






the location of other occluding targets as illustrated as the bold-boundary regions

in Fig. 4.4b. Therefore, the probability density function (pdf) of Q, f(Q) could not

be calculated explicitly. As a result, due to the partial appearance of targets, the

derivation of a closed-form solution for the occupancy-based coverage estimation has

been a very challenging problem in VSNs.

To solve this problem, we adopt certainty-based target detection model in the

derivation of visual coverage estimation in VSNs. Instead of resolving the uncertainty

about target existence, we identify and study the non-occupied areas in the visual

cone to detect targets. When the non-existence information coming from different

sensor nodes is fused in a certainty map to remove the uncertainty, the only uncertain

regions left would be the location of targets. In other words, certainty maps hold the

information about total number of sensor nodes detecting target non-existence at

any specific region. Therefore, in the certainty-based approach, to cover a specific

grid point of the sensing field and determine the target non-existence at that point,

not only the corresponding grid point must be inside the FOV of the sensor node,

the centers of all targets should also be outside of the occlusion zone between the

corresponding grid point and the node, which is illustrated as the bold-boundary

region in Fig. 4.3b.

Unlike the occupancy-based occlusion zone model, the area of the certainty-based

occlusion zone, Ao depends on only the distance l between the corresponding grid

point and sensor node and can be expressed as Ao = πr2 + 2rl. As described in

Section 4.5, the calculation the pdf of function Q(l), f(Q), is utilized by the change

of variable property on function f(l), the pdf of distance l. Therefore, the certainty-

based model enables the computation the pdf of function Q(l), f(Q). As a result,

the derivation of the closed-form solution for visual coverage estimation in VSNs has

been possible by adopting the certainty-based target detection model.

114



4.7 Boundary Effect on the Visual Coverage Esti-

mation

In this section, we investigate the boundary effect on the visual coverage estimation.

For a sensor node close to the boundary of the sensing field, part of the area within

its FOV will fall outside of the sensing field R. Therefore, the visual sensor coverage

probability at the boundary of the sensing field is less than that in central areas of the

sensing field. This is commonly referred to as the boundary effect in sensor networks.

As shown in the derivation of Eq.4.12, the visual coverage probability P (k) denotes

the probability that a specific grid point within the sensing field R is covered by

exactly k many visual sensor nodes out of j many nodes distributed in a circular

detectability area A with radius ρ centered at the grid point. If the boundary effect

is ignored, A = πρ2 holds for all grid points within the sensing field, R, so P (k)

is similar at all points in R as well. However, due to the boundary effect, the grid

points close to the boundary have a partial circular detectability area A(x, y), shown

as gray regions in Fig.4.5 and A(x, y) ≤ πρ2. Therefore, visual coverage probability

P (k) depends on the location in the sensing field R.

Yen et al. [2006] discussed region partitioning to estimate the boundary effect

on the expected coverage in wireless sensor networks according to the locations

of omnidirectional scalar sensors. Following the similar partitioning idea but with

different partitioning approaches for visual sensor networks, we divide the sensing field

R into three types of sub-regions according to the location of grid point (x,y). Let

AC , AS, AM represent the sub-regions where a grid point is located in the corner sub-

regions, side sub-regions and middle sub-regions of the sensing field R, respectively.

As shown in Fig.4.5, the detectability area of each grid point in the middle sub-

region AM has circular shape because distances of a grid point to the two closest

borders of the sensing field R is more than the sensing range of the sensor, ρ.

Therefore, AM(x, y) = πρ2, ∀(x, y) ∈ AM . In the following subsections, we estimate
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Figure 4.5: Partitioned boundary sub-regions of a rectangular sensing field.

the detectability area of the corner sub-regions AC and side sub-regions AS within

the sensing field R.

4.7.1 Computing Detectability Area at the Corner Sub-

region AC

Fig.4.6 (top) illustrates the detectability area of a grid point in a corner sub-region

AC where the distance of a grid point to the closest corner is less than the sensing

range of a visual sensor, ρ. Let u and v denote the minimum distances from a grid

point in a corner sub-region AC to two borders of the M ×N rectangle sensing field

RM×N , respectively, i.e., u = min(x,M − x) , v = min(y,N − y) and u2 + v2 ≤ ρ2.
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Figure 4.6: The detectability areas in (top) corner sub-region AC , (bottom) side
sub-region AS.

By geometry, the detectability area of a grid point in a corner sub-region AC(x, y) is

expressed as,

AC(x, y) = u×v+u
√
ρ2 − u2

2
+
v
√
ρ2 − v2

2
+
( π

2
+ arcsin(u

ρ
) + arcsin(v

ρ
)

2π

)
πρ2 (4.14)

Thus, the detectability area of a grid point in a corner sub-region AC decreases as

the point is located closer to the corner of the sensing field R. Based on the decrease

in the detectability area, the visual coverage probability P (k) decreases accordingly.
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4.7.2 Computing Detectability Area at the Side Sub-region

AS

Fig.4.6 (bottom) illustrates two types of detectability areas of grid points in a side sub-

region AS where at least one of the distances between a grid point and the two closest

borders of the sensing field R is less than the sensing range of a visual sensor, ρ and

the distance of a grid point to the closest corner is larger than ρ. Let u and v, again,

denote the minimum distances from a grid point in a side sub-region AS to borders

of the M × N rectangle sensing field RM×N , respectively, i.e., u = min(x,M − x) ,

v = min(y,N − y), u2 + v2 > ρ2 and u ≤ ρ or v ≤ ρ. By geometry, three types of

detectability area of a grid point in a side sub-region AS(x, y) can be expressed as,

AS(x, y) =



u
√
ρ2 − u2 + v

√
ρ2 − v2+(

2π−2 arccos(u
ρ
)−2 arccos( v

ρ
)

2π

)
πρ2, if u ≤ ρ and v ≤ ρ

u
√
ρ2 − u2 +

(
2π−2 arccos(u

ρ
)

2π

)
πρ2, if u ≤ ρ and v > ρ

v
√
ρ2 − v2 +

(
2π−2 arccos( v

ρ
)

2π

)
πρ2, if u > ρ and v ≤ ρ

(4.15)

Thus, the detectability area of a grid point in a side sub-region AS decreases as the

point gets closer to the borders of the sensing field R. Based on the decrease in the

detectability area, the visual coverage probability P (k) decreases in a side sub-region

AS accordingly.

