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ABSTRACT 

Essential oils (EOs) or their isolated components, such as eugenol and carvacrol, have 

strong antimicrobial activities against both Gram-positive and Gram-negative bacteria 

and are generally recognized as safe by the FDA. However their hydrophobic properties 

limit their dispersion and stabilization in aqueous food systems. This requires higher 

concentrations, which in turn negatively affect the quality of foods. The objective here 

was to determine the effect of the natural emulsifier lecithin on the antimicrobial activity 

of eugenol and carvacrol and possible food applications. Escherichia coli K12 and E. coli 

O157:H7 strains ‘Cider’ and ATCC 43889 were used. Homogenized eugenol and 

carvacrol, with and without lecithin, were screened for antimicrobial activity. The 

stability of the samples measured by particle size and zeta potential was not affected by 

different concentrations of lecithin. For all strains, the antimicrobial activity of carvacrol 

and eugenol was enhanced significantly (P<0.05) by low concentration of lecithin. The 

D-value (time at a specific concentration of antimicrobial necessary to cause a 90% 

reduction in viable cells) for E. coli K12 exposed to 0.047% v/v eugenol or 0.015 % v/v 

carvacrol was reduced from 13.3 to 6.3 min and 17.4 to 9.7 min, respectively, with the 

addition of 0.0025% lecithin (w/v). Similarly 0.0025% w/v lecithin in the presence of 

0.058% v/v eugenol or 0.0188% v/v carvacrol, caused the D-value to decrease from 4.0 

to 1.2 min and 10.2 to 6.9 min, respectively, for E. coli strain ‘Cider’ and from 6.2 min to 

3.6 min and 9.9 to 5.4 min, respectively, for E. coli ATCC 43889. Higher lecithin 

concentrations (> 0.005% w/v) increased D-values compared to lower concentrations. 

Similar results were found in vegetable juice. The results showed that a small amount of 

lecithin can enhance the antimicrobial activities of essential oils. Addition of lecithin had 
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no effect on oil-water emulsion droplet particle size and the stability of the samples was 

not affected by different concentration of lecithin.  We believe that lecithin enhances the 

antimicrobial activity of eugenol and carvacrol droplets by improving the ionic 

interactions between the positively charged lecithin-containing essential oil components 

and negatively charged bacterial cells. 

Key words: Escherichia coli; lecithin; eugenol; carvacrol; homogenization; vegetable 

juice 
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CHAPTER 1  
INTRODUCTION AND LITERATURE REVIEW 

 
  

Introduction  
 

Essential oils (EOs) (also called volatile or ethereal oils) are aromatic oily liquids 

obtained from plant material (flowers, buds, seeds, leaves, twigs, bark, wood, fruits and 

roots) (Burt 2004). They are secondary metabolites, which have functions such as 

protection against pests, as coloring, scent, or attractants and as the plants’ own hormones 

(Brenes and Roura 2010). EOs are generally a complex combination of components and 

many have been characterized by gas chromatography and mass spectrometry. Essential 

oils are generally recognized as safe in the United States of America as flavoring agents, 

for consumption by human and animals (FDA 2006). 

Some EOs also are known to have strong antimicrobial activity against a wide variety of 

foodborne pathogens. Besides antibacterial properties, EOs or their isolated components 

exhibit antioxidant (Baratta, Dorman et al. 1998), antifungal (Chao, Young et al. 2000), 

antiviral (Ramadan and Asker 2009), antiparasitic, and insecticidal properties. Consumers 

today are interested in “green and natural” food preservatives because of the perceived 

desire for fewer “synthetic” food additives. Furthermore, the World Health Organization 

has called for lower consumption of salt in order to reduce the incidence of 

cardiovascular disease (WHO, 2002b). If salt added into the food is reduced, other 

antimicrobial additives will be necessary to inhibit microorganisms in order to maintain 

the safety of foods (Burt 2004). While EOs have received considerable attention as 
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antimicrobial food additives, their hydrophobic properties limit their dispersion and 

stabilization in aqueous food systems (Brenes and Roura 2010; Sofos and Geornaras 

2010). This review is focused on the antimicrobial activity and the methods for, 

stabilizing EOs and their components in food applications. 

History  

In ancient times, the Egyptians were the first civilization to extensively make use of 

aromatherapy and aromatic herbs. These were used in their religion, cosmetics, and for 

medicinal purposes (Burt 2004). At the same time, the Chinese applied herbs and 

aromatic plants in their medical system. This practice became an integral part of the 

Indian Ayurvedic medicinal system. 

