

25

– 870 MHz). In order to understand why telemetry bands are not allocated above 1.43 GHz, it is

necessary to look at the complex permittivity of human tissues as done in Section 2.2. The UWB

positioning system operates from 5.4 – 10.6 GHz in the upper region of the 3.1–10.6

Table 2-1: Summary of licensed medical wireless frequency bands.

Location Frequency Band Frequency (MHz)

U.S.
Medical Implant

Communications Service
402 - 405

U.S.
Wireless Medical Telemetry

Service

608 – 614

1395 – 1400

1427 - 1432

U.S. ISM

315

902 – 928

2400 – 2483.5

5150 - 5875

Europe ISM

433.05 - 434.79

868 - 870 (short-range)

2400 - 2483.5

U.S. UWB

3.1 – 10.6 GHz

22 – 29 GHz, center freq >

24.075 GHz

Europe UWB

4.2 – 4.8 GHz

6 – 8.5 GHz

3.4 - 4.2 GHz Pending

26

GHz band while most wireless telemetry systems for in vivo use operate at 433.92 MHz in the

433.05 - 434.79 European ISM band and at 315 MHz for the U.S. ISM band. As shown in Figure

2-1, the allocated band in the United States goes from 3-10.6 GHz at a power level of -41.3

dBm/MHz. Compared to Europe, where the power level is required to be at -71.3 dBm/MHz

from 4.8-6 GHz, -65 dBm/MHz from 8.5-10.6 GHz, and can only be at -41.3 dBm/MHz from 3.4-

4.8 GHz if detect and avoid circuitry is implemented to minimize interference with other

wireless systems operating in this band. Figure 2-2 compares the UWB bands in Japan versus

Figure 2-1: Comparison of allocated UWB bands between 3-11 GHz in the U.S. versus Europe.

27

Figure 2-2: Comparison of allocated UWB bands between 3-11 GHz in the U.S. versus Japan.

the United States. Similar to Europe, the Japanese regulations also require DAA in the 3.4-4.8

GHz band. The main difference between the European band and the Japanese band is in the no

DAA band: in Europe, this exists from 6-8.5 GHz while in Japan, this band goes from 8.5-10.6

GHz. From looking at Figure 2-1 and Figure 2-2, it is clear that the various restrictions imposed

around the world make designing one system for worldwide operation difficult to impossible.

Multiple variations of a system may be needed to meet the various worldwide regulations.

31

where there is a dispersion peak in the loss factor whose size and place depends on the

relaxation time, , and dispersion factor . Figure 2-3 shows typical curves for the complex

permittivity of human tissues as modeled through the Cole-Cole equation (2-6) [79]. A multi-

(a)

(b)

Figure 2-3: Electrical properties of human muscle, fat, and skin at 37C. (a) relative permittivity,

(b) conductivity.

50

Figure 3-4: Flock of Birds electromagnetic tracking system from Ascension Technology

Corporation [100].

from Ascension Technology Corporation. Figure 3-4 shows the Flock of Birds system with the

main controller, transmitting coils, and electromagnetic sensors displayed [100]. The 3-D static

position accuracy of the system is reported to be 1.8 mm RMSE using the mid-range transmitter

over an operating range of 0.203 to 0.762 m from the transmitting coil to the sensor [100]. The

system is able to take data at a rate of 144 Hz. The maximum operating range of the system with

1.8 mm RMSE is 0.75 m from transmitting coil to magnetic sensor, noticeably smaller than the

operating range of the Polaris Spectra and Optotrak Certus optical tracking systems. Ascension

Technology Corporation has another system known as the 3-D Guidance medSAFE tracking

system. As shown in Figure 3-5, it uses miniaturized magnetic sensors, with the newest

generation of sensors being 0.90 mm in diameter. This small size allows the sensor to be

embedded into the tip of a hollow 19-gauge needle [101]. For example, a sensor similar to the

one shown in Figure 3-5 is currently embedded into the working channel of a bronchoscope

which highlights how these sensors can be used to track catheters and scopes into organs and

101

Me asure m e nt

 sp o t

Me asure m e nt

 sp o t

O R 1 O R 2

Figure 4-22: Layout of dual operating room including operating tables and measurement

locations.