4.8 Minimum Sensor Density Estimation

In many visual sensor deployment applications, one of the major tasks is to find

accurate estimation of the minimum sensor density to deploy into the sensing field

which is sufficient to ensure the visual coverage probability that each point is covered

by at least K sensor nodes is higher than a certain percentage. In other words, the

probability that each point is covered by less than K sensor nodes is smaller than

a tolerance value ε. The optimization problem of minimum node density to ensure
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visual K-coverage can be expressed as,

λ̂s = argmin
λs

s.j.P (k)≥0

∣∣∣∣∣
K−1∑
k=0

P (k)− ε

∣∣∣∣∣ (4.16)

where P (k) is parameterized by λs and other fixed parameters λt, r, ρ, and θ as shown

in Eq. 4.12. Therefore, the solution for optimization problem is that minimum node

density is the smallest positive root λ̂s of the following equation

K−1∑
k=0

1

2kρ2r2λ2t

[
ln
(λc
λb

)
Fp(k − 1, λb)−

(
E1(λb)− E1(λc)

)
−

k−1∑
i=1

Fp(i− 1, λb)− Fp(i− 1, λc)

i

]
= ϵ (4.17)

where λc and λb are the Poisson distribution parameters, i.e., λc = λsπρ
2 θ
2π
e−λtπr2 and

λb = λsπρ
2 θ
2π
e−λt(πr2+2λtrρ). There is no explicit solution for Eq. 4.17, so minimum

sensor density, λ̂s can be found by using the exhaustive search method.

4.9 Experiments and Results

In this section, we first present the comparison between the simulation results and

theoretical values to validate the theoretical derivation of visual coverage probability.

Then, the results of minimum sensor density λ̂s are presented to show the effect

of visual occlusions among crowded targets on the visual coverage probability that

ensures the K-coverage in the sensing field.

In our simulations, circular targets with uniform size are deployed on a 2D sensing

field, infinitely small-size sensor nodes with uniform FOV and focal length are located

and directed horizontally facing the sensing field. The locations of each sensor node

and target are randomly generated assuming there is no overlap between the targets

and sensor nodes. The orientation of each node is a floating point number randomly

generated in [0◦, 360◦). In all the simulations, we assume each sensor node is able to
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Figure 4.7: Simulation setup with 20 targets and 100 sensor nodes.

find its orientation and location by using a digital compass and positioning system,

such as GPS.

Following is the setup of some typical parameters: The 2D sensing field is 40m

× 40m large. The radius of each target, r is 0.5m. Each sensor node has a uniform

FOV with ρ = 10m of sensing range and θ = 45◦ of angle of view. Each node is in

the communication range of other nodes and is able to communicate with each other.

Fig. 4.7 illustrates a sample random deployment of 20 targets, represented as discs,

and 100 cameras, represented as points.

We conduct two sets of experiments to validate the theoretical derivation of visual

coverage probability, where one set does not consider the boundary effect and the

other one does. We also show the effect of parameter selection on the minimum sensor

density, λ̂s. In each set of experiments, different amount of coverage requirements K

(K = 1, 2, 3) are selected for ten times and the results are averaged.
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4.9.1 Comparison between Theoretical Values and

Experimental Results Without Boundary Effects

In this set of experiments, boundary effect is not considered. The effects of two groups

of parameters are studied, including sensor node related parameters and target related

parameters.

Effect of Sensor Node Related Parameters

In this experiment, we study the effect of the sensor node related parameters, sensor

node density λs, sensing range ρ, and angle of view θ on the visual coverage probability

for different visual K-coverage requirements.

In the first simulation, 20 targets and different numbers of sensor nodes are

randomly deployed into the sensing field. Fig. 4.8a shows the visual coverage

probability for different K values corresponding to different numbers of sensor nodes,

Ns. We observe that visual coverage probability decreases as K increases because of

the more demanding coverage requirement. In addition, visual coverage probability

increases as Ns increases due to more dense visual sensor nodes deployed.

Secondly, fixed number of sensor nodes and fixed number of targets are deployed

into the sensing field where Ns = 100 and Nt = 20. However, in each deployment, we

vary the value of the uniform sensing range ρ of every visual sensor node. Fig. 4.8b

shows the visual coverage probability for different K values corresponding to different

sensing range ρ. We observe that visual coverage probability increases as ρ increases

or K decreases because of larger visual coverage of each sensor node with larger FOV

and less demanding coverage requirements, respectively.

In the third simulation, we select different values for the angle of view θ of each

sensor node to show its effect on the visual coverage probability where fixed number

of targets and fixed number of sensor nodes with fixed sensing range ρ are deployed

into the sensing field, i.e. Nt = 20, Ns = 100 and ρ = 10m. Fig. 4.9 shows the visual

coverage probability for different K values corresponding to different angles of view
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Figure 4.8: Comparison of theoretical values and simulation results corresponding
to sensor node related parameters, (a) different numbers of sensor nodes Ns, (b)
different sensing range ρ and (c) different angle of views θ.

122



20 30 40 50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle of View, θ

K
−

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

Experimental results
Theoretical results

K=1
K=2

K=3

Figure 4.9: Comparison of theoretical values and simulation results corresponding
to different angle of views θ.

θ. We observe that visual coverage probability increases as θ increases or K decreases

because of, again, larger visual coverage of each sensor node with larger FOV and less

demanding coverage requirements, respectively.

As shown in Fig. 4.8 and 4.9, the simulated experimental results for the sensor

node related parameters, sensor node density λs, sensing range ρ, and angle of view θ

are consistent with the theoretical values. However, because of the boundary effect, we

observe that the visual K-coverage probability resulted from simulated experiments

are slightly less than theoretical values. Moreover, the difference between theoretical

values and experimental results increases as either Ns or ρ or θ increases because the

boundary effect is more severe.
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Figure 4.10: Comparison of theoretical values and simulation results corresponding
to different number of targets Nt.

Effect of Target Related Parameters

In this experiment, we study the effect of the target related parameters, the number of

deployed target Nt and target radius r on the visual coverage probability for different

visual K-coverage.