Spices have been widely used for their perfume, flavor and preservative properties since 

antiquity (Bauer 2001). The first documented use of EOs was described by Greek and 

Roman historians for medical treatment functions and aromatherapy massages (Burt 

2004). The first authentic written account of distillation of essential oil is ascribed to the 

Catalan physician, Villanova (ca. 1235–1311). By the 13th century, the pharmacological 

effect of EOs were described in pharmacopoeias (Bauer 2001), however their use does 

not appear to have been widespread in Europe until the 16th century. The first 

antimicrobial research on the vapors of EO was carried out by De la Croix in 1881 (Boyle 

1955). In recent times, EOs have been used for flavor and aroma in foods rather than for 

their medicinal purposes. It has only been recently that the food industry has investigated 

the antimicrobial activity of EOs. 
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Extraction 

There are many ways to exact EOs from plant materials. In ancient Egypt, most essential 

oils were produced by means of a type of “enfleurage” extraction method. About 3,500 

BC, the Egyptians applied a distillation method to produce the EOs. Distillation as a 

method of producing EOs was improved in the 9th century by the Persian physician 

Avicenna (980 - 1,037 AD) (Bauer 2001). Maceration was another extraction method in 

which oils were used to soak the plant matter, then the oils were heated and the volatile 

vapors collected. Cold pressing is used to extract the essential oils from citrus rinds such 

as orange, lemon, grapefruit and bergamot. Solvent exaction is widely used in flavor 

industry. In this method, a hydrocarbon solvent is added to the plant material to help 

dissolve the essential oils, and then the solution is filtered and concentrated by 

distillation. Nowadays, supercritical CO2 extraction of essential oils is one of the most 

widely used applications. Supercritical fluid extraction (SFE) can produce superior 

quality products with no artifacts and results in a better reproduction of the original flavor 

or fragrance (Reverchon 1997).  

In the 16th century, a relatively small number of oils were made, including turpentine, 

juniper wood, rosemary, spike (lavender), clove, mace, nutmeg, anise and cinnamon 

(Brenes and Roura 2010). With modern extraction technologies, more and more types of 

EOs were produced including cilantro, coriander, oregano, rosemary, cinnamon, clove, 

sage, and thymol. 

Composition of EOs 
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EOs are secondary metabolites of the plants and every plant genus, species and cultivar 

has a different characteristic EO. Furthermore, the natural origin, environmental and 

genetic factors may effect the composition of the same EO (Brenes and Roura 2010). The 

composition of EOs from a particular species of plant can differ between harvesting 

seasons and between geographical sources (Baranauskiene, Venskutonis et al. 2006). In 

addition, different extraction methods may result in different composition of EOs. EOs 

are very complex natural mixtures, which can contain about 20-60 components (Bakkali, 

Averbeck et al. 2008). They have two main groups: terpenes and aromatic components. 

According to Burt in Figure 1, geranyl acetate, eugenyl acetate, trans-cinnamaldehyde, 

menthol, carvacrol, thymol, geraniol, eugenol, p-cymene, limonene, γ-terpinene and 

carvone are the main components of EOs constituting up to 85% (Burt 2004). 
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Figure 1. Structural formulae of selected components of EOs (Source: Burt, 2004). 
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Table 1. Plant resources of EOs and major components 
Plant species Common name Source † Major components 

Aniba rosaeodora Rosewood W Linalool (Brenes and 
Roura 2010) 

Citrus aurantifolia Lime FR Geranial Limonene,  α-
Pinene, γ-Terpinene 
(Brenes and Roura 
2010) 

Citrus aurantium Orange P Limonene (Brenes and 
Roura 2010) 

Citrus limon Lemon P  
Citrus reticulata 
var. madurensis 

Mandarin P Limonene, γ-Terpinen 
(Brenes and Roura 
2010) 

Cymbopogon 
citratus 

Lemongrass L  

Coriandrum sativum Coriander S α–thuyone, β–thuyone 
(Bakkali, Averbeck et 
al. 2008) 

Cucurbita pepo Pumpkin S  
Cupressus 

sempervirens 
Cypress LT  

Cymbopogon 
citratus 

Lemongrass L  

Lavandula 
angustifolia 

French lavender FL 

Lavandula 
angustifolia 

Tasmanian lavender FL 

Linalool, Linalyl, 
Terpinen(Daferera, 
Ziogas et al. 2000) 

