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Abstract 

 

A unique form of the quantum binomial coefficient (n choose k) for k = 2 and 3 is 

presented in this thesis. An interesting double summation formula with floor function 

bounds is used for k = 3. The equations both show the discrete nature of the quantum 

form as the binomial coefficient is partitioned into specific quantum integers. The proof 

of these equations has been shown as well. The equations show that a general form of the 

quantum binomial coefficient with k summations appears to be feasible. This will be 

investigated in future work.  
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Chapter 1 

Introduction 

 

The quantum form of a function, identity, theorem or expression is a generalization or 

expansion of the original form with the parameter q such that in the limit of q→1
-
 the 

original form is retained
1
. Quantum numbers are referred to in the literature as q-analogs 

or q-extensions
1
. Quantum forms are applied in quantum groups

2-4
 and have applications 

in a variety of fields such as quantum field theory
2-4

. 

 

Mathematical Introduction 

The second quantized form of the binomial coefficient is investigated in this thesis. 

Quantized numbers of the first kind
1,5-8

 are defined as, 

[ ]  ∑    
    

   

   

   

 

where 0 < q < 1. The second quantized numbers
9-11

 are given as, 

[ ] 
  ∑          

   

   

 
      

     
 

where again, 0 < q < 1. The second quantized form has a symmetrical quality as q and q
-1

 

can be exchanged. The first and second quantum forms of three are shown below in 

Figure 1 as an example. 
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Figure 1. Evaluation of [3]q (blue) and [3]
~

q (purple) quantized forms over 0 ≤ q < 1 

The second quantum form is related to the first by, 

[ ] 
  (

      

   
) [ ]  

These quantum numbers converge to the classical solution, k, in the limit of q→1
-
. 

   
    

[ ]     
    

    

   
   

   
    

[ ] 
     

    

      

     
   

The definition of the classical binomial coefficient is, 

(
 
 
)  

  

        
 

The first order q-binomial coefficient
12-13

 is given by,  
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]
 
 

[ ]  
[ ]  [   ]  

 

The second quantized binomial coefficient
9-11

 follows the same form, 
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[ ]   [   ]   
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where, 

[ ]  
  ∏[ ] 

 

 

   

 

and, 

[ ] 
    

[ ] 
    

[ ]  
    

Interestingly, the quantum form of the binomial coefficient generates a series of discrete 

quantum integers. These values are calculated by expanding the factorial into q form and 

then algebraically manipulating them back into discrete quantized values. For example, 

[
 
 
]
 

 

 
[ ]  

 

[ ]   [ ]   
 

[ ] [ ] [ ] [ ] 

[ ] [ ] [ ] 
 

[ ] [ ] 

[ ] 
  

 
  

 
        

 
      

  
 
      

 
      

   
 

  
 

 

  
 

 

  
           [ ]  [ ]  

A symbolic mathematics code (Appendix A) was developed to automatically generate 

these discrete values for the second quantized form of the binomial coefficient. The set of 

discrete values are shown in Table 1. For simplicity the notation has been modified such 

that,  

[ ]  [ ] 
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Table 1. Examples of the Discretized Second Quantum Binomial Coefficient 

n    k = 2 k = 3 

2 [1]
~ 

- 

3 [3]
 ~

 [1]
 ~

 

4 [5]
 ~

+[1]
 ~

 [4]
 ~

 

5 [7]
 ~

+[3]
 ~

 [7]
 ~

+[3]
 ~

 

6 [9]
 ~

+[5]
 ~

+[1]
 ~

 [10]
 ~

+[6]
 ~

+[4]
 ~

 

7 [11]
 ~

+[7]
 ~

+[3]
 ~

 [13]
 ~

+[9]
 ~

+[7]
 ~

+[5]
 ~

+[1]
 ~

 

8 [13]
 ~

+[9]
 ~

+[5]
 ~

+[1]
 ~

 [16]
 ~

+[12]
 ~

+[10]
 ~

+[8]
 ~

+[6]
 ~

+[4]
 ~

 

9 [15]
 ~

+[11]
 ~

+[7]
 ~

+[3]
 ~

 [19]
 ~

+[15]
 ~

+[13]
 ~

+[11]
 ~

+[9]
 ~

+[7]
 ~

+[7]
 ~

+[3]
 ~

 

 

It is important to note that the quantum form is generating a specific partitioning of the 

binomial coefficient. A similar portioning is present in the first quantum form of the 

binomial coefficient. As an example, the three forms of the binomial coefficient are given 

as, 

(
 

 
)     

[
 

 
]
 
 [  ]  [ ]  [ ]  [ ]  [ ]  

[
 

 
]
 

 

 [  ] 
  [ ] 

  [ ] 
  

It is interesting to note that in the limit of q→1
-
 the quantum integers revert to classical 

integers and the classical value of 20 is retained in both quantum cases. This thesis will 

focus on the symmetric second quantized form of the binomial coefficient and its 

partitioning. 