First, different numbers of target, Nt, are deployed in the sensing field where the

total number of cameras, Ns, is fixed at 100. Fig. 4.10 shows the visual coverage

probability for different K values corresponding to different numbers of deployed

targets, Nt. We observe that visual coverage probability decreases as either Nt or

K increases because of presence of more visual occlusions among more dense targets

and more demanding coverage requirements, respectively.

In the second simulation, fixed number of sensor nodes and fixed number of

targets are deployed where Ns = 100 and Nt = 20. However, in each deployment
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Figure 4.11: Comparison of theoretical values and simulation results corresponding
to different target radius r.

uniform radius of each target is chosen with different values to show the effect of

the target radius r. Fig. 4.11 shows the visual coverage probability for different K

values corresponding to different target radius, r. We observe that visual coverage

probability decreases as either r or K increases because of the presence of more

visual occlusions among bigger targets and more demanding coverage requirements,

respectively.

Results in Fig. 4.10 and 4.11 further validate the theoretical derivation of

visual sensor coverage by showing the consistent theoretical values with simulated

experimental results. However, again due to the boundary effect, the visual coverage

probability from simulated experiments shows slight difference from theoretical values.
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4.9.2 Boundary Effect on the Coverage Estimation Probabil-

ity

In this experiment, we study the boundary effect on the visual coverage estimation

probability corresponding to different number of sensor nodes Ns for different visual

K-coverage requirements. Fig. 4.12a shows the visual K-coverage probability in 2D

sensing region R corresponding to Nt = 20, Ns = 100, ρ = 10, θ = 45◦ and K = 2.

We observe that the visual K-coverage probability decreases in the boundary region

as close to the edge of the sensing region because of the boundary effect.

We randomly deploy 20 targets and different numbers of sensor nodes into

the sensing field. Fig. 4.12b shows the visual coverage probability of simulated

experiment, theoretical results with and without boundary effect for different K

values. We observe that visual coverage probability decreases as K increases because

of the more demanding coverage requirement and visual coverage probability increases

as Ns increases due to more dense sensor nodes.

Results in Fig. 4.12b validate the proposed theoretical derivation of visual sensor

coverage by showing exactly the same theoretical values when boundary effect is taken

into account with simulated experimental results.

4.9.3 Minimum Sensor Density

In this set of simulation results, we compute the minimum sensor density, λ̂s, that

ensures visual K-coverage. We study the effect of different parameters, i.e. target

density λt, target radius r, sensing range ρ and angle of view θ. In each experiment,

we change the value of one of these parameters and fix other parameters by setting

λt = 0.1, r = 0.5m, ρ = 10m, θ = 45◦ and tolerance value ϵ = 0.05.

First of all, we change the number of deployed target, Nt from 10 to 300.

Fig. 4.13 shows the minimum sensor density λ̂s corresponding to different number

of deployed target, Nt under different K-coverage requirements. We observe that λ̂s

increases as Nt increases because of the presence of more visual occlusions among
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Figure 4.12: (a) Visual coverage probability for sensing field R corresponding to
Nt = 20, Ns = 100, ρ = 10, θ = 45◦, K = 2 (b) Comparison of theoretical values
with and without boundary effect with simulation results corresponding to different
number of sensor nodes Ns.
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Figure 4.13: Minimum node density λ̂s vs target density, λt.

more dense targets; λ̂s also increases as K increases due to the more demanding

coverage requirements. Moreover, we observe that to get double the K-coverage

requires less than double increment in the sensor density because of the overlapping

FOV of sensor nodes. However, to get more K-coverage in a crowded environment

requires more proportional increment in the minimum sensor density λ̂s than in a

sparse target environment because of the more occlusion among crowded targets.

Secondly, to show the effect of the target radius r on the minimum sensor density,

we change its value from 0.1m to 5m. Fig. 4.14 shows the minimum sensor density

λ̂s corresponding to different target radius r. We observe that λ̂s increases as either

λt or K increases because of the presence of more visual occlusions among targets

of larger size and more demanding coverage requirements, respectively. Moreover,

we observe that to update K-coverage requires less than K times increment in the

sensor density. However, in an environment with large size targets, it requires more
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Figure 4.14: Minimum node density λ̂s vs target radius, r.

proportional increment in the minimum sensor density λ̂s than in an environment

with small-size targets because of the more visual occlusion among large targets.

Third, we change the sensing range ρ from 3m to 20m. Fig. 4.15a shows the

minimum sensor density λ̂s corresponding to different sensing range ρ under different

K-coverage requirements. We observe that λ̂s decreases as ρ increases because of the

larger FOV of each sensor node; λ̂s also increases as K increases due to the more

demanding coverage requirements.

In the fourth simulation, to show the effect of angle of view θ on the minimum

sensor density, we change its value from 10◦ to 120◦). Fig. 4.15b shows the minimum

sensor density λ̂s corresponding to different angle of view θ. We observe that λ̂s

decreases as θ increases due to the larger FOV of each sensor node and λ̂s increases

as K increases because of more demanding coverage requirements.
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Figure 4.15: Minimum node density λ̂s vs (a) sensing range, ρ, (b) Angle of view,
θ.
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4.10 Discussion on Visual Coverage Estimation in

Heterogeneous VSNs

In this chapter, it is assumed that homogeneous visual sensor nodes with the same

sensing radius, ρ, and angle of view, θ, are deployed into the sensing field to detect

the homogeneous targets with uniform target radius, r. In order to make the

scenario more realistic where heterogeneous visual sensors and targets are likely to

be deployed, we can relax these assumptions by considering the heterogeneous visual

sensor deployment and heterogeneous target existence in the sensing field. In this

section, we discuss the effect of heterogeneous sensor deployment and heterogeneous

existence on the derivation of the closed-form solution for visual coverage estimation.

4.10.1 Effect of Heterogeneous Sensor Deployment on the

Visual Coverage Estimation

In the heterogeneous visual sensor deployment, we deploy different types of visual

sensor nodes into the sensing field with different sensor density, λs, sensing radius, ρ,

and angle of view, θ. If n types of sensor nodes are deployed into the sensing field,

a target can be covered by k many sensor nodes with any combinations of these n

types of sensor nodes. Therefore, in the derivation of the closed-form solution for

visual coverage estimation, we have to consider the different detection probability of

each type of sensor node in their different size of detectability area, A and derive the

closed-form solution based on their sensor related parameters (i.e., λs, ρ, and θ).