Mentha x piperita Peppermint H 
Mentha spicata Spearmint H 

Methol, Menthne 
(Holley and Patel 2005) 

Ocimum basilicum Basil H Linalool, Methyl 
chavicol  (Holley and 
Patel 2005) 

Rosmarinus 
officinalis 

Rosemary H α-Pinene, β-Pinene, 
1,8-ocineol(Daferera, 
Ziogas et al. 2000) 

Macadamia 
integrifolia 

Macadamia NT  

Pimpinella anisum Aniseed S  
 
† B, berry; BD, bud; FL, flower; FR, fruit; H, herb; L, leaf; LT, leaves and twigs; N, needles; NT, nut; P, peel; RH, rhizome; S, seed; 
W, wood; BK, bulk. 
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 Table 1. Plant resources of EOs and major components. Continued 
Plant species Common name Source † Major components 

Pinus sylvestris Pine N α-Pinene, β-Pinene, 
Sabinene , δ -3-carene, 
Myrcene + α -terpin 

Piper nigrum Black pepper B α-Pinene, β-Pinene, 
Sabinene , δ-3-Carene , 
Limonene,- β-
Caryophyllene 

Pogostemon 
patchouli 

Patchouli L  

Prunus armeniaca Apricot kernel S  
Prunus dulcis Sweet almond S  

Salvia officinalis Sage H 
Salvia sclarea Clary sage H 

α-thujone, β-thujone, 1,8-
ocineol(Daferera, Ziogas 
et al. 2000; Brenes and 
Roura 2010) 
 

Cinnamomum 
zeylanicum 

Cinnamon BK (E)-Cinnamaldehyde, 
Benzaldehyde,  (E)-
Cinnamyl acetate  (Unlu, 
Ergene et al. 2010) 

Thymus vulgaris Thyme H 1,8-cineol, thymol, β -
fenchyl alcohol, nerolidol, 
terpinolene, α-pinene, 
myrcene  (Bakkali, 
Averbeck et al. 2008; 
Asbaghian, Shafaghat et 
al. 2011) 

Origanum majorana Marjoram H 
Origanum vulgare Oregano H 

Carvacrol, p-
cymene(Hammer, Carson 
et al. 1999) 

Citrus aurantium 
var. bergamia 

Bergamot EO α-Pinene, Limonene + β-
phellandrener, γ –
Terpinene, Linalool , 
Lynalil acetate(Brenes and 
Roura 2010) 

Syzygium 
aromaticum 

Clove BD Eugenol, Eugenyl acetate  
(Chaieb, Hajlaoui et al. 
2007; Bakkali, Averbeck 
et al. 2008) 

Melaleuca 
alternifolia 

Tea tree LT Allyl isothiocyanate 
(Tiwari, Valdramidis et al. 
2009) 
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In Table 1, most of the EOs are characterized by one to three dominant substances. Other 

than terpenes, aromatic compounds do occur frequently in the EOs. For example, 

cinnamaldehyde is the major components of the cinnamon oil and eugenol as minor 

constituents to the aromatic components (Bakkali, Averbeck et al. 2008). 

Some studies have shown that some of the major components in EOs are not necessarily 

the most important to the antimicrobial activity (Chao, Young et al. 2000). Additionally, 

the unfractionated EOs sometimes have stronger antimicrobial activity than isolated 

major components (Mourey and Canillac 2002; De Giusti, Aurigemma et al. 2010). This 

indicates that minor, or even trace elements may be critical to the antimicrobial activity. 

It is possible that the complexity of an essential oil helps to enhance the antimicrobial 

activity because bacteria cannot gain tolerance very easily (Burt 2004; Brenes and Roura 

2010). 

Antimicrobial activity of EOs 

Different methods may be used to quantify the antimicrobial activity of EOs. Historically, 

the disk diffusion method or agar well test was used to screen for antimicrobial activity. 

However, this method is not accurate because the hydrophobic properties of EOs do not 

allow them to diffuse in aqueous systems. Thus, to determine antibacterial properties, the 

agar dilution method or broth dilution method should be used. These can be monitored 

using visual growth, optical density/turbidity, viable counts, absorbance, conductance, or 

impedance. To determine the speed and duration of antibacterial activity, time-kill 

analysis or survival curves can be generated. To observe the physical effects of 
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antimicrobial compounds on microorganisms, scanning electron microscopy is the most 

common method used. 