 

 



 
5 

 

Using tables of the second quantum discretized values a pattern was observed. All of the 

terms had a maximum value of k(n - k) + 1. For k = 2 the pattern is apparent as all terms 

are separated by a space of 4. This was represented as a summation and only determining 

the summations bounds was necessary. For k = 3 the pattern was more complex as there 

are irregular spacing’s of 0, 2, 4 or 6. It will be shown later that this can be represented by 

a series of overlapping patterns with different summation bounds. Finally, a proof will be 

made to show that these equations are valid. 
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Chapter 2  

[n choose 2]
~
 Equation 

 

The set of values with k = 2 are easily given as, 

[
 

   
]
 

 
 ∑[           ] 

 

 

   

 

where,  

  ⌊
   

 
⌋ 

Here the floor function
14

 is defined as,  

⌊ ⌋                

where x is a real number, m is an integer, and Z is the set of integers. Put more simply, the floor 

of x is the largest integer not greater than x. 

 

Proof 

The proof of this equation is given easily. 

[
 
 
]
 

  
 

∑[           ] 
 

 

   

 

Expanding the right hand side (RHS) into q form yields, 

∑[           ] 
 

 

   

 (
 

     
)∑(                  )

 

   

 

 (
 

     
)∑(                   )
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Geometric series are applied in order to eliminate the summations. Only the terms which 

are functions of i must be evaluated within the summations. 

∑    

    

   

 (
             

     
) 

∑   

    

   

 (
            

    
) 

The function f(n) is simplified by expanding n into n = 2N + m. Where m = 2 or 3. This is 

motivated by the fact that the floor function has a period of 2.  

     ⌊
   

 
⌋  ⌊

      

 
⌋    ⌊

   

 
⌋    

Expanding n within the full equation and applying the summation reductions results in, 

(
 

     
) {        (

          

     
)           (

         

    
)} 

The left hand side (LHS) factorial is expanded into q form as well, 

[
 
 
]
 

 

 
[ ] [   ] 

[ ] 
 

                    

                
 

 
                                

                
 

The difference between the LHS and the RHS is, 

                   

                
 

which is zero for both m = 2 & 3. Thus, the LHS and RHS are equivalent.  
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Chapter 3  

[n choose 3]
~
 Equations 

 

The form for k = 3 is not given as easily. A Mathematica code was written to output the 

list of q-bracketed numbers for n choose 3 (Appendix A). This list was then manually 

analyzed until a pattern was found. The key is the mixed spacing of 0, 2, 4 or 6 between 

the bracketed numbers. It then became apparent that there were overlapping patterns. 

These overlapping patterns can be expressed as a double summation.  

 

Initial Summation Equation 

Initially n choose 3 was found to be numerically equivalent to a set of three equations, 

each for a subset of n. The equations contain additional complication as certain terms are 

only applicable beyond certain values of n. The notation below shows each term and the 

range of n values where it is valid. 

 

For n = 4, 6, 8, 10 … 

[
 

   
]
 

 

 [        ] 
  

{
 
 
 

 
 
 

∑ [           ] 
 

(
  
 

  )

   

    

 ∑ ∑[       ] 
 

 

   

(
   
 

)
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For n = 3, 7, 11, 15 … 

[
 

   
]
 

 

 [        ] 
  

{
 
 
 
 
 

 
 
 
 
 

[ ] 
  ∑ [           ] 

 

(
      

 
  )

   

    

 ∑ ∑[       ] 
 

    

   

(
    

 
)

   

     

 ∑ ∑[        ] 
 

    

   

(
    

 
)

   

     

 

For n=5, 9, 13, 17 … 

[
 

   
]
 

 

 [        ] 
  [ ] 

  

{
 
 
 
 
 

 
 
 
 
 

∑ [           ] 
 

(
      

 
  )

   

    

 ∑ ∑[       ] 
 

  

   

(
   
 

)

   

    

 ∑ ∑[        ] 
 

  

   

(
    

 
)

   

     

 

These equations have been symbolically verified using a computer script to a value of n 

greater than 100. The code used to accomplish this task is available in Appendix B.  This 

confirmation shows that the equations are very likely correct as no new trends are 

expected to develop in the system past a large value of n. 

 
A More Elegant Solution 

The equations above appear to work, but are cumbersome. After further analysis, a new 

single equation was developed. This equation contains a single double summation with 
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floor functions at the upper limits. These floor functions significantly reduce the 

complexity of the formulation; however, they will make the proof of this equation more 

difficult. 

[
 

   
]
 

 

 ∑∑[              ] 
 

 

   

 

   

 

where, 

  ⌊
   

 
⌋ 

  ⌊
      

 
⌋  ⌊

      

 
⌋ 

This new function has also been verified using a symbolic computer script to a high value 

of n, again this showed that these equations are very likely correct (code is available in 

Appendix C). In order to show that this equation is true for all n ≥ 3 (n is in the set of 

integers) a mathematical proof is required. 
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Chapter 4  

Proof of Simplified [n choose 3]
~
 Equation 

 

Goal and Plan 

The elegant double summation equation was shown with symbolic numerical techniques 

to equal the factorial. A mathematical proof is required to shown that this equation holds 

for all n ≥ 3 (n is in the set of integers). 