For simplicity, we consider that two types of sensor nodes are deployed in a

heterogeneous VSN: Type I and Type II with sensor density, λs1 and λs2 , sensing

radius, ρ1 and ρ2, and angle of view, θ1 and θ2, respectively. The probability that

exactly k sensor nodes cover a specific grid point of the sensing field and determine
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the target non-existence is

P (k) =
∞∑
j=k

j∑
i=0

k∑
m=0

P1(i,m;λs1 , θ1, ρ1, λt, r)P2(j − i, k −m;λs2 , θ2, ρ2, λt, r) (4.18)

where P1(i,m;λs1 , θ1, ρ1) denotes the probability that a detectability area contains

exactly i many Type I sensor nodes and m of them can cover the corresponding grid

point based on its sensor related parameters (i.e., λs1 , ρ1, and θ1) and target related

parameters (i.e., λt and r). And, similarly, P2(j − i, k − m;λs2 , θ2, ρ2) denotes the

probability that a detectability area contains exactly j− i many Type II sensor nodes

and k−m of them can cover the corresponding grid point based on its sensor related

parameters (i.e., λs2 , ρ2, and θ2) target related parameters (i.e., λt and r).

In the following subsections, we present the complete analysis of the heterogeneous

visual sensor deployment in different cases of sensor related parameters (i.e., λs, ρ,

and θ) of Type I and Type II sensor nodes. For simplicity, we first ignore the visual

occlusion in VSN to derive the closed-form solution for visual coverage estimation.

Then, we relax our assumption by considering visual occlusion and discuss the visual

coverage estimation with visual occlusion in a heterogeneous VSN.

Heterogeneous Sensor Deployment without Visual Occlusions

As discussed in Section 4.4, if the radius of targets is infinitely small, i.e., r → 0,

we can ignore the visual occlusion. In this case, a sensor node covers a specific grid

point (x, y) ∈ R, of the sensing field and determines target non-existence, if the

node is located in a circular area A with radius ρ centered at the corresponding grid

point and is oriented towards the center of the circle. The probability that exactly k

sensor nodes cover a specific grid point of the sensing field and determine the target
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non-existence is

P (k) =
∞∑
j=k

j∑
i=0

k∑
m=0

(
P(i;λs1 × A1)Ci

m(p1)
m(1− p1)

i−m×

P(j − i;λs2 × A2)Cj−i
k−m(p2)

k−m(1− p2)
j−i−(k−m)

)
(4.19)

where P(i;λs × A) denotes the probability that a detectability area A contains

exactly i sensor nodes from a Poisson point process with sensor density λs where

A = πρ2. And, p denotes the probability of the sensor node facing towards the center

of detectability area, A, and Ci
m denotes the number of combinations of m-node subset

from a i-node set. The probability of Type I sensor nodes facing towards the center of

their detectability area, A1 is p1 = θ1/(2π) where A1 = πρ21 and probability of Type II

sensor nodes facing towards the center of their detectability area, A2 is p2 = θ2/(2π)

where A2 = πρ22.

Case 1.1: θ1 ̸= θ2 where ρ1 = ρ2 = ρ and λs1 ̸= λs2

In Case 1.1, it is assumed that Type I and Type II sensor nodes have different angle

of view (i.e., θ1 ̸= θ2), different sensor density (i.e., λs1 ̸= λs2), and same sensing

range (i.e., ρ1 = ρ2 = ρ) where their detectability area, A, is the same (i.e., A1 =

A2 = A = πρ2), as shown in Fig. 4.16a. Therefore, Eq. 4.19 can be further derived

as,

P (k) =
∞∑
j=k

j∑
i=0

k∑
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(
e−λs1A(λs1A)

i

i!
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m(p1)

m(1− p1)
i−m×

e−λs2A(λs2A)
j−i

(j − i)!
Cj−i
k−m(p2)
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∞∑
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=
∞∑
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(4.20)

where (a) follows the combination properties,
Ci
mCj−i

k−m

i!(j−i)!
=

Ck
mCj−k

i−m

k!(j−k)!
(see the proof

in Appendix B.5), and (b) follows the binomial coefficient property of statistical

population where (1 + x)k(1 + y)j−k =

j∑
i=0

k∑
m=0

Ck
mC

j−k
i−m(x)

m(y)i−m.

From the derivation result in Eq. 4.20, we observe that the visual coverage

probability with visual occlusions also follows the Poisson point process with the

sensor density (λs1p1 + λs2p2) in area A. If p1 = p2 = p and λs1 + λs1 = λs, then

Eq. 4.20 converges to Eq. 4.2 which means heterogeneous visual sensor deployment

becomes homogeneous.

Case 1.2: ρ1 ̸= ρ2 where θ1 = θ2 = θ and λs1 ̸= λs2

In Case 1.2, it is assumed that Type I and Type II sensor nodes have different sensing

ranges (i.e., ρ1 ̸= ρ2), different sensor densities (i.e., λs1 ̸= λs2), but same angle of

view (i.e., θ1 = θ2 = θ) where their detectability area, A1 and A2 equal to A1 = πρ21

and A2 = πρ22, respectively as shown in Fig. 4.16b. Therefore, Eq. 4.19 can be further
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(a) (b)

Figure 4.16: Heterogenous visual sensor deployment with different angle of view
(θ1 ̸= θ2) and (a) same sensing range (ρ1 = ρ2 = ρ) or (b) different sensing range
(ρ1 ̸= ρ2)

derived as,

P (k) =
∞∑
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(c)
=

1

k!
e−(λs1A1+λs2A2)

(
p(A1λs1 + A2λs2)

)k
e(1−p)(A1λs1+A2λs2 )

=
1

k!
e−p(A1λs1+A2λs2 )

(
p(A1λs1 + A2λs2)

)k
=P
(
k; p× (A1λs1 + A2λs2)

)
(4.21)

where (a) follows the combination properties,
Ci
mCj−i

k−m

i!(j−i)!
=

Ck
mCj−k

i−m

k!(j−k)!
(see the proof

in Appendix B.5), and (b) follows the binomial coefficient property of statistical

population where (1 + x)k(1 + y)j−k =

j∑
i=0

k∑
m=0

Ck
mC

j−k
i−m(x)

m(y)i−m.