Hammer et al. reported on the antimicrobial activity of 52 EOs against 10 different 

microorganisms (Hammer, Carson et al. 1999) including, Acinetobacter baumanii, 

Aeromonas veronii biogroup sobria, Candida albicans, Enterococcus faecalis, 

Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica 

subsp. enterica serotype typhimurium,	  Serratia	  marcescens	  and	  Staphylococcus	  aureus. 

Lemongrass, oregano and bay inhibited all organisms at ≤ 2.0% (v/v) (Table 2). Six oils 

did not inhibit any organisms at the highest concentration (2.0% (v/v)) including apricot 

kernel, evening primrose, macadamia, pumpkin, sage and sweet almond. Variable 

activity was recorded for the remaining oils. Twenty plant EOs and extracts were 

investigated using a broth microdilution assay against C. albicans, S. aureus and E. coli. 

The minimum inhibitory concentrations were 0.03% (v/v) thyme oil against C. albicans 

and E. coli, and 0.008% (v/v) vetiver oil against S. aureus. These results support that 

plant essential oils and extracts may have a role as preservatives (Hammer, Carson et al. 

1999).	  
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Table 2. Minimal Inhibitory Concentration (MIC) of EO composition for different bacteria. 

EO composition Species of bacteria 

MIC, 
approximate 

range (µl ml-1)a References 

α-Terpineol Escherichia coli 0.450 – >0.9 (Cosentino, Tuberoso et al. 1999) 

 
Salmonella 
typhimurium 0.225  

 Staphylococcus aureus 0.9  

 Listeria monocytogenes >0.9  

 Bacillus cereus 0.9  

Carvacrol E. coli  0.225 – 5 

 S. typhimurium 0.225 – 0.25 

 Staph. aureus 0.175 – 0.450 

(Kim, Morr et al. 1996; Helander, 
Alakomi et al. 1998; Cosentino, 
Tuberoso et al. 1999; Roller and 
Seedhar 2002; Bakkali, Averbeck 
et al. 2008) 

 L. monocytogenes 0.375 – 5  

Eugenol E. coli  1 (Kim, Morr et al. 1996) 

 S. typhimurium 0.5  

 L. monocytogenes >1.0  

E. coli  3 (Helander, Alakomi et al. 1998) Trans-
cinnamaldehyte S. typhimurium 3  

Thymol E. coli  0.225 – 0.45 (Cosentino, Tuberoso et al. 1999) 

 S. typhimurium 3  

a. In the references MICs have been reported in different units such as  ppm, mg ml-1, % (v/v), µl l-1 and ug 

ml-1. For ease of comparison these have been converted to µl ml-1, assuming that EOs have the same 

density as water.  
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Eugenol inhibited against E. coli with concentration at 1.0 µl ml-1 and carvacrol ranging 

from 0.225 to 5 µl ml-1 (Table 2). EOs are effective at preventing the growth and 

reducing the number of most gram-positive and gram-negative foodborne pathogens at a 

relatively low concentration. 

 
  

Mechanisms of antimicrobial activity of Essential Oil Components 

The mechanism of action of EOs and their components as antimicrobials has not been 

fully elucidated. This is complicated by the fact that there are a large number of chemical 

compounds present in EOs and often they are all needed for antibacterial activity and the 

EOs does not seem to have a specific cellular target. Thus the antimicrobial mechanism 

of EOs may not be attributable to one specific mechanism, but rather there may be 

several targets in the cell. Most of the focus on antimicrobial mechanisms for EOs has 

been on the cell membrane and targets interconnected with the membrane. For 

bioactivity, the EOs pass through the cell wall and cytoplasmic membrane (Bakkali, 

Averbeck et al. 2008), disrupt the structure of different layers of polysaccharides, fatty 

acids and phospholipids and permeabilize them (Kim, Morr et al. 1996; Helander, 

Alakomi et al. 1998; Chaieb, Hajlaoui et al. 2007). Several major factors will be 

discussed individually including cell membrane integrity, leakage of ions and other 

contents and internal pH. 
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Cell membrane integrity 

Lambert et al. (2001), using fluorescence, showed that Pseudomonas aeruginosa and S. 

aureus in the presence of thymol, carvacrol or oregano oils had increased membrane 

permeability and disruption of the membrane. In another study, when E. coli strain 

rr98089 phage type 34 O157:H7 cells were treated with 625 ul l-1 of oregano oil 

(Mejlholm and Dalgaard 2002), the cell membranes were damaged and loss of cell 

contents was shown using scanning electron microscopy (Lambert, Skandamis et al. 

