lower

triangular and U is the upper triangular matrix.

A = LU

 A11 A12

A21 A22

 =

 L11 L12

L21 L22

 U11 U21

U21 U22

 (5.1)

And LU factorization with partial pivoting is of the form

PA = LU

P

 A11 A12

A21 A22

 =

 L11 L12

L21 L22

 U11 U21

U21 U22

 (5.2)

where P is a permutation matrix, L is a lower triangular matrix and U is an upper

triangular matrix

Table 5.2: GPU vs CPU

Device Name Fermi C2075 GPU AMD Istanbul (8 socket * 6 core (48 core) @ 2.8 GHz)
DP Peak 515 + 40 GFLOPS 538 GFLOPS
System Cost $3000 $10000
Power 220 W 1022 W

The MAGMA LU factorization uses a hybridization methodology to split the

computation between the CPU host and GPU. The splitting aims to match the LU’s

algorithmic requirements to the architectural strengths of the GPU and the CPU. In

44



Figure 5.10: Dgetrf and Dgehrd comparison between GPU and CPU

the case of LU, this translates into having all matrix-matrix (GEMM) multiplication

done on the GPU, and the panel factorizations on CPU. The design of the algorithm

allows for big enough matrices to totally overlap the CPU work with the large matrix-

matrix multiplications on the GPU. As a result, the performance of the MAGMA LU

algorithm runs at the speed of performing GEMMs on the GPU. Our experiments

have shown that the use of MAGMA GEMM operations on GPU completely utilize

it thus maximize power consumption, which, combined with the description above,

explains why the hybrid LU factorization also maximizes the GPU power consumption

which reduces time taken so the overall energy consumption is minimized. Figure 5.10

shows us the theoretical performance of MAGMA DGETRF, which is an astounding

515 GFlops/s. Figure 5.12 shows power consumption analysis of DGETRF which

is actually close to DGEMM power consumption since 100% of the flops are from

DGEMM.
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Figure 5.11: Dgetrf
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Figure 5.12: MAGMA Dgetrf power consumption for a 10k matrix
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5.2.1 Reducing Noise in Power measurements

For Figure 5.12, a signal averaging technique is used over 24 sets of data. The skew

is very little as we start the thread, which is running NVML just before the MAGMA

kernel call using a volatile variable. Signal averaging is a signal processing technique

applied in the time domain, intended to increase the strength of a signal relative to

noise that is obscuring it [33]. By averaging a set of replicate measurements, the

signal-to-noise ratio, S/N, will be increased, ideally in proportion to the square root

of the number of measurements.

We chose our bandwidth according to Nyquist theorem which states that a

bandlimited analog signal can be perfectly reconstructed from an infinite sequence of

samples if the sampling rate exceeds 2B samples per second, where B is the highest

frequency of the original signal [32]. The measuring frequency is 125 Hz because the

maximum frequency is 62.5 Hz.

The other technique that was used to reduce noise was to measure the number

of DGEMM and DGEMV calls from the algorithm to measurements but NVML has

a very low frequency of 62.5 Hz compared to the clock rate of NVIDIA C2075 GPU

which is 1.15 GHz so cannot observe all the peaks.

According to the MAGMA DGETRF algorithm

∀panel =

 1 small DGEMM

1 large DGEMM

.

Table 5.3: DGEMM calls in MAGMA LU

Source Number of DGEMMs
Algorithm 78
NVML 75

Table 5.3 shows the number of DGEMM calls MAGMA DGETRF makes. From

the MAGMA algorithm, we can infer that there are 39 small DGEMMs and 39 large
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DGEMMs. For measurement we would consider a spike greater than 175 W as a

DGEMM call, since power consumed by a DGEMM kernel is 180 W.

5.2.2 MAGMA Hessenberg

The Hessenberg reduction algorithm is of the form QTAQ = H. In contrast to the

LU factorization, the other algorithm that we have studied, namely the Hessenberg

Reduction, cannot be entirely expressed in terms of GEMMs. Proper task splitting

on hybrid architectures using the Hessenberg principle, have been to known to give

enormous performance benefits [30]. According to [30] the operation count to reduce

an N by N matrix is (10/3)n3 and this makes Hessenberg reduction a suitable

candidate for acceleration. But 20% of the total flops of the algorithm, which take

70% of time, are in level 2 BLAS. This makes the algorithm memory bound and

we observe it for an energy consumption that is close to the power consumption for

matrix-vector operations. Figure 5.13 shows us the power consumption for MAGMA

DGEHRD which is also signal averaged over 24 data samples.

Figure 5.13: MAGMA Dgehrd power consumption for a 10k matrix
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According to the MAGMA DGETRF algorithm

∀panel =

 64 small DGEMV

6 large DGEMM

.