From the derivation result in Eq. 4.21, we observe that the visual coverage

probability with visual occlusions also follows the Poisson point process with the

parameter p × (A1λs1 + A2λs2) where A1 = πρ21 and A2 = πρ22. If ρ1 = ρ2 = ρ and

λs1 + λs1 = λs, then Eq. 4.21 converges to Eq. 4.2 which means heterogeneous visual

sensor deployment become homogeneous.

Case 1.3: θ1 ̸= θ2 and ρ1 ̸= ρ2 where λs1 ̸= λs2

In Case 1.3, it is assumed that Type I and Type II sensor nodes have different angle

of view (i.e., θ1 ̸= θ2), different sensing range (i.e., ρ1 ̸= ρ2), and different sensor

density (i.e., λs1 ̸= λs2) where their detectability area, A1 and A2 equal to A1 = πρ21

and A2 = πρ22, respectively as shown in Fig. 4.16b. Therefore, Eq. 4.19 can be further

derived as,
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∞∑
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where (a) follows the combination properties,
Ci
mCj−i

k−m

i!(j−i)!
=

Ck
mCj−k

i−m

k!(j−k)!
(see the proof

in Appendix B.5), and (b) follows the binomial coefficient property of statistical

population where (1 + x)k(1 + y)j−k =

j∑
i=0

k∑
m=0

Ck
mC

j−k
i−m(x)

m(y)i−m.

From the derivation result in Eq. 4.22, we observe that the visual coverage

probability with visual occlusions also follows the Poisson point process with the

parameter λs1A1p1 + λs2A2p2 where A1 = πρ21 and A2 = πρ22. If p1 = p2 = p,

ρ1 = ρ2 = ρ, and λs1 + λs1 = λs, then Eq. 4.22 converges to Eq. 4.2 which means

heterogeneous visual sensor deployment become homogeneous.

Heterogeneous Sensor Deployment with Visual Occlusions

In previous three cases for heterogeneous sensor deployment with different combi-

nations of the sensor related parameters (i.e., λs, ρ, and θ), we ignored the visual
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Figure 4.17: Occlusion zone in heterogenous visual sensor deployment

occlusion for simplicity in derivation of closed-form solution for visual coverage

estimation. To make the scenario more realistic, we relax our assumption on target

radius, r that becomes a finite value, i.e., r > 0. Therefore, it is not appropriate to

ignore the visual occlusions. To cover a specific grid point of the sensing field and

determine the target non-existence at that point, not only the corresponding grid

point must be inside the FOV of the sensor node, the centers of all targets should

also be outside of the occlusion zone between the corresponding grid point and the

node which is illustrated as the bold-boundary region in Fig. 4.17.

As describe in Section 4.5, Q denote the probability of covering a specific grid

point of the sensing field by heterogeneous visual sensor nodes and determining the

target non-existence that depends on two independent factors, i.e., the grid point is

within the FOV of the sensor, p, and that there is no occlusion between the sensor

and the grid point, q. Q can be expressed as

Q(l) = p× q =
θ

2π
× e−λt(πr2+2rl) (4.23)
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Thus, the visual coverage probability that exactly k nodes cover a specific grid

point of the sensing field by heterogeneous visual sensor nodes and determine the

target non-existence, P (k), is

P (k) =

∫
P (k,Q1(l), Q2(l))f(l)dl (4.24)

where P (k,Q1(l), Q2(l)) is the probability that exactly k sensor nodes cover a specific

grid point of the sensing field and determine the target non-existence at that point

with respect to Q1(l) and Q2(l) values of Type I and Type II sensor nodes. And f(l)

is the probability density function (pdf) of distance l between the corresponding grid

point and each sensor node in the circular detectability areas A1 and A2 with sensing

radius ρ1 and ρ2 centered at the grid point.

In order to derive the P (k,Q1, Q2), Eq. 4.18 can be further derived as,

P (k,Q1(l), Q2(l)) =
∞∑
j=k

j∑
i=0

k∑
m=0

(
P(i;λs1 × A1)Ci

m(Q1)
m(1−Q1)

i−m×

P(j − i;λs2 × A2)Cj−i
k−m(Q2)

k−m(1−Q2)
j−i−(k−m)

)
(4.25)

where Q1(l) = p1 × q = θ1
2π

× e−λt(πr2+2rl) and Q2(l) = p2 × q = θ1
2π

× e−λt(πr2+2rl).

The derivation of P (k,Q1, Q2) in Eq. 4.25 is similar with Eq. 4.19. Only difference

is replacement of p1 and p2 with Q1 and Q2, respectively. Therefore, derivation results

for three cases will be similar with parameter replacement.

Case 2.1: θ1 ̸= θ2 where ρ1 = ρ2 = ρ and λs1 ̸= λs2

In Case 2.1, it is assumed that Type I and Type II sensor nodes have different angle

of view (i.e., θ1 ̸= θ2), different sensor density (i.e., λs1 ̸= λs2), and same sensing

range (i.e., ρ1 = ρ2 = ρ) where their detectability areas, A, is the same (i.e., A1 =
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A2 = A = πρ2) and Q1 ̸= Q2. Therefore, derivation result of Eq. 4.25 is

P (k,Q1, Q2) = P
(
k; (λs1Q1 + λs2Q2)× A

)
(4.26)

Case 2.2: ρ1 ̸= ρ2 where θ1 = θ2 = θ and λs1 ̸= λs2

In Case 2.2, it is assumed that Type I and Type II sensor nodes have different sensing

range (i.e.,ρ1 ̸= ρ2), different sensor density (i.e., λs1 ̸= λs2), and same angle of view

(i.e., θ1 = θ2 = θ) where their detectability areas, A1 and A2 equal to A1 = πρ21 and

A2 = πρ22 and Q1 = Q2 = Q = θ
2π

× e−λt(πr2+2rl). Therefore, derivation result of

Eq. 4.25 is

P (k,Q1, Q2) = P
(
k;Q× (A1λs1 + A2λs2)

)
(4.27)