2001; Chaieb, Hajlaoui et al. 2007).   Potential explanations for this mechanism is that the 

hydrophobic EO components disrupt in the lipids of the bacterial cell membrane thus 

disturbing the structures of the membrane and rendering them more permeable, It is also 

associated with loss of ions and reduction of membrane potential, collapse of the proton 

pump and depletion of the ATP pool (Bakkali, Averbeck et al. 2008).  

Leakage of Ions and other Cell Components 

Because the cytoplasmic membrane is rendered more permeable by EO components, 

enzymes such as ATPases, which are known to be located in the cytoplasmic membrane, 

may be disrupted, and further leakage of ions and other cell contents may occur (Burt 

2004). For example, it was shown that oregano essential oil caused both potassium and 

phosphate leakage from the cytoplasm of S. aureus and P. aeruginosa (Ultee, Kets et al. 

1999; Lambert, Skandamis et al. 2001). Bacteria can tolerate a small amount of leakage 

from their bacterial cytoplasm without loss of viability, but extensive loss of cell contents 

or the loss of critical molecules and ions will lead to death (Burt 2004).  
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Internal and external pH 

Changes in the internal pH cells exposed to essential oil components have also been 

observed (Ultee, Kets et al. 1999; Lambert, Skandamis et al. 2001). Without glucose 

present, the addition of 0·05% oregano essential oil shortened the time for S. aureus to 

reach an internal pH of 5.05 from an initial external pH of 5.95. With glucose, it took the 

same amount of time for the control and culture with 0.05% oregano EO to reach a low 

internal pH of 4.6. This indicated the glucose has the protective role in pH homeostasis. 

In conclusion, the chemical structure of the individual EO components affects their 

precise mode of action and antibacterial activity (Mejlholm and Dalgaard 2002); and the 

three mechanisms are not occurring alone but interact together to gain the antimicrobial 

activities. 

Application to Food 

Although EOs and their components are generally recognized as safe (GRAS) for human 

and animal consumption under US Federal regulations and they have antimicrobial 

activity against a wide variety of foodborne pathogens, there are many challenges in 

applying EOs in food industry. For example, a higher concentration of EOs is required to 

achieve the same antimicrobial effect in food than in microbiological media. In order to 

achieve the antimicrobial activities in food, two fold in semi-skimmed milk, 10-fold in 

pork liver sausage, 50-fold in soup (Corbo, Bevilacqua et al. 2009) and 25- to 100-fold in 

soft cheese (Burt 2004) were needed comparing to in microbiological media. A high fat 

content in food appears to markedly reduce the action of EOs in meat products. Mint and 
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cilantro EOs were not effective in products with a high level of fat, such as pâté (which 

generally contains 30–45% fat) and a coating for ham containing canola oil (Mead and 

Griffin 1998; De Giusti, Aurigemma et al. 2010). Because EOs are hydrophobic, they 

may solubilize in the lipids of a food. Thus amount of EO available to inhibit 

microorganisms will be relatively less to inhibit bacteria which are present in the aqueous 

phase (Roller and Seedhar 2002).  When applied in food in high concentration, EOs 

contribute markedly to flavor. Because of the loss of activity of EOs when applied to 

food products, higher amounts of EOs are needed to achieve the same antimicrobial 

activities, which may negatively influence the sensory properties of food products. 

The extrinsic factors, pH, storage temperature and package atmosphere, all have effects 

on the antimicrobial activity of EOs (Mead and Griffin 1998; Skandamis and Nychas 

2001; Gharsallaoui, Roudaut et al. 2007). Usually the lower the pH, the better effect to 

inhibit the bacteria (Tassou, Drosinos et al. 1995). At pH 7 the synergistic action of nisin 

and carvacrol was significantly greater at 30°C than at 8°C, which would indicate 

temperature-induced changes in the permeability of the cytoplasmic membrane (Burt 

2004). Available oxygen influences the antibacterial activity of EOs. One possible 

explanation for this, is that when oxygen is present at low concentrations, fewer oxidative 

changes occur to EOs or cells generating energy via anaerobic metabolism are more 

sensitive to the toxic action of EOs (Burt 2004; De Giusti, Aurigemma et al. 2010). 