[
 

   
]
 

 

 
[ ] [   ] [   ] 

[ ] [ ] 
 

 
∑ ∑ [              ] 

 

      

   

    

   

 

This equation is converted into q form so that the LHS and RHS can be shown to be 

equal. 

(   
 
  ) ( 

 
         ) ( 

 
         )

( 
 
   ) ( 

 
     ) ( 

 
     )

 

 
 

∑ ∑(
                                    

     
)

      

   

    

   

 

The limits on the summations pose the greatest difficulty. They contain floor functions 

which do not lend themselves to easy manipulation. The next section will focus on the 

reduction of these summations and the removal of the floor functions. 

 

Summation Reduction 

The first summation is only a function of i. As a result is can be decomposed into an 

enclosed form. This reduces the equation to a single summation. Beginning with the 
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inside summation, the equation is put into q form. All variables that are not a function of i 

can be pulled out of the inside summation. The terms n, g(n,j), and j are constant, only i is 

varied. 

∑
                                  

     

      

   

 

The terms independent of i are pulled from the summations.  

(
            

     
) ∑     

      

   

 (
               

     
) ∑    

      

   

 

Using the geometric series the summations are reduced. The general form of the 

geometric series is given as, 

∑       
         

    

 

   

 

This is applied to the two summations above. 

∑     

      

   

 (
               

     
) 

∑    

      

   

 (
              

    
) 

In order to insure that the summation upper bound is greater than zero it is shown that the 

function g is always greater than or equal to zero as, 

     ⌊
         

 
⌋  ⌊

          

 
⌋ 

          ⌊
   

 
⌋  
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     ⌊(
 

 
) (

   

 
 ⌊

   

 
⌋)⌋  ⌊(

 

 
) (

   

 
 ⌊

   

 
⌋)⌋ 

and because n ≥ 3, 

   

 
 ⌊

   

 
⌋ 

Therefore g is always zero or greater. Now the inside summation is only in terms of q, g, 

n and j. The variable, i, has been removed. The total equation is now in the form, 

[
 
 
]
 

 

 ∑{(
            

     
)(

          

     
)  (

               

     
)(

         

    
)}

 

   

 

where, 

  ⌊
   

 
⌋ 

  ⌊
      

 
⌋  ⌊

      

 
⌋ 

Because this summation contains floor functions g and f and g is a function of j, the 

summation cannot be reduced immediately using geometric series. Therefore, in order to 

decompose the floor functions to allow for a proof n and j must be broken up into sub 

groups.  

 

The functions f and g have periods of three and four respectively. Thus, the common 

period of n which will decompose both terms is 12. The variable j is only in the function 

g, thus j only needs to be decomposed by a period of 4. 
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Splitting j into a function of H and p splits the reduced single summation back into a 

double summation. 

∑ [ ]

 

   

 ∑ ∑  [   ]

    

   

 

   

 

  ⌊
   

 
⌋  ⌊

       

 
⌋           

   ⌊
   

 
⌋ 

The limit on H must be made to match the original limit, f. Table 2 below shows the 

generation of j with the expansion 4H + p. The limit of j is 4N + f2, thus depending upon 

the value of p, H is limited at N or N - 1. This is provided by the function, 

              

       {
       
      

 

This piecewise function will create a problem which will prevent a general solution for 

all m and N. However, because m and p are finite set of integers there are a limited 

number of cases to be individually solved in the end.  

Table 2. Values of j expanded with 4H + p 

 p = 0 p = 1 p = 2 p = 3 

H = 1 0 1 2 3 

H = 2 4 5 6 7 

…     

H = N - 1 4N - 4 4N - 3 4N - 2 4N - 1 

H = N 4N 4N + 1 4N + 2 4N + 3 
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Finally, the function g is rewritten with the expanded variables as well. 

  ⌊
      

 
⌋  ⌊

      

 
⌋ 

  ⌊
               

 
⌋  ⌊

               

 
⌋ 

               

where, 

       ⌊
      

 
⌋  ⌊

      

 
⌋ 

A new variable l(p,m) is presented. Its values are shown in Table 3. 

 

The total equation was in the form, 

[
 
 
]
 

 

 (
 

     
)∑ ∑ {            (

          

     
)

        

   

 

   

                (
         

    
)} 

 

Table 3. l(p,m) 

m 3 4 5 6 7 8 9 10 11 12 13 14 

p = 0 0 0 1 1 3 3 4 4 6 6 7 7 

p = 1 -3 -2 -2 0 0 1 1 3 3 4 4 6 

p = 2 -5 -5 -3 -3 -2 -2 0 0 1 1 3 3 

p = 3 -8 -6 -6 -5 -5 -3 -3 -2 -2 0 0 1 

 

 

 



 
16 

The expansions on n and j are applied yielding, 

[
 
 
]
 

 

 (
 

     
)∑ ∑ {                  (

          

     
)

        

   

 

   

                    (
         

    
)} 

[
 
 
]
 

 

 (
 

     
)∑ ∑ {(

              

     
)     (          )

        

   

 

   

 (
               

    
)    (         )} 

The two key summations within this expanded form are, 

∑      (          )

        

   

 

and, 

∑     (         )

        

   

 

These equations are reduced using the geometric series as shown before. 