Case 2.3: θ1 ̸= θ2 and ρ1 ̸= ρ2 where λs1 ̸= λs2

In Case 2.3, it is assumed that Type I and Type II sensor nodes have different angle

of view (i.e., θ1 ̸= θ2), different sensor density (i.e., λs1 ̸= λs2), and different sensing

range (i.e., ρ1 ̸= ρ2) where their detectability areas, A1 and A2 equal to A1 = πρ21

and A2 = πρ22 and Q1 ̸= Q2. Therefore, derivation result of Eq. 4.25 is

P (k,Q1, Q2) = P
(
k;λs1A1Q1 + λs2A2Q2

)
(4.28)

4.10.2 Effect of Heterogeneous Target Existence on the

Visual Coverage Estimation

In addition, when heterogeneous targets exist in the sensing field with different target

radius, r, we have to consider all types of targets in order to compute the probability

that there is no occluding target between a grid point and a sensor node, q. For

example, if two types of targets exist in the sensing field with target density, λt1

and λt2 , and target radius, r1 and r2, to cover a grid point in the sensing field, and

determine the target non-existence at that point, not only the corresponding grid
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Figure 4.18: Occlusion zones, Ao1 and Ao2 , of Type I and Type II targets in case
of heterogenous target existence.

point must be inside the FOV of the sensor node, the occlusion zones between the

grid point and the sensor node, Ao1 and Ao2 should also be free of Type I and Type

II targets, respectively as shown in Fig. 4.18. Therefore, the probability of having no

Type I target in the occlusion zone, Ao1 equals to q1 = e−λt1Ao1 where Ao1 = πr21+2r1l

and the probability of having no Type II target in the occlusion zone, Ao2 equals to

q2 = e−λt2Ao2 where Ao2 = πr22 + 2r2l.

The visual coverage probability that exactly k nodes cover a specific grid point of

the sensing field and determine the target non-existence when heterogeneous targets

exist in the sensing field, P (k), is

P (k) =

∫
P (k, q1(l), q2(l))f(l)dl (4.29)

where P (k, q1(l), q2(l)) is the probability that exactly k sensor nodes cover a specific

grid point of the sensing field and determine the target non-existence at that point

with respect to q1(l) and q2(l) values of Type I and Type II targets, respectively. The
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derivation of P (k, q1(l), q2(l)) is
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∞∑
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142



where (a) and (c) follows the combination properties, Ci
k+s.Ck+s

k = Ci
k.Ci−k

s , and (b)

and (d) follows the binomial coefficient property, (x + y)n =
∑n

s=0 Cn
s x

n−sys where

s = i− k. Also, A = πρ2, p = θ/(2π), q1 = e−λt1 (πr
2
1+2r1l), and q2 = e−λt2 (πr

2
2+2r2l).

From the derivation result in Eq. 4.30, we observe that the visual coverage

probability with visual occlusions also follows the Poisson point process with the

parameter λspq1q2 in area A = πρ2. If r1 = r2 = r, and λt1 + λt2 = λt, then Eq. 4.30

converges to Eq. 4.2 which means heterogeneous visual sensor deployment become

homogeneous.
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4.11 Summary

In this chapter, we presented a closed-form solution for the visual coverage estimation

problem in the presence of visual occlusions among crowded targets in a VSN. By

assuming the uniform random deployment of sensor nodes into a large-scale sensing

field and taking the visual occlusions and boundary effects into account, we derived

the visual coverage estimation from a different point of view by modeling the target

detection algorithm based on the certainty map approach. Then, we further estimated

the minimum sensor density that suffices to ensure a visual K-coverage in a crowded

sensing field by using the visual coverage estimation model.

Our major contributions in this chapter were two-fold. First, we adopted the

certainty-based target detection model in coverage estimation in a randomly deployed

VSN and derived a closed-form solution for visual coverage estimation. Therefore, the

sensor related parameters (e.g., sensor density, sensing range, etc.) can be decided

before deployment in order to have proper visual coverage in the sensing field. Second,

since the visual coverage probability in a crowded environment depends not only on

the sensor density and deployment but also on the target density and distribution,

our proposed closed-form solution considers both the directional sensing nature of

cameras and the visual occlusions among targets and provides more accurate and

more realistic coverage estimation in a crowded VSN.

By comparing the simulation results and the theoretical values, we validated

the proposed closed-form solution of visual coverage estimation and showed the

effectiveness of our model to be deployed in practical scenarios. In order to make

the scenario more realistic, we relaxed the assumptions on homogeneous sensor

deployment and homogeneous target existence and extended the proposed closed-form

solution for more general scenarios where heterogeneous visual sensors and targets are

likely to be deployed into the sensing field.
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Chapter 5

Conclusions and Future Work

5.1 Summary

In this dissertation, we presented collaborative solutions to visual sensor networks

(VSNs) that are formed by significantly small size and low cost visual sensor platforms

with imaging, on-board processing and communication capabilities. A visual

sensor network covers a large surveillance area and is capable of solving computer

vision problems through distributed sensing and collaborative in-network processing.

Although many potential applications have been possible using these powerful visual

sensor platforms, VSNs also present unique challenges that could hinder their practical

deployment compared to conventional 1-D scalar sensor networks because of unique

features of cameras, including the extremely higher data rate and the directional

sensing characteristics with limited field of view and visual occlusions.

In order to address these challenges in visual sensor networks, we first presented

an energy-efficient and light-weight approach to localize targets in a crowded envi-

ronment using a visual sensor network through distributed sensing and collaborative

in-network processing by taking the directional sensing and visual occlusion issues

in visual sensors into account. Traditionally, the problem is solved by localizing the

targets at the intersections of the back-projected 2D cones of each target. However,
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the existence of visual occlusion among targets would generate many false alarms.

Instead of resolving the uncertainty about target existence at the intersections, we

identify and study the non-occupied areas in the cone and generate the so-called

certainty map of non-existence of targets.

Secondly, we proposed a data fusion algorithm to integrate certainty maps where

not only each camera node transmits a very limited amount of data but that a limited

number of camera nodes is involved. We introduced a dynamic itinerary for certainty

map integration where the entire map is progressively clarified from sensor to sensor

starting the integration with the sensor that has the greatest contribution information

to the current certainty map. When the confidence of the certainty map is satisfied,

targets are localized at the remaining unresolved regions in the certainty map.