Table 5.4: DGEMM and DGEMV calls in MAGMA Hessenberg for a matrix of size
10 K

Source Number of DGEMM calls Number of DGEMV calls
Algorithm 936 9984
NVML 367 1457

Table 5.4 shows the number of DGEMM and DGEMV calls in MAGMA

Hessenberg. There is a large difference between the number of DGEMM and DGEMV

calls measured and observed because the frequency of the NVML sensor is on the order

of 62.5 Hz whereas the clock frequency of the GPU is of the order of 1.15 GHz.

Table 5.5: Average power consumption for a matrix size 10 K

MAGMA Kernel Name Average power consumed (W) of matrix size 8K
DGETRF 165
DGEHRD 150

5.3 Predictions for MAGMA kernels for matrix of

size 10K based on AMG

From our AMG model 4.1

Total power consumption = Idle Power + Runtime Power (5.3)

Runtime Power =
e∑

i=1

(NSM × Pu,i × Uu,i) +Bu,i × Uu,i (5.4)
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5.3.1 Power prediction for MAGMA DGEMM

MAGMA Double precision General Matrix Matrix multiply uses the GPU completely.

Power is predicted using our AMG model. Even though MAGMA kernels do a

very good job of hiding data latencies with computations utilization rates for shared

memory and global memory is 100%.

Power consumed by floating point unit = 14 ∗ 2.2× 0.58 + 6× 0.58 = 17.864 W

Power consumed by shared memory = 14× 1× 1 + 3× 1 = 17 W

Power consumed by global memory = 14× 3× 1 + 10× 1 = 52 W

Total runtime power = 86.864 W

Idle power = 80

Total power Predicted = 166.864 W

Total power measured = 180 W

error = 7.3%

MAGMA DGEMM achieves 58% of the theoretical peak that is the reason utilization

for floating point is .58.

5.3.2 Power prediction for MAGMA DGEMV

MAGMA Double precision General Matrix Vector does not utilize the GPU fully

as the matrix-vector operations get stalled by memory since the memory reads and

writes to global memory are not as fast as floating point operations on shared memory

or registers.

Power consumed by floating point unit 14× 2.2× 0.4 + 6× 0.4 = 14.72

Power consumed by shared memory 1× 14× 0.2 + 3× 0.2 = 3.4 W

Power consumed by Global memory 3× 14× 0.8 + 10× 0.8 = 41.6W

Total runtime power = 63.4 W

Idle power = 80 W

Total power Predicted = 143.4 W

Total power measured = 135 W
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error = 6.2%

The total power predicted is close to the measured power consumption. One of the

difficulties was finding the execution time of each unit. Floating point units are busy

only half of the time as memory needs to be fetched. Shared memory is used for

1/5th of the time and global memory is used the rest of the time, that is the reason

performance of DGEMV is only 30 GFLOPS; it is a memory bound kernel.

5.3.3 Power prediction for MAGMA DGETRF

MAGMA LU factorization’s power consumption is close to DGEMM power consump-

tion because 100% of flops in MAGMA LU are from MAGMA DGEMM.

Power consumed by floating point unit 14 ∗ 2.2× .48 + 6× .48 = 17.64

Power consumed by shared memory 1× 14× 1 + 3× 1 = 17

Power consumed by global memory 3× 14× 0.6 + 10× 0.6 = 31.2

Total runtime power = 65.2

Idle power = 80

Total power predicted = 144.64 W

Total power measured = 165 W

error = 12%

The MAGMA DGETRF achieves 48% of the peak that is why utilization for floating

point unit is .48 and all the available shared memory is used.

5.3.4 Power prediction for MAGMA DGEHRD

MAGMA Hessenberg’s power consumption is close to MAGMA DGEMV power

consumption as 20% of the total flops of the algorithm, which take 70% of time,

are in level 2 BLAS.

Power consumed by floating point unit 14× 2.2× 0.5 + 6× 0.5 = 18.4

Power consumed by shared memory 1× 14× 0.2 + 3× 0.2 = 3.4 W

Power consumed by Global memory 3× 14× 0.8 + 10× 0.8 = 41.6W
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Total runtime power = 63.4 W

Idle power = 80 W

Total power Predicted = 143.4 W

Total power measured = 150 W

error = 4.6%

5.3.5 Analysis of predictions for MAGMA kernels using

AMG

Texture memory is used heavily for MAGMA kernels, and since texture cache was not

included in our model, the total power prediction is affected by this. We also find that

it fails to yield accurate estimates for kernels with constant cache accesses because

of the lack of constant memory model for monitoring constant memory accesses,

resulting in significant underestimation for such kernels. The NVML sensor readings

are accurate with± 5 W so we can safely say that our model predicts power accurately.