Using the hardware summarized in Table 4-3, four setups were needed to cover the

entire frequency range. From 200 MHz – 800 MHz, the biconical antenna (Figure 4-24a) and two

Hittite HMC465 LNAs were used. From 800 MHz – 3 GHz, both disc and horn antennas (Figure

4-24b and Figure 4-24c), a Mini-circuits ZX60-3011 LNA, and a Hittite HMC465 LNA were used.

From 3 GHz – 18 GHz, the broadband horn (Figure 4-24c) and two Hittite HMC465 LNAs were

used. Finally, from 18 GHz – 26 GHz, the Vivaldi 4-element array (Figure 4-24d) and two

HMC517 LNAs were used. Before conducting the experiment, it was assumed that most of the

EMI detected would be in the range of 200 MHz – 3 GHz. This conclusion was made because

WLAN and Bluetooth transceivers (operating at 2.4 – 2.48 GHz) were already present in the OR.

Also, this frequency range covers GPS (1.575 GHz), US cellular phone frequencies, and a

number of medical bands. Table 2-1 lists the major medical, scientific, and UWB frequency

310

75. A.V. Vorst, A. Rosen, Y. Kotsuka, RF/Microwave Interaction with Biological Tissues, John Wiley

& Sons Inc., Hoboken,NJ, 2006.

76. L. Dubois, J.P. Sozanski, V. Tessier, J. Camart, J.J. Favre, J. Pribetich, M. Chiv´e,

“Temperature control and thermal dosimetry by microwave radiometry in hyperthermia,”

IEEE Trans. Microwave Theory Tech., 44(10), Part 2, 1996, pp. 1755–61.

77. S.O. Nelson. “Dielectric properties of agricultural products - measurements and

applications,” IEEE Trans. Elec. Insul., 26(5), 1991, pp. 845-869.

78. V. Komarov, S. Wang, J. Tang. “Permittivity and measurements,” Ed. K. Chang, Wiley

Encyclopedia RF Microwave Engineering, John Wiley & Sons, New York, 2005, pp. 3693-3711.

79. S. Gabriel, R.W. Lau, C. Gabriel. “The dielectric properties of biological tissues: III

parametric models for the dielectric spectrum of tissue,” Phys. Med. Biol., 41, 1996, pp. 2271-

2293.

80. T.W. Athey, M.A. Stuchly, S.S. Stuchly. “Measurement of radio frequency permittivity of

biological tissues with an open-ended coaxial line, part 1,” IEEE Trans. Microwave Theory

Tech., 30(1), 1982, pp. 82-92.

81. R. Pethig. “Dielectric properties of body tissues,” Clin. Phys. Physiol. Meas., 8, 1987, pp. 5-12.

82. C. Gabriel, S. Gabriel, E. Corthout, “The dielectric properties of biological tissues: I.

Literature survey,” Phys. Med. Biol., 41, 1996, pp. 2231-2249.

83. F. Duhamel, I. Huynen, A.V. Vorst, “Measurements of complex permittivity of biological

and organic liquids up to 110 GHz,” IEEE MTT-S International Microwave Symp., Denver,

CO, Vol. 1, 1997, pp. 107-110.

84. Technical Overview. Agilent 85070D Dielectric Probe Kit 200 MHz to 20 GHz, Agilent

literature number 5968-5330E, 2002.

85. M. Kuhn, M. Awida, M. Mahfouz, A. Fathy, “Open-ended coaxial probe measurements for

breast cancer detection,” IEEE Radio Wireless Symp., New Orleans, LA, 2010, pp. 512-515.

86. D. Clarke, A. Park, “Active-RFID system accuracy and its implications for clinical

applications,” IEEE Symp. on Computer-Based Med. Sys., Salt Lake City, USA, 2006, pp. 21-26.

87. Time Domain Corp. PLUS® RTLS for Healthcare Applications,

http://www.timedomain.com/healthcare.php.