In addition to target localization, we also focused on the design of a fault-tolerant

target localization algorithm in VSNs that would not only accurately localize targets

but also detect the faults in camera orientation, tolerate these errors and further

correct them before they cascade. Based on the locations of detected targets in the

final certainty map, we then constructed a generative image model in each camera

that estimates the camera orientation, detect inaccuracies in camera orientations and

correct them before the fault in the system cascades and reaches a point where the

performance of the algorithm dramatically drops or sometimes the algorithm fails.

We also presented the distributed implementation of the fault-tolerant collaborative

target localization by selecting the voting threshold automatically.

Finally, we derived a closed-form solution for the visual coverage estimation

problem in the presence of occlusions to guarantee the required coverage in a sensing

field. In order to have proper sensor coverage in the sensing field, some sensor related

parameters, such as sensor density, sensing range, etc., should be decided based on the

estimated sensor coverage probability before deployment. According to the coverage

estimation model, we further proposed an estimate of the minimum sensor density

that suffices to ensure a visual K-coverage in a crowded sensing field. Simulation was

conducted which shows extreme consistency with results from theoretical formulation,
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especially when the boundary effect is considered. In order to make the scenario more

realistic, we extended the proposed closed-form solution for more general scenarios

where heterogeneous visual sensors and targets are likely to be deployed into the

sensing field.

5.2 Directions for Future Research

In a visual sensor network, many sensor nodes are randomly deployed to cover a large

sensing field as long as possible and collect data from its surroundings as much as

possible. However, these two concept are inversely proportional because collecting

data consumes energy and in many scenarios, sensor nodes are powered by limited

power supplies (i.e., batteries) which is not possible to exchange or recharge the

batteries because of the harsh or inaccessible environments. When the battery is run

out, the visual sensor node dies. Therefore, energy-efficiency and power-conservation

are still important issues in a visual sensor network to maximize the network lifetime

where it is defined as time duration when every point in the sensing region is covered

by at least one camera.

In order to conserve energy in a visual sensor network and prolong its network

lifetime, we can periodically wake up some sensor nodes from sleep mode to collect

the information while others are in sleep, and sleep them back and wake up others. In

Chapter 4, we derive a closed-form solution for the visual coverage estimation in visual

sensor networks to guarantee the required coverage in a sensing field. As a further

extension of this work for a future research, we can study an optimal wake-up/sleep

scheduling algorithm for energy saving purpose. Our approach is based on that we

can estimate the number of visual sensor node by using the closed-form solution for

the visual coverage estimation that ensures the coverage requirement and organize the

disjoint subsets of sensor nodes and put the redundant sensors into different subsets.

Then, we leave the sensor nodes in one of the subsets in the active mode to cover the

sensing field and put the rest of the redundant sensor subsets into the sleep mode.
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Appendix A

List of Selected Symbols

Symbol Description Section

si Index of a visual sensor node 2.3

(xsi , ysi) Coordinates of the sensor node si in the sensing field 2.3

vsi Vector that describes the non-occupied areas within the FOV

of the sensor node, si

2.3

φi,j Starting angle of the jth non-occupied area 2.3

ψi,j Ending angle of the jth non-occupied area 2.3

jth Index of non-occupied area 2.3

Bi Total number of non-occupied areas of the image taken by

node si

2.3

S Set of the visual sensor nodes 2.3

U(S) Union formed by all the local certainty maps in S 2.3

f(vsi) Mapping function to convert vsi to the certainty map 2.3

|f(vsi)| Total area that can be cleared from the current certainty

map by sensor node si

2.5.1

δ Threshold to determine if the sensor node holds adequate

additional clarification information

2.5.1
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Symbol Description Section

N Number of visual sensor nodes 2.7

M Number of targets 2.7

Nd Number of involved sensor nodes that in dynamic itinerary 2.7

No Number of involved sensor nodes that in fixed or random

itineraries

2.7

D Size of the data vector 2.7

E Total energy consumption during the transmission of

certainty maps

2.7

c Energy cost per byte 2.7

ξ Fixed cost for different communication modes 2.7

Esend Energy consumption for sending data 2.7

Erecv Energy consumption for receiving data 2.7

Edisc Energy consumption for discarding data 2.7

θsi Actual (or inaccurate) orientation of the ith sensor node, si 3.3

θ∗si Ground truth (or calibrated) orientations of the ith sensor

node, si

3.3

Nsi(0, σ) Gaussian noise with zero-mean and standard deviation σ in

the orientation

3.3

δsi Byzantine fault in the orientation 3.3

Cx,y Number of sensor nodes that covers a grid pixel at coordinate

(x, y)

3.3

Vx,y(S) Normalized voting algorithm value a grid pixel at coordinate

(x, y)

3.3

Ψ Normalized pseudo-distance between two 1D scanline images 3.3

θesi Expected camera orientation 3.3
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Symbol Description Section

K K-coverage requirement, i.e., at least K nodes covers a

specific grid point

4.1

k Number of sensors that covers a point 4.4

r Target radius 4.3

ρ Sensing range of a camera 4.3

θ Camera angle of view in degrees 4.3

R 2D sensing field 4.3

λt Target density 4.3

λs Sensor density 4.3

A Circular detectability area 4.4

(x, y) Coordinates of a sensor node in the sensing field 4.4

P (k) Probability that exactly k sensor nodes cover a specific grid

point of the sensing field

4.4

p Probability of facing the sensor node towards the center of

detectability area

4.4

Cj
k Number of combinations of k-node subset from a j-node set 4.4

P(j;λsA) Probability that a detectability area A contains exactly j

sensor nodes from a Poisson point process

4.4

Ao Area of the occlusion zone 4.5

q Probability that there is no visual occlusion between the grid

point and the sensor node

4.5

l Distance between the grid point and the node 4.5

Q = p× q Probability of covering a specific grid point of the sensing

field R

4.5

si Index of a visual sensor node 4.5

Ns Number of visual sensor nodes 4.5

Nt Number of targets 4.5
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Symbol Description Section

f(l) probability density function (pdf) of distance li between the

corresponding grid point and each sensor node si

4.5

f(Q) probability density function (pdf) of function Q 4.5

Γ(k, λ) Upper incomplete gamma function 4.5

T(3, k, λ) A special case of Meijer G-function 4.5

E1(λ) Exponential integral 4.5

Fp(k;λ) Cumulative probability distribution (cdf) of Poisson distri-

bution with parameter k and λ

4.5

AC Detectability area of the corner sub-regions 4.7

AS Detectability area of the side sub-regions 4.7

AM Detectability area of the middle sub-regions 4.7

M ×N Size of the rectangle sensing field 4.7.1

(u, v) Minimum distances from a grid point to two borders of the

M ×N rectangle sensing field

4.7.1

ε Tolerance value 4.8

λ̂s Minimum sensor density 4.8
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Appendix B