∑      (          )

        

   

 

∑      (                     )

        

   

 

∑ (                           )
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∑      

        

   

 (
                  

      
) 

∑     

        

   

 (
                 

     
) 

The second summation is similar to the first. 

∑     (         )

        

   

  

∑     (                    )

        

   

 

∑ (                          )

        

   

 

∑     

        

   

 (
                 

     
) 

∑      

        

   

 (
                  

      
) 
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Putting it all together, 

[
 
 
]
 

 

 (
 

     
)∑ {(

              

     
) [(

                  

      
)

 

   

                  (
                 

     
)]

 (
               

    
) [(

                 

     
)

                 (
                  

      
)]} 

This reduced equation is only a function of p, m, and N. At this point, because the 

functions L(p,m) and l(p,m) cannot be reduced in order to isolate the summation variable 

p, this summation will have be manually expanded. Fortunately there are only 4 terms in 

this summation, a product of the two previous summation reductions. Applying this 

expansion to the case where m = 3 yields, 

 

For m = 3 and p = 0: f2 = 0, L = 0, l = 0, 

{(
        

     
) [(

           

      
)           (

          

     
)]

 (
         

    
) [(

          

     
)          (

           

      
)]} 
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For m = 3 and p = 1: f2 = 0, L = 1, l = -3, 

{(
        

     
) [(

         

      
)           (

        

     
)]

 (
         

    
) [(

        

     
)          (

         

      
)]} 

For m = 3 and p = 2: f2 = 0, L = 1, l = -5, 

{(
         

     
) [(

         

      
)            (

        

     
)]

 (
          

    
) [(

        

     
)           (

         

      
)]} 

For m = 3 and p = 3: f2 = 0, L = 1, l = -8, 

{(
         

     
) [(

         

      
)            (

        

     
)]

 (
          

    
) [(

        

     
)           (

         

      
)]} 

These four terms are summed and then multiplied by (q – q
-1

)
-1

. With the aid of a 

symbolic manipulation code (available in Appendix D) this is shown to equal, (for m = 

3), 

        
 

         
 

                
 

              

  
 
      

 
        

 
      

 

Which proves that the summation equation is equal to the second quantum binomial 

coefficient for m = 3. The evaluation of the p-summation is repeated (Appendix E) for 

each value of m and is shown to be valid in all cases. Thus for all N ≥ 0 and m = 3, 4, 

…14 the summation equation is equal to the second quantum binomial coefficient.  
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Chapter 5  

Classical Limits and Future Work 

 

Classical Limits 

The proof above is valid for 0 < q < 1, thus as q→1
-
 the solution converges to the 

solution for the classical binomial coefficient. In the classical limit there are no longer 

discrete bracketed values, instead the integers add, forming the final value of the 

binomial coefficient. Therefore, 

(
 

   
)  ∑             

 

   

 

where,  

  ⌊
   

 
⌋ 

and, 

(
 

   
)  ∑∑                

 

   

 

   

 

where, 

  ⌊
   

 
⌋ 

  ⌊
      

 
⌋  ⌊

      

 
⌋ 
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[n choose 4]
~
 and Beyond 

The form given with k = 2 and 3 shows a pattern emerging. Following this pattern yields 

something of the form for k = 4, 

[
 

   
]
 

 

 ∑ ∑∑[                 ] 
 

 

   

 

   

 

   

 

If the previous patterns continue it is supposed that, 

  ⌊
   

 
⌋ 

 
 

 
⌊
      

   
⌋  ⌊

      

   
⌋ 

 
 
 

⌊
           

   
⌋  ⌊

           

 
⌋  ⌊

           

   
⌋ 

where f and g follow the previous form and e presents a new challenge. The work in the 

previous chapters shows that further analysis may uncover a solution which is general for 

all k which will have k-1 summations, with some structure defining the bounds. The 

summation bounds were determined for k = 2 and k = 3. Uncovering the k = 4 solution 

would assist in uncovering the underlying structure in the floor limits for all k.  

 

Finally, similar analysis as shown in this thesis is likely possible for other quantum forms 

of the binomial coefficient and will be explored. 
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Chapter 6  

Conclusion 

 

A unique form of the quantum binomial coefficient [n choose k]
~
 for k = 2 and 3 has been 

shown. The equations both show the discrete nature of the quantum form as the binomial 

coefficient is partitioned into specific quantum integers. The proof of these equations has 

been shown as well. The equations show that a general form of the quantum binomial 

coefficient with k summations appears to be feasible. This will be investigated in future 

work.  
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Appendix A 

Generation of Quantum Integers for the Second Q-Binomial Coefficient (Mathematica 

Code) 
Clear[k,n,nn,Nmax,i,j,h,k,e,q,f,g,e2,e1,p,count,countu,QuantsFull]; 