340

Appendix C: Tag Power Board Layout and Bill of Materials

Top Layer

Bottom Layer

341

Bill of Materials

Board Annotation Quantity Part Number Description

BATT1 1 BC9VPC-ND 9V PC Mountable Battery Case

C1,C3,C4,C5,C6 5 399-5202-1-ND 100uF, 25V, CAP, SMT, 0.15Ohm

U1 1 811-1383-5-ND 3.3V DC-DC Converter, Flyback, Isolated

C2 1 495-1552-1-ND 220uF, 16V, CAP, SMT, 0.10Ohm

U2,U3 2 811-1399-5-ND 5V, DC-DC Converter, Flyback, Isolated

LED1 1 P11539CT-ND 1206, Blue LED, 3.2-3.7 V, 5mA current
consumption

CONN1, CONN2 2 IPT1-120-08-S-D Strip HDR 40 POS 2.54mm Solder ST Thru-Hole,
AVNET

PB1 1 518PB-ND SPST Switch, 0.3A @ 12VDC, Pushbutton

DC1 1 CP-102A-ND 2.1mm connector jack

T3 1 FDN359BNCT-ND N-Type MOSFET, Load Switch for -5V

U4,U5,U6 3 FDG6342LCT-ND Integrated Load Switch for 5V, 3.3V

T1 1 NDS332PCT-ND MOSFET P-CH 20V 1A SSOT3

T2 1 FDV301N Trans MOSFET N-CH 25V 0.5A 3-Pin SOT-23 T/R

R3,R6,R9 3 P100KGCT-ND RES 100K OHM 1/10W 5% 0603 SMD

R1,R4,R7 3 P1.0KGCT-ND RES 1.0K OHM 1/10W 5% 0603 SMD

R2,R5,R8 3 P100GCT-ND RES 100 OHM 1/10W 5% 0603 SMD

C7,C8,C9 3 490-1570-1-ND CAP CER 1000PF 25V Y5V 0603

R10,R11,R12 3 P100GCT-ND RES 100 OHM 1/10W 5% 0603 SMD

342

Schematic

343

Appendix D: MCU Code for UWB Access Point

#include <string.h>

#include "bsp.h"

#include "mrfi.h"

#include "bsp_leds.h"

#include "bsp_buttons.h"

#include "nwk_types.h"

#include "nwk_api.h"

#include "nwk_frame.h"

#include "nwk.h"

#include "virtual_com_cmds.h"

void toggleLED(uint8_t);

/* reserve space for the maximum possible peer Link IDs */

static linkID_t sLID[NUM_CONNECTIONS] = {0};

static linkID_t sSleepingLID[NUM_CONNECTIONS] = {0}; // allow tags to come in and out of range

static uint8_t sNumCurrentPeers = 0;

static uint8_t sNumSleepingPeers = 0;

static uint16_t tagTimedOutIter[NUM_CONNECTIONS];

/* callback handler */

static uint8_t sCB(linkID_t);

// TDMA state variables for UWB transmission

static uint8_t is_TDMA_Response;

static uint8_t is_UWB_Transmission_OK;

static uint8_t sProceedToNextTag;

static uint8_t current_TDMA_Index;

/* received message handler */

static void processMessage(linkID_t, uint8_t *, uint8_t);

/* work loop semaphores */

static volatile uint8_t sPeerFrameSem = 0;

static volatile uint8_t sJoinSem = 0;

static volatile uint8_t sSelfMeasureSem = 0;

static volatile uint8_t sCountTimerIter = 0;

static volatile uint8_t sProceedToNextTagIter = 0;

static volatile uint8_t sNumUWBTransmissions = 0;

/* How many times to try a Tx and miss an acknowledge before doing a scan */

#define MISSES_IN_A_ROW 2

//data for terminal output

const char splash[] = {"\r\n--\r\n ****\r\n **** eZ430-RF2500\r\n

******o**** UWB Positioning System\r\n********_///_***\r\n--\r\n"};

volatile int * tempOffset = (int *)0x10F4;