Derivations and Proofs

B.1 Probability of Radial distance, li

Suppose sensor nodes appears at a point uniformly distributed at random on a circular

plane, A, of radius ρ in the sensing field, R. Let L be the distance of the point from

the center of the circular detectability area A.

The basic assumption is that the probability of sensor nodes appears in a particular

region of the circular detectability area A is proportional to the area of the region.

From the Fig. B.1, 0 ≤ l ≤ ρ,

P (R ∈ dl) =
Area of annulus from l to l+dl

Total area

=
π(l + dl)2 − πl2

πρ2

=
2l

ρ2
dl (B.1)

by ignoring the term involving (dl)2. Therefore, L has probability of density function

as

f(l) =


2

ρ2
l for 0 ≤ l ≤ ρ

0 for otherwise
(B.2)
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Figure B.1: Area at particular radial distance.

where f(l) is the pdf of distance li between the corresponding grid point and each

sensor node si. It follows linear distribution from 0 to ρ.

B.2 Probability of function Q(l)

To compute the pdf of the function Q, f(Q) from the pdf of distance l, Eq. B.2,

we utilized the change of variable property. Since Q is a monotonically decreasing

function, f(Q) is

f(Q) = fL(g
−1(Q))×

∣∣∣∣∣dg−1(Q)

dQ

∣∣∣∣∣ (B.3)

Let Q = g(l) = p× q =
θ

2π
× e−λt(πr2+2rl). Then,

g−1(Q) =
ln
(

θ
2π

e−λtπr2

Q

)
2λtr

and,
dg−1(Q)

dQ
= − 1

2λtrQ
.
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Hence, f(Q) is

f(Q) =


2

ρ2
×

ln
(

θ
2π

e−λtπr2

Q

)
2λtr

× 1

2λtrQ
for Q(l = ρ) ≤ Q ≤ Q(l = 0)

0 otherwise

(B.4)

B.3 Derivative of Incomplete Gamma Function

Let Γ(k, λ), the upper incomplete gamma function, is

Γ(k, λ) =

∫ ∞

λ

uk−1e−udu. (B.5)

The derivative of the upper incomplete gamma function is

∂

∂k
Γ(k, λ) =

∂

∂k

(∫ ∞

λb

uk−1e−udu

)

=

∫ ∞

λb

∂

∂k

(
uk−1e−udu

)
=

∫ ∞

λb

uk−1e−u lnudu (B.6)

To further derivation of derivative of the upper incomplete gamma function, we can

use Meijer G-function as

∂

∂k
Γ(k, λ) = lnλΓ(k, λ) + λT(3, k, λ) (B.7)

where T(3, k, λ) is a special case of Meijer G-function, Geddes et al. [1990].
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B.4 Recurrence Formula of the function T(m, k, λ)

By using integration by parts in Eq.B.5, we find the simple recurrence formula of the

upper incomplete gamma function as

Γ(k + 1, λ) = kΓ(k, λ) + e−λλk (B.8)

To find the simple recurrence formula of the function T(m, k, λ), we substitute Eq.B.8

into Eq.B.7 as

∂

∂k
Γ(k + 1, λ) =

∂

∂k

(
kΓ(k, λ) + e−λλk

)

lnλ× Γ(k + 1, λ) + λT(3, k + 1, λ) = Γ(k, λ) + k

(
lnλΓ(k, λ) + λT(3, k, λ)

)
+ e−λλk lnλ

λT(3, k + 1, λ) = kλT(3, k, λ) + Γ(k, λ) (B.9)

By repeating the recursive formula of function T(3, k, λ), we find its generalized

version as

λT(3, k + 1, λ) =kλT(3, k, λ) + Γ(k, λ)

=k
(
(k − 1)λT(3, k − 1, λ) + Γ(k − 1, λ)

)
+ Γ(k, λ)

=k(k − 1)
(
(k − 2)λT(3, k − 2, λ)+

+ Γ(k − 2, λ)
)
+ (k − 1)Γ(k − 1, λ) + Γ(k, λ)

...

=
k!

(k − 1− j)!
λT(3, k − j, λ) +

j∑
i=0

k!

(k − i)!
Γ(k − i, λ) (B.10)
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For k − 1 → k and j → k − 2,

λT(3, k, λ) =
(k − 1)!

(k − 1− 1− k + 2)!
λT(3, k − 1− k + 2, λ)+

+
k−2∑
i=0

(k − 1)!

(k − 1− i)!
Γ(k − 1− i, λ)

=(k − 1)!λT(3, 1, λ) +
k−1∑
i=1

(k − 1)!

(i)!
Γ(i, λ)

=(k − 1)!E1(λ) + (k − 1)!
k−1∑
i=1

Γ(i, λ)

(i)!
(B.11)

where λT(3, 1, λ) equals to E1(λ) which is the exponential integral.

B.5 Derivation of Heterogeneous Visual Sensor

Network

Cn
k denotes the number of combinations of k-element subset from a n-element set. The

number of k-combinations is equal to the binomial coefficient which can be written

using factorials as Cn
k = n!

k!(n−k)!
. By using this factorial enpension,

Ci
mC

j−i
k−m

i!(j − i)!
=

i!
m!(i−m)!

× (j−i)!
(k−m)!(j−i−(k−m))!

i!(j − i)!

=
1

m!(i−m)!
× 1

(k −m)!(j − i− (k −m))!

=
Ck
m

k!
×

Cj−k
i−m

(j − k)!

=
Ck
mC

j−k
i−m

k!(j − k)!
(B.12)
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