5.4 Summary

In this chapter we have analyzed power consumption of MAGMA BLAS 2, BLAS3,

LU, and Hessenberg kernels. BLAS 3 kernels utilize the GPU completely, that is the

reason we observe power consumption of power consumption of these kernels close

to the maximum. BLAS 2 kernels are memory bound kernels, i.e. they are limited

by memory latencies which are large compared to the fast floating point operations

within registers or shared memory. GPU running MAGMA is compared with a CPU

running LAPACK and GPU uses as little as 1/50 of energy. Predictions for MAGMA

kernels power consumption using AMG are also noted. The maximum error is found

to be 12% mainly because we do not have a model for texture cache and texture
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cache is heavily used in MAGMA kernels. In the next chapter we are going to discuss

power measurments through PAPI.
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Chapter 6

Performance Application

Programming Interface

PAPI is an acronym for Performance Application Programming Interface. The PAPI

Project is being developed at the University of Tennessees Innovative Computing

Laboratory. This project was created to design, standardize, and implement

a portable and efficient API (Application Programming Interface) to access the

hardware performance counters found on most CPUs and other components such

as GPUs, sensors, and others.

Many microprocessors such as Intel’s Sandy Bridge, Nvidia C2075 offer perfor-

mance counter support. We develop the API so that application programmers can

improve their performance based on the information provided by counters.

Some of the important features of PAPI are:

• Platform independent comparison and analysis.

• Presents standard definitions for cross platform development.

• Standardize API among users, vendors.

• Open software, user support, well documented and structured.
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6.1 PAPI NVML Component

The PAPI Nvidia Management Library Component offers to provide an interface to

measure power and temperature on devices that support offer to support the NVM

library fully. Power consumption is instantaneous so we report power from Nvidia

cards at that instance.

1 PAPI event name to code ( ”NVML. TeslaC2075 . Device0 .

Device Get Power Usage ” , &(Events [ 0 ] ) )

2 PAPI event name to code ( ”NVML. TeslaC2075 . Device0 . Device Get Temperature

” , &(Events [ 1 ] ) )

3 PAPI create eventse t (&EventSet )

4 PAPI add events ( EventSet , ( int ∗ ) Events , NUMEVENTS )

5 PAPI start ( EventSet )

6 invoke the ke rne l

7 PAPI stop ( EventSet , va lue s )

8 p r i n t f ( ”Power usage i s %l l d \n” , va lue s [ 0 ] )

9 p r i n t f ( ”Temperature i s %l l d \n” , va lue s [ 1 ] )

Listing 6.1: PAPI source code

Listing 6.1 shows the the name of the event. The name of the event is split

into different parts that are defined as name of component, name of device, device

number, and capability of event. PAPI event name to code converts the name of the

event into a PAPI event code. Since multiple events are added we have to create an

event set. PAPI start starts PAPI counters; PAPI stop would stop the counting.
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1 PAPI VERSION : 4 2 1

2 Name NVML. TeslaC2075 . Device0 . Device Get Temperature −−− Code : 44000001

3 Name NVML. TeslaC2075 . Device0 . Device Get Power Usage −−− Code : 44000000

4 END: He l lo World !

5 51 −−> NVML. TeslaC2075 . Device0 . Device Get Temperature

6 32365 −−> NVML. TeslaC2075 . Device0 . Device Get Power Usage

Listing 6.2: PAPI output

6.2 Other Power Monitoring Components

6.2.1 PowerMon 2

A component is being developed for PowerMon 2 [1]. PowerMon is a device that can

is inserted between a system’s power supply and motherboard to monitor the current

and voltage of all 8 rails. Devices such as Kill-A-Watt have a very low frequency

of measurement, on the order of once a second, and since power is instantaneous,

measuring power with such a low frequency devices inhibits the observation of fine

changes in power. PowerMon offers us a chance to observe changes in power as it has

a very high frequency of 1024 Hz. Use of PowerMon has many advantages over other

measurement tools. PowerMon can be connected to host systems via USB which

can monitor power for the device. A microcontroller is used so that various tasks

performed by PowerMon such as scheduling, logging, and timestamping do not add

overhead to the system. The AMD1191 digital power monitor IC on each power rail

is used to detect voltage and current. The software used in PowerMon is a modified

version of Till Harbaums i2c-tiny-usb [28]. PowerMon2 is capable of reading 3000

readings per second.

The advantages of using PowerMon are

1. GPU power consumption can be measured
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2. Isolation of various components’ power consumption

3. Finer measurement since the frequency is 1024 Hz

4. Timestamping and log based analysis

5. Compact

6. Self monitoring device

7. Synchronization on separate targets

6.2.2 Running Average Power Limit component

PAPI supports the Running Average Power Limit component (RAPL) on Sandy-

Bridge by using the x86-msr driver [31]. RAPL provides a standard interface for

limiting power used by memory. Some of the essential parameters of RAPL are

power limit and time window. RAPL considers energy credits rather than setting

instantaneous limits. Once the limits are established by RAPL, it uses control

mechanisms to maintain that limit.