Quant[n_,q_]:=(1-q^n)/(1-q); 

Quant2[n_,q_]:=(q^n-q^(-n))/(q-q^(-1)); 

 

n=9; 

k=3; 

 

Array[QuantsFull,Binomial[n,k]]; 

count=0; 

countu=0; 

 

e 

=Normal[Series[Expand[Simplify[(Product[Quant2[i,q],{i,2,n}])/((Product

[Quant2[j,q],{j,2,k}])*(Product[Quant2[h,q],{h,2,n-k}]))]],{q,0,(n-

k)*k+10}]] 

 

f=Exponent[e,q]; 

 

If[f==0, 

  QuantsFull[1]=1; 

  count=1; 

  countu=1; 

  ]; 

e1=e; 

p=1; 

 

While[ f>0, 

  count=count+1; 

   

  QuantsFull[p]=f+1; 

   

  g=e1-Quant2[(f+1),q]; 

  e2 =Normal[Series[Expand[Simplify[g]],{q,0,(n-k)*k+10}]]; 

   

  If[f==Exponent[e2,q], 

   countu=countu;, 

   countu=countu+1; 

   ]; 

   

  f=Exponent[e2,q]; 

  p=p+1; 

   

  If[f==0, 

   ones=e2; 

   For[pp=1,pp<=(ones-1),pp++, 

    QuantsFull[p]=1; 

    e2=e2-1; 

    p=p+1; 

    count=count+1; 
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    countu=countu+1; 

    ]; 

    

   QuantsFull[p]=1; 

   count=count+1; 

   countu=countu+1; 

   ]; 

   

  e1=e2; 

  ];  

Print[Style["k=",24,Blue],Style[k,18,Blue],Style["  

n=",18,Red],Style[n,18,Red]]; 

Print[Table[QuantsFull[l],{l,count}]]; 

 

Example Output (for the input conditions shown in the code above): 

 

 
 
k = 3   n = 9 

{19,15,13,11,9,7,7,3} 
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Appendix B 

For n is Even (Mathematica Code) 
Clear[k,n,Nmax,i,j,h,e,q,f,g,e2,e1,p,count,countu,QuantsFull,m,s,r]; 

 

Quant[n_,q_]:=(1-q^n)/(1-q); 

Quant2[n_,q_]:=(q^n-q^(-n))/(q-q^(-1)); 

 

(*n is even*) 

n=16; 

k=3; 

 

Array[QuantsFull,Binomial[n,k]]; 

 

Print[Style["k=",24,Blue],Style[k,18,Blue]] 

 

count=0; 

countu=0; 

Print[Style["n=",18,Red],Style[n,18,Red]]; 

 

e 

=Normal[Series[Expand[Simplify[(Product[Quant2[i,q],{i,2,n}])/((Product

[Quant2[j,q],{j,2,k}])*(Product[Quant2[h,q],{h,2,n-k}]))]],{q,0,(n-

k)*k+10}]] 

 

Print[e] 

f=Exponent[e,q]; 

 

If[f==0, 

  QuantsFull[1]=1; 

  count=1; 

  countu=1; 

  ]; 

 

e1=e; 

p=1; 

 

While[ f>0, 

  count=count+1; 

   

  QuantsFull[p]=f+1; 

   

  g=e1-Quant2[(f+1),q]; 

  e2 =Normal[Series[Expand[Simplify[g]],{q,0,1001}]]; 

   

  If[f==Exponent[e2,q], 

   countu=countu;, 

   countu=countu+1; 

   ]; 

   

  f=Exponent[e2,q]; 

  p=p+1; 

   

  If[f==0, 
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   QuantsFull[p]=1; 

    

   count=count+(1*Normal[e2]); 

   countu=countu+1; 

   ]; 

   

  e1=e2; 

  ];  

 

Print[Table[QuantsFull[l],{l,count}]]; 

 

(*Print[Table[QuantsFull[l]-QuantsFull[l+1],{l,count-1}]];*) 

 

PRE=Table[0,{j,1,(((n-1)^2)/8-1/8)}]; 

spot=1; 

PRE[[spot]]=(n-k)*k+1; 

spot=spot+1; 

(*Print[PRE]*) 

 

If[n>=6, 

 For[m=1,m<=((3*n)/2-7),m++, 

   PRE[[spot]]=k*(n-k)-1-2*m; 

   spot=spot+1;];] 

(*Print[PRE]*) 

 

If[n>=10, 

 For[s=1,s<=(((n-8)/2)),s++, 

   For[r=1,r<=s,r++, 

    PRE[[spot]]=4+2*s+4*r ; 

    spot=spot+1; 

    ] 

   ];] 

 

PRE2=Sort[PRE,Greater]; 

Print[Style[PRE2,Green]]; 

DIFFS=Table[5,{o,1,((n-1)^2/8-1/8)}]; 

For[L=1,L<=((n-1)^2/8-1/8),L++, 

 DIFFS[[L]]=QuantsFull[L]-PRE2[[L]];] 

(*Difference table should be all zeros!!!*) 