344

__interrupt void ADC10_ISR(void);

__interrupt void Timer_A (void);

/* ************** END interference detection support */

#define SPIN_ABOUT_A_QUARTER_SECOND NWK_DELAY(250)

void main (void)

{

 bspIState_t intState;

 uint8_t msg_TDMA[2], msg_WhichTag[4];

 uint8_t noAck;

 uint8_t misses, done;

 int i;

 msg_TDMA[0] = 'O';

 msg_TDMA[1] = 'N';

 msg_WhichTag[2] = 'T';

 msg_WhichTag[3] = 'X';

 msg_WhichTag[0] = '\r';

 msg_WhichTag[1] = '\n';

 memset(sSample, 0x0, sizeof(sSample));

 sProceedToNextTag = 1;

 BSP_Init();

 BCSCTL3 |= LFXT1S_2; // LFXT1 = VLO

 TACCTL0 = CCIE; // TACCR0 interrupt enabled

 TACCR0 = 120; // ~1 second

 TACTL = TASSEL_1 + MC_1; // ACLK, upmode

 COM_Init();

 TXString((char*)splash, sizeof splash);

 TXString("\r\nInitializing Network....", 26);

 SMPL_Init(sCB);

 // network initialized

 TXString("Done\r\n", 6);

 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_RXON, 0);

 /* main work loop */

 current_TDMA_Index = 0;

 while (1)

 {

 /* Wait for the Join semaphore to be set by the receipt of a Join frame from a

 * device that supports an End Device.

345

 *

 * An external method could be used as well. A button press could be connected

 * to an ISR and the ISR could set a semaphore that is checked by a function

 * call here, or a command shell running in support of a serial connection

 * could set a semaphore that is checked by a function call.

 */

 if (sJoinSem && (sNumCurrentPeers < NUM_CONNECTIONS))

 {

 /* listen for a new connection */

 while (1)

 {

 if (SMPL_SUCCESS == SMPL_LinkListen(&sLID[sNumCurrentPeers]))

 {

 tagTimedOutIter[sNumCurrentPeers] = 0;

 break;

 }

 /* Implement fail-to-link policy here. otherwise, listen again. */

 }

 BSP_ENTER_CRITICAL_SECTION(intState);

 sJoinSem--;

 sNumCurrentPeers++;

 BSP_EXIT_CRITICAL_SECTION(intState);

 }

 // if it is time to measure our own temperature...

 if(sSelfMeasureSem)

 {

 char msg [6];

 char addr[] = {"HUB0"};

 char rssi[] = {"000"};

 int degC, volt;

 volatile long temp;

 int results[2];

 ADC10CTL1 = INCH_10 + ADC10DIV_4; // Temp Sensor ADC10CLK/5

 ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE + ADC10SR;

 for(degC = 240; degC > 0; degC--); // delay to allow reference to settle

 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start

 __bis_SR_register(CPUOFF + GIE); // LPM0 with interrupts enabled

 results[0] = ADC10MEM;

 ADC10CTL0 &= ~ENC;

 ADC10CTL1 = INCH_11; // AVcc/2

 ADC10CTL0 = SREF_1 + ADC10SHT_2 + REFON + ADC10ON + ADC10IE + REF2_5V;

 for(degC = 240; degC > 0; degC--); // delay to allow reference to settle

 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start

 __bis_SR_register(CPUOFF + GIE); // LPM0 with interrupts enabled

 results[1] = ADC10MEM;

346

 ADC10CTL0 &= ~ENC;

 ADC10CTL0 &= ~(REFON + ADC10ON); // turn off A/D to save power

 // oC = ((A10/1024)*1500mV)-986mV)*1/3.55mV = A10*423/1024 - 278

 // the temperature is transmitted as an integer where 32.1 = 321

 // hence 4230 instead of 423

 temp = results[0];

 degC = (((temp - 673) * 4230) / 1024);

 if((*tempOffset) != 0xFFFF)

 {

 degC += (*tempOffset);