EOs have antimicrobial activities against gram-negative and gram-positive organisms 

(Canillac and Mourey 2001; Burt and Reinders 2003; Fitzgerald, Stratford et al. 2004; 

Friedman, Henika et al. 2004; Burt, Vlielander et al. 2005; Gaysinsky, Davidson et al. 
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2005). Generally, EOs are slightly more active against gram-positive than gram-negative 

bacteria (Canillac and Mourey 2001; Mejlholm and Dalgaard 2002; Burt 2004; Brenes 

and Roura 2010). The reason is that the outer membrane of the gram-negative organisms 

containing lipopolysaccharide protects the bacteria from EOs’ disruption. However, P. 

aeruginosa (gram-negative) in particular, appear to be least sensitive to the action of EOs 

(Burt 2004). In addition, the geographical origin and harvesting period affect the EOs in 

composition between batches, which further cause variability in the degree of 

susceptibility of gram-negative and gram-positive bacteria (Burt 2004). 

There have been many studies on the effectiveness of EOs and their components against 

foodborne microorganisms. Eugenol, coriander, clove, oregano and thyme oils were 

found to be effective at levels of 5–20 µl g-1 inhibiting L. monocytogenes, A. hydrophila 

and autochthonous spoilage flora (Chaieb, Hajlaoui et al. 2007; Gharsallaoui, Roudaut et 

al. 2007) in microbial media. Oregano oil is more effective in/on fish than mint oil on L. 

monocytogenes (Roller and Seedhar 2002). In dairy products, cinnamon, cardamom and 

clove oils were more effective than mint oil on S. Enteritidis. (Mead and Griffin 1998).  

For vegetables, all EOs and their components were effective at 0.1–10 µl g-1 in washing 

water on E. coli and six Salmonella serotypes with a decrease in storage temperature 

and/or a decrease in the pH of the food (Skandamis and Nychas 2001). Carvacrol and 

cinnamaldehyde in Kiwifruit 0.15 µl mL-1 in dipping solution (Roller and Seedhar, 2002) 

can be effective, but less effective on honeydew melon. It is possible that this difference 

has to do with the difference in pH between the fruits; the pH of kiwifruit was 3.2–3.6 

and of the melon 5.4–5.5 (Tassou, Drosinos et al. 1995). Burt (2004) suggested the 
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following antimicrobial activity ranking for EOs (in order of decreasing antibacterial 

activity): oregano/clove/coriander/cinnamon > thyme > mint > rosemary > mustard > 

cilantro/sage. 

Another approximate general ranking of the isolated EO components is shown below (in 

order of decreasing antibacterial activity): eugenol > carvacrol/cinnamic acid > basil 

methyl chavicol > cinnamaldehyde > citral/geraniol (Burt 2004).   

Application Technologies 

In order to improve the antimicrobial effectiveness of EO components applied to foods 

and thus reduce the overall effect on flavor, researchers have attempted a number of 

strategies. These include combinations with physical processes and addition of other 

compounds to evaluate potential synergies. 

Physical 

EOs can be suspended in phosphate saline buffer by employing vigorous shaking. More 

efficient methods involve mechanical methods involving homogenization, either rotary 

homogenization or high pressure homogenization (HPH). Other physical technologies 

have also been studied. For example, pulsed electric fields (PEF) were also studied but 

this process did not improve the inactivation of vegetative B. cereus cells with carvacrol 

(Pol and Smid, 1999). High Hydrostatic Pressure (HHP) was shown to enhance the 

antimicrobial activity of 3 mmol l-1 thymol or carvacrol at 300 MPa HHP (Karatzas et al., 

2001). Modified atmosphere packaging (40% CO2, 30% N2 and 30% O2) along with 
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oregano oil was found to delay microbial growth and suppress spoilage microorganisms 

in minced beef) (Skandamis and Nychas 2001).  

Chemical 
Surfactants such as Tween-20 (Polyoxyethylene (20) sorbitan monolaurate), Tween-

acetone in combination with Tween-80 (Polyoxyethylene (80) sorbitan monolaurate), 

polyethylene glycol, propylene glycol, and dimethyl sulfoxide, can be applied to stabilize 

the oil-in-water EO emulsion to encapsulate or enhance the antimicrobial activities. It has 

been shown that the MICs of oregano and clove oils were significantly higher with 

Tween-80 or ethanol than with agar. It has been reported that the liposome-encapsulated 

nisin with EDTA nearly-completely inhibited E. coli O157:H7 with lower concentration 

of antimicrobial needed (Taylor, Bruce et al. 2008). However, Baskaran et al. concluded 

solvents and detergents could decrease the antibacterial effect of eugenol and carvacrol 

(Baskaran, Kazmer et al. 2009). Other chemicals such as ethanol, agar and methanol are 

also used in research. For example, the use of agar (0.2%) could produce a better 

homogenous emulsion than in absolute ethanol (Baskaran, Kazmer et al. 2009). 