Print[Style[DIFFS,Red]] 

 

Output (with the input conditions shown in the code above): 
k = 3 

n = 16 

 
{40,36,34,32,30,28,28,26,24,24,22,22,20,20,18,18,16,16,16,14,14,12,12,1

0,10,8,6,4} 

{40,36,34,32,30,28,28,26,24,24,22,22,20,20,18,18,16,16,16,14,14,12,12,1

0,10,8,6,4} 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 
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For n =4*nn+3 (Mathematica Code) 

 
Clear[k,n,Nmax,i,j,h,e,q,f,g,e2,e1,p,count,countu,QuantsFull,mi,mj,PRE,

spot,s,r,m]; 

 

Quant[n_,q_]:=(1-q^n)/(1-q); 

Quant2[n_,q_]:=(q^n-q^(-n))/(q-q^(-1)); 

 

nn=2; 

n=4*nn+3; 

k=3; 

 

Array[QuantsFull,Binomial[n,k]]; 

 

Print[Style["k=",24,Blue],Style[k,18,Blue]] 

 

count=0; 

countu=0; 

Print[Style["n=",18,Red],Style[n,18,Red]]; 

e 

=Normal[Series[Expand[Simplify[(Product[Quant2[i,q],{i,2,n}])/((Product

[Quant2[j,q],{j,2,k}])*(Product[Quant2[h,q],{h,2,n-k}]))]],{q,0,(n-

k)*k+10}]] 

 

Print[e] 

f=Exponent[e,q]; 

 

If[f==0, 

  QuantsFull[1]=1; 

  count=1; 

  countu=1; 

  ]; 

 

e1=e; 

p=1; 

 

While[ f>0, 

  count=count+1; 

   

  QuantsFull[p]=f+1; 

   

  g=e1-Quant2[(f+1),q]; 

  e2 =Normal[Series[Expand[Simplify[g]],{q,0,201}]]; 

   

  If[f==Exponent[e2,q], 

   countu=countu;, 

   countu=countu+1; 

   ]; 

   

  f=Exponent[e2,q]; 

  p=p+1; 

   

  If[f==0, 

   QuantsFull[p]=1; 
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   count=count+(1*Normal[e2]); 

   countu=countu+1; 

   ]; 

   

  e1=e2; 

  ];  

 

Print[Table[QuantsFull[l],{l,count}]]; 

 

PRE=Table[0,{j,1,(((n-1)^2)/8+1/2)}]; 

spot=1; 

PRE[[spot]]=(n-k)*k+1; 

spot=spot+1; 

 

If[n>=7, 

 PRE[[spot]]=1; 

 spot=spot+1; 

 For[m=1,m<=((k*(n-k)-6)/2),m++, 

  PRE[[spot]]=k*(n-k)-1-2*m; 

  spot=spot+1;];] 

 

If[n>=11, 

 For[s=0,s<=((n-11)/4),s++, 

   For[r=0,r<=(2*s+1),r++, 

    PRE[[spot]]=9+4*s+4*r ; 

    spot=spot+1; 

    ] 

   ];] 

 

If[n>=15, 

 For[s=0,s<=((n-15)/4),s++, 

   For[r=0,r<=(2*s+1),r++, 

    PRE[[spot]]=15+4*s+4*r ; 

    spot=spot+1; 

    ] 

   ];] 

 

PRE2=Sort[PRE,Greater]; 

Print[Style[PRE2,Green]]; 

DIFFS=Table[5,{o,1,((n-1)^2/8+1/2)}]; 

For[L=1,L<=((n-1)^2/8+1/2),L++, 

 DIFFS[[L]]=QuantsFull[L]-PRE2[[L]];] 

(*Difference table should be all zeros!!!*) 

Print[Style[DIFFS,Red]] 

 

Output (with the input conditions shown in the code above): 
k= 3 n= 11 

 
{25,21,19,17,15,13,13,11,9,9,7,5,1} 

{25,21,19,17,15,13,13,11,9,9,7,5,1} 

{0,0,0,0,0,0,0,0,0,0,0,0,0} 
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For n =4*nn+3 (Mathematica Code) 
Clear[k,n,Nmax,i,j,h,e,q,f,g,e2,e1,p,count,countu,QuantsFull,mi,mj,PRE,

spot,s,r,m]; 

 

Quant[n_,q_]:=(1-q^n)/(1-q); 

Quant2[n_,q_]:=(q^n-q^(-n))/(q-q^(-1)); 

 

nn=2; 

n=4*nn+5; 

k=3; 

 

Array[QuantsFull,Binomial[n,k]]; 

 

Print[Style["k=",24,Blue],Style[k,18,Blue]] 

 

count=0; 

countu=0; 

Print[Style["n=",18,Red],Style[n,18,Red]]; 

e 

=Normal[Series[Expand[Simplify[(Product[Quant2[i,q],{i,2,n}])/((Product

[Quant2[j,q],{j,2,k}])*(Product[Quant2[h,q],{h,2,n-k}]))]],{q,0,(n-

k)*k+10}]] 