 }

 temp = results[1];

 volt = (temp*25)/512;

 msg[0] = degC&0xFF;

 msg[1] = (degC>>8)&0xFF;

 msg[2] = volt;

 msg[3] = sNumUWBTransmissions;

 transmitDataString(1, addr, rssi, msg);

 //BSP_TOGGLE_LED1();

 sNumUWBTransmissions = 0;

 sSelfMeasureSem = 0;

 /* process all frames waiting */

 for (i=0; i<sNumCurrentPeers; ++i)

 {

 // check for any tags which may have timed out

 // currently they have a 5 second time out

 if (tagTimedOutIter[i] > 499)

 {

 // need to remove node i from current peers

 linkID_t tempLinkID;

 int j;

 tagTimedOutIter[i] = 0;

 sSleepingLID[sNumSleepingPeers] = sLID[i];

 sNumSleepingPeers++;

 if (sNumCurrentPeers>1)

 {

 for (j=i+1; j<sNumCurrentPeers; ++j)

 {

 sLID[j-1] = sLID[j];

 }

 }

 else

 sLID[i] = 0;

 sNumCurrentPeers--;

347

 }

 }

 }

 /* Have we received a frame on one of the ED connections?

 * No critical section -- it doesn't really matter much if we miss a poll

 */

 if (sPeerFrameSem)

 {

 uint8_t msg[MAX_APP_PAYLOAD], len, i;

 /* process all frames waiting */

 for (i=0; i<sNumCurrentPeers; ++i)

 {

 if (SMPL_SUCCESS == SMPL_Receive(sLID[i], msg, &len))

 {

 ioctlRadioSiginfo_t sigInfo;

 tagTimedOutIter[i] = 0;

 sigInfo.lid = sLID[i];

 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_SIGINFO, (void *)&sigInfo);

 transmitData(i, sigInfo.sigInfo.rssi, (char*)msg);

 BSP_ENTER_CRITICAL_SECTION(intState);

 sPeerFrameSem--;

 BSP_EXIT_CRITICAL_SECTION(intState);

 }

 }

 }

 if (BSP_BUTTON1())

 {

 SPIN_ABOUT_A_QUARTER_SECOND; /* debounce */

 changeChannel();

 }

 else

 {

 checkChangeChannel();

 }

 BSP_ENTER_CRITICAL_SECTION(intState);

 if (sBlinky)

 {

 if (++sBlinky >= 0xF)

 {

 sBlinky = 1;

 }

 }

 BSP_EXIT_CRITICAL_SECTION(intState);

 // this section is added to implement the TDMA scheme

 // for transmission of tag 3-D position via UWB system

 // iterate through all tags currently present

348

 if (sProceedToNextTag && sNumCurrentPeers > 0)

 {

 BSP_ENTER_CRITICAL_SECTION(intState);

 sProceedToNextTag = 0;

 BSP_EXIT_CRITICAL_SECTION(intState);

 // need to get acknowledgement from tag

 done = 0;

 while (!done)

 {

 noAck = 0;

 smplStatus_t rc;

 uint8_t tempInt;

 // Try sending message MISSES_IN_A_ROW times looking for ack

 sNumUWBTransmissions++;

 for (misses=0; misses < MISSES_IN_A_ROW; ++misses)

 {

 if (SMPL_SUCCESS == (rc=SMPL_Send(sLID[current_TDMA_Index], msg_TDMA,

 sizeof(msg_TDMA))))

 {

 tempInt = current_TDMA_Index;

 msg_WhichTag[3] = '0'+((tempInt+1)%10);

 TXString(msg_WhichTag,4);

 break;

 }

 if (SMPL_NO_ACK == rc)

 {

 // Count ack failures. Could also fail becuase of CCA and

 // we don't want to scan in this case.

 //

 noAck++;

 }

 }

 if (MISSES_IN_A_ROW == noAck)

 {

 // Message not acked. Toggle LED 2.