1

2 Trying a l l RAPL events

3 Found rap l component at c id 2

4

5 S ta r t i ng measurements . . .

6

7 Doing a naive 1024 x1024 MMM. . .

8 Matrix mult ip ly sum : s =1016404871450364.375000

9

10 Stopping measurements , took 4 .110 s , gathe r ing r e s u l t s . . .

11

12 Energy measurements :

13 PACKAGEENERGY:PACKAGE0 176.450363 J ( Average Power 42 .9W)

14 PACKAGEENERGY:PACKAGE1 75.812454 J ( Average Power 18 .4W)

15 DRAMENERGY:PACKAGE0 11.899246 J ( Average Power 2 .9W)
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16 DRAMENERGY:PACKAGE1 8.341141 J ( Average Power 2 .0W)

17 PP0 ENERGY:PACKAGE0 118.029236 J ( Average Power 28 .7W)

18 PP0 ENERGY:PACKAGE1 16.759064 J ( Average Power 4 .1W)

19

20 Fixed va lue s :

21 THERMAL SPEC:PACKAGE0 135.000W

22 THERMAL SPEC:PACKAGE1 135.000W

23 MINIMUMPOWER:PACKAGE0 51.000W

24 MINIMUMPOWER:PACKAGE1 51.000W

25 MAXIMUMPOWER:PACKAGE0 215.000W

26 MAXIMUMPOWER:PACKAGE1 215.000W

27 MAXIMUMTIMEWINDOW:PACKAGE0 0.046 s

28 MAXIMUMTIMEWINDOW:PACKAGE1 0.046 s

29 r a p l b a s i c . c PASSED

Listing 6.3: RAPL output

Figure 6.1: Graphical representation of RAPL

Listing 6.3 shows the output from the graphical tool [31], that needs to be compiled

against PAPI and built with ”–with-components = rapl”
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6.3 Summary

In this chapter we have presented PAPI components to measure power on various

devices. PAPI NVML component measures power and temperature on GPUs which

support NVML fully. In the next chapter we are going to present a comprehensive

analysis of our work.
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Chapter 7

Conclusions

There is a huge potential of research in this field of energy-aware high performance

computing with GPUs. The power consumed by the Japanese K computer is 12 MW.

To address the challenges of estimating per-structure power in hardware, we proposed

a new analytical model, called Activity-based Model for GPUs (AMG), to estimate

activity factors and power for micro-architectural structures on GPUs. The power

model using AMG predicts the power consumption and the execution time with an

average of 3% error for the evaluated GPGPU kernels. Live measurements using

Nvidia Management Library (NVML) is of particular interest to users, so we have

measured power on Nvidia C2075 GPU using NVML. We have also analyzed power

consumption of various MAGMA kernels, level 2 and level 3 BLAS kernels. We have

also analyzed power consumption of arithmetic intensive MAGMA LU factorization

and a memory bound MAGMA Hessenberg kernel.

This research differs from previous power estimation work in several aspects. Our

model targets towards the new Fermi with fine micro-architectural details and highly

variable power behavior. Our power measurement technique is non-disruptive, and

the AMG-based implementation is highly-portable. The component breakdowns we

produce are based on physical entities. As a result, these component breakdowns can

offer a foundation for future thermal modeling research. The fact that detailed power
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data can be collected in real-time is also important for thermal research, since the

large thermal time constants mandate long simulation runs. Using NVML, power can

be measured on Nvidia GPUs.

There are several key contributions of this work. The measurement technique

itself is portable, and can offer a viable alternative to many of the power simulations

currently guiding research evaluations. The component breakdowns offer sufficient

detail to be useful on their own, and their properties as a power signature for power

aware phase analysis seem to be even more promising. In conclusion, this work offers

both a measurement technique, as well as a characterization of a GPU’s various

components. We feel it offers a promising alternative to purely estimation-based

power research. We have developed a PAPI NVML component so that users can

access power and temperature measurements through more familiar PAPI.

7.1 Future Work

Our model can also be used by compilers or programmers to optimize program

configurations as we have demonstrated in the thesis. In our future work, we will build

a multi CPU GPU model, that will give us a complete picture of power consumption

for a system like Keenland [14], which has 120 nodes with 240 CPUs and 750 GPUs.

Power consumption for older GPUs is reported in Power states (P0-P15), where

P0 is the power state under maximum load, and P15 is idle power consumption.

We would like to deduce power numbers in Watts for those states so that users

can understand the meaning of power states. With ARM-based CPU/GPU hybrid

systems being deployed to reduce energy consumption, issues for modelling such

hybrid systems will be of special interest to us. The Barcelona Supercomputing

Center is developing a new ARM based machine to achieve 4 to 10 times the energy

efficiency of today’s supercomputers [15].
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