Print[e] 

f=Exponent[e,q]; 

 

If[f==0, 

  QuantsFull[1]=1; 

  count=1; 

  countu=1; 

  ]; 

 

e1=e; 

p=1; 

 

While[ f>0, 

  count=count+1; 

   

  QuantsFull[p]=f+1; 

   

  g=e1-Quant2[(f+1),q]; 

  e2 =Normal[Series[Expand[Simplify[g]],{q,0,301}]]; 

   

  If[f==Exponent[e2,q], 

   countu=countu;, 

   countu=countu+1; 

   ]; 

   

  f=Exponent[e2,q]; 

  p=p+1; 

   

  If[f==0, 

   QuantsFull[p]=1; 

    

   count=count+(1*Normal[e2]); 
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   countu=countu+1; 

   ]; 

   

  e1=e2; 

  ];  

 

Print[Table[QuantsFull[l],{l,count}]]; 

 

PRE=Table[0,{j,1,(((n-1)^2)/8)}]; 

spot=1; 

PRE[[spot]]=(n-k)*k+1; 

spot=spot+1; 

PRE[[spot]]=3; 

spot=spot+1; 

 

If[n5, 
 For[m=1,m((k*(n-k)-8)/2),m++, 
   PRE[[spot]]=k*(n-k)-1-2*m; 

   spot=spot+1;];] 

 

If[n9, 
 For[s=0,s((n-9)/4),s++, 
   For[r=0,r(2*s),r++, 
    PRE[[spot]]=7+4*s+4*r ; 

    spot=spot+1; 

    ] 

   ];] 

 

If[n13, 
 For[s=0,s((n-13)/4),s++, 
   For[r=0,r(2*s),r++, 
    PRE[[spot]]=13+4*s+4*r ; 

    spot=spot+1; 

    ] 

   ];] 

 

PRE2=Sort[PRE,Greater]; 

Print[Style[PRE2,Green]]; 

DIFFS=Table[5,{o,1,((n-1)^2/8)}]; 

For[L=1,L<=((n-1)^2/8),L++, 

 DIFFS[[L]]=QuantsFull[L]-PRE2[[L]];] 

(*Difference table should be all zeros!!!*) 

Print[Style[DIFFS,Red]] 

 

Output (with the input conditions shown in the code above): 
k= 3 n= 13 

 
{31,27,25,23,21,19,19,17,15,15,13,13,11,11,9,7,7,3} 

{31,27,25,23,21,19,19,17,15,15,13,13,11,11,9,7,7,3} 

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}  



 
36 

Appendix C 

Elegant [n choose 3]
~
 Numerical Verification (Mathematica Code) 

 
Clear[k,n,nn,Nmax,i,j,h,k,e,q,f,g,e2,e1,p,count,countu,QuantsFull]; 

 

Quant[n_,q_]:=(1-q^n)/(1-q); 

Quant2[n_,q_]:=(q^n-q^(-n))/(q-q^(-1)); 

 

n=12*3+7; 

k=3; 

 

Array[QuantsFull,Binomial[n,k]]; 

 

count=0; 

countu=0; 

 

e 

=Normal[Series[Expand[Simplify[(Product[Quant2[i,q],{i,2,n}])/((Product

[Quant2[j,q],{j,2,k}])*(Product[Quant2[h,q],{h,2,n-k}]))]],{q,0,(n-

k)*k+10}]] 

 

f=Exponent[e,q]; 

 

If[f==0, 

  QuantsFull[1]=1; 

  count=1; 

  countu=1; 

  ]; 

 

e1=e; 

p=1; 

 

While[ f>0, 

  count=count+1; 

   

  QuantsFull[p]=f+1; 

   

  g=e1-Quant2[(f+1),q]; 

  e2 =Normal[Series[Expand[Simplify[g]],{q,0,(n-k)*k+10}]]; 

   

  If[f==Exponent[e2,q], 

   countu=countu;, 

   countu=countu+1; 

   ]; 

   

  f=Exponent[e2,q]; 

  p=p+1; 

   

  If[f==0, 

   ones=e2; 

   For[pp=1,pp<=(ones-1),pp++, 

    QuantsFull[p]=1; 
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    e2=e2-1; 

    p=p+1; 

    count=count+1; 

    countu=countu+1; 

    ]; 

    

   QuantsFull[p]=1; 

   count=count+1; 

   countu=countu+1; 

   ]; 

   

  e1=e2; 

  ];  

Print[Style["k=",24,Blue],Style[k,18,Blue],Style["  

n=",18,Red],Style[n,18,Red]]; 

Print[Table[QuantsFull[l],{l,count}]]; 

 

PRE=Table[0,{j,1,count}]; 

spot=1; 

 

For[j=0,j<=Floor[(n-k)/k],j++, 

  For[i=0,i<=(Floor[((n-k)-3*j)/2]+Floor[((n-k)-3*j)/4]),i++, 

    PRE[[spot]]=(n-k)*k+1-4*i-6*j; 

    spot=spot+1; 

    ];]; 

 