 // transmission to awake current tag failed

 BSP_ENTER_CRITICAL_SECTION(intState);

 if (current_TDMA_Index + 1 < sNumCurrentPeers)

 current_TDMA_Index++;

 else

 current_TDMA_Index = 0;

 //sProceedToNextTag = 1;

 BSP_EXIT_CRITICAL_SECTION(intState);

 done = 1;

 }

 else

349

 {

 // Got the ack or we don't care. We're done.

 // acknowledgement received...have to wait for final response

 // from tag stating 'OK' or 'ER' for UWB transmission

 BSP_ENTER_CRITICAL_SECTION(intState);

 if (current_TDMA_Index + 1 < sNumCurrentPeers)

 current_TDMA_Index++;

 else

 current_TDMA_Index = 0;

 //sProceedToNextTag = 1;

 BSP_EXIT_CRITICAL_SECTION(intState);

 done = 1;

 //transmitDataTDMA(current_TDMA_Index,1);

 } //else

 } // while (!done)

 } // if (sProceedToNextTag)

 } // while (1)

}

/* Runs in ISR context. Reading the frame should be done in the */

/* application thread not in the ISR thread. */

static uint8_t sCB(linkID_t lid)

{

 uint8_t tagInList = 0, tagAsleep = 0;

 int i,j;

 // see if this tag is in the sleeping category

 // bring back into active, if so

 for (i=0; i<sNumSleepingPeers; ++i)

 {

 if (lid == sSleepingLID[i])

 {

 // add tag back to active list

 tagAsleep = 1;

 sLID[sNumCurrentPeers] = sSleepingLID[i];

 sNumCurrentPeers++;

 if (sNumSleepingPeers>1)

 {

 for (j=i+1; j<sNumSleepingPeers; ++j)

 {

 sSleepingLID[j-1] = sSleepingLID[j];

 }

 }

 else

 sSleepingLID[i] = 0;

 sNumSleepingPeers--;

 return 0;

350

 }

 }

 if (lid)

 {

 sPeerFrameSem++;

 sBlinky = 0;

 }

 else

 {

 sJoinSem++;

 }

 /* leave frame to be read by application. */

 return 0;

}

/*--

* Timer A0 interrupt service routine

--*/

#pragma vector=TIMERA0_VECTOR

__interrupt void Timer_A (void)

{

 int i;

 if (sCountTimerIter == 0)

 {

 sSelfMeasureSem = 1;

 }

 if (sProceedToNextTagIter == 0)

 {

 sProceedToNextTag = 1;

 }

 if (sProceedToNextTagIter < 10)

 sProceedToNextTagIter++;

 else

 sProceedToNextTagIter = 0;

 if (sCountTimerIter < 99)

 sCountTimerIter++;

 else

 sCountTimerIter = 0;

 // used to watch for tags timing out

 for (i=0; i<sNumCurrentPeers; ++i)

 tagTimedOutIter[i]++;

}

351

Vita

Michael Joseph Kuhn was born in Wheat Ridge, Colorado, USA, in

1982. He received the B.S. degree in electrical engineering and the

B.S. degree in computer science from the Colorado School of Mines,

Golden, CO, in 2004, and the M.S. degree in engineering science

from the University of Tennessee, Knoxville, TN, in 2008. He

received the Ph.D. degree in biomedical engineering from the

University of Tennessee, Knoxville, TN, in 2012. He is currently

Research and Development Staff in the Global Nuclear Safeguards and Security Technology

group at Oak Ridge National Laboratory, Oak Ridge, TN and began working as a staff member

at Oak Ridge National Laboratory in 2010. He has published and presented at many

international conferences in the fields of biomedical engineering, microwave and antenna

engineering, and nuclear safeguards. He is active within the IEEE both as a member of technical

programming committees and assisting with conference organization. His current research

interests include wireless tracking and tagging technologies and sensors with emphasis on

ultra-wideband, medical applications of wireless technologies, numerical techniques in

microwave engineering, and R&D in nuclear safeguards. Michael received the James A. Euler

award for outstanding graduate student from the Mechanical, Aerospace, and Biomedical

Engineering department at the University of Tennessee in 2010.