PRE2=Sort[PRE,Greater]; 

Print[Style[PRE,Blue]]; 

DIFFS=Table[5,{o,1,count}]; 

For[L=1,L<=count,L++, 

DIFFS[[L]]=QuantsFull[L]-PRE2[[L]];] 

(*Difference table should be all zeros!!!*) 

Print[Style[DIFFS,Red]] 

 

Example Output (for the input conditions shown in the code above): 

 

 
 
k = 3   n = 9 

{19,15,13,11,9,7,7,3} 

{19,15,11,7,3,13,9,7} 

{0,0,0,0,0,0,0,0} 
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Appendix D 

m = 3 Reduction  (Mathematica Code) 
 
Clear[NN,m,q,n,f2,l,L,Quant2,e7,e6,th,e] 

Quant2[n_,q_]:=(q^n-q^(-n))/(q-q^(-1)); 

 

m=3; 

k=3; 

 

th=Simplify[(Quant2[12*NN+m,q]*Quant2[12*NN+m-1,q]*Quant2[12*NN+m-

2,q])/(Quant2[2,q]*Quant2[3,q])]; 

 

Simplify[th] 

 

aa=(q^(36*NN+1)/(1-q^(-4))) (((1-q^(-24*(NN+1)))/(1-q^(-24)))-q^-

(36*NN+4) ((1-q^(12*(NN+1)))/(1-q^(12))))-(q^-(36*NN+1)/(1-q^(4))) 

(((1-q^(24*(NN+1)))/(1-q^(24)))-q^(36*NN+4) ((1-q^(-12*(NN+1)))/(1-q^(-

12))))+(q^(36*NN-5)/(1-q^(-4))) (((1-q^(-24*(NN)))/(1-q^(-24)))-q^-

(36*NN-8) ((1-q^(12*(NN)))/(1-q^(12))))-(q^-(36*NN-5)/(1-q^(4))) (((1-

q^(24*(NN)))/(1-q^(24)))-q^(36*NN-8) ((1-q^(-12*(NN)))/(1-q^(-12))))+ 

   (q^(36*NN-11)/(1-q^(-4))) (((1-q^(-24*(NN)))/(1-q^(-24)))-q^-(36*NN-

16) ((1-q^(12*(NN)))/(1-q^(12))))-(q^-(36*NN-11)/(1-q^(4))) (((1-

q^(24*(NN)))/(1-q^(24)))-q^(36*NN-16) ((1-q^(-12*(NN)))/(1-q^(-

12))))+(q^(36*NN-17)/(1-q^(-4))) (((1-q^(-24*(NN)))/(1-q^(-24)))-q^-

(36*NN-28) ((1-q^(12*(NN)))/(1-q^(12))))-(q^-(36*NN-17)/(1-q^(4))) 

(((1-q^(24*(NN)))/(1-q^(24)))-q^(36*NN-28) ((1-q^(-12*(NN)))/(1-q^(-

12)))); 

aa=aa/(q-q^-1); 

 

Simplify[aa] 

 

Simplify[aa-th] 

 

Output: 
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Appendix E 

m = 3 through 14 Reduction (Mathematica Code) 
Clear[NN,m,q,n,f2,l,L,Quant2,e7,e6,LHS,e] 

Quant2[n_,q_]:=(q^n-q^(-n))/(q-q^(-1)); 

 

For[m=3,m<=14,m++, 

 k=3; 

  

 LHS=Simplify[(Quant2[12*NN+m,q]*Quant2[12*NN+m-1,q]*Quant2[12*NN+m-

2,q])/(Quant2[2,q]*Quant2[3,q])]; 

 Simplify[LHS]; 

   

 f2=Floor[(m-3)/3]; 

 L[p_,m_]=If[p>f2,1,0]; 

 l[p_,m_]=Floor[(m-3-3*p)/2]+Floor[(m-3-3*p)/4]; 

  

 e6=0; 

 For[p=0,p<=3,p++, 

  L[p_,m_]=If[p>f2,1,0]; 

  l[p_,m_]=Floor[(m-3-3*p)/2]+Floor[(m-3-3*p)/4]; 

  e6=e6+((q^(36*NN+3*m-8-6*p)/(1-q^(-4))) (((1-q^(-24*(NN-

L[p,m]+1)))/(1-q^(-24)))-q^(-(36*NN+4*l[p,m]+4))*((1-q^(12*(NN-

L[p,m]+1)))/(1-q^(12))))-(q^(-(36*NN+3*m-8-6*p))/(1-q^(4))) (((1-

q^(24*(NN-L[p,m]+1)))/(1-q^(24)))-q^(36*NN+4*l[p,m]+4)*((1-q^(-(12*(NN-

L[p,m]+1))))/(1-q^(-12))))); 

  ]; 

  

 e6=e6/(q-q^-1); 

 Print[{Simplify[e6],Simplify[LHS],Simplify[e6-LHS]}] 

  If[Simplify[e6-LHS]==0,Print["m = ",m,"   OK"],Print["m = ",m,"   

ERROR"]];] 

 

 

Output: 
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