Yet another approach is encapsulation of EOs in beta-cyclodextrin to control the odor and 

reactivity of active compounds throughout the release of natural antimicrobial 

compounds such as oregano oil and thymol (Varona, Kareth et al. 2010). Chitosan 

enriched with EOs such as oregano, coriander, basil and anise showed similar 

antimicrobial activities when applied alone or incorporated in the film (Zivanovic, Chi et 

al. 2005). Other encapsulation methods have been studied. Nisin or thymol, which were 

spray-dried and encapsulated by zein, were also more effective than the free 

antimicrobials in inhibiting the growth of L. monocytogenes in 2% reduced fat milk in 
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growth media (Xiao 2010; Xiao 2011). However after encapsulation, the antimicrobial 

activities were similar or even lower.  

An emulsifier is a surface-active substance, which has a strong tendency to adsorb at oil-

water interfaces, thereby promoting the formation of oil-in-water (O/W) emulsion, and 

the rapid stabilization of nano-size emulsion droplets by interfacial action. Lecithin, 

which consists of a mixture of various phospholipids, is the only natural small-molecule 

emulsifier available in food industry (Dickinson 1993).  

The objective of this research was to evaluate the effect of lecithin on the antimicrobial 

activity of the essential oil components, eugenol and carvacrol, against E. coli O157:H7 

in microbiological media and foods.  
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ENHANCEMENT OF THE ANTIMICROBIAL ACTIVITY OF 
EUGENOL AND CARVACROL AGAINST ESCHERICHIA COLI 
O157:H7 BY LECITHIN IN MICROBIOLOGICAL MEDIA AND 
FOOD 
      
  

This chapter is a lightly revised version of a paper by the same name that will be 

submitted to the International Journal of Food Protection in July 2011 by Songsong Li, P. 

Michael Davidson and Federico M. Harte. 

My use of “our” in this chapter refers to my co-authors and myself. My primary 

contributions to this paper include (1) the experimental work, (2) most of the collection 

and analysis of data, (3) most of the gathering and interpretation of literature, and (4) 

most of the writing. 
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Abstract 
 

Novel approaches for controlling pathogens in foods include the use of antimicrobial 

essential oil (EOs) components, such as eugenol and carvacrol. While EOs have 

antimicrobial activity against a wide variety of pathogens, their hydrophobic properties 

limit their dispersion and stabilization in aqueous food systems. Thus high concentrations 

of EOs are required to inhibit microorganisms which, in turn, may negatively affect the 

sensory properties of certain foods. The objective of this research was to determine the 

effect of the natural emulsifier, lecithin, on the antimicrobial activity of eugenol and 

carvacrol against Escherichia coli K12, and E. coli O157:H7 strains ‘Cider’ and ATCC 

43889 in microbiological media and vegetable juice. Homogenized eugenol and carvacrol 

with and without lecithin were screened for antimicrobial activity. The stability of the 

samples, as measured by particle size and zeta potential, was not affected by lecithin. For 

all strains of E. coli, the antimicrobial activity of carvacrol and eugenol was enhanced 

significantly (P<0.05) by low concentration of lecithin. The D-value (time at a specific 

concentration of antimicrobial necessary to cause a 90% reduction in viable cells) for E. 

coli K12 with 0.047% v/v eugenol or 0.015 % v/v carvacrol was reduced from 13.3 to 6.3 

min and from 17.4 to 9.7 min in the presence of 0.0025% lecithin (w/v). Similarly, the D-

value for 0.058% v/v eugenol and 0.0188% v/v carvacrol with 0.0025% w/v lecithin 

decreased from 4.0 to 1.2 min and 10.2 to 6.9 min for E. coli strain ‘Cider’, respectively. 

For E. coli ATCC 43889 under the same conditions, the D-value decreased from 6.2 min 

to 3.6 min and 9.9 to 5.4 min, respectively.  Higher lecithin concentration (> 0.005% w/v) 

resulted in increased D-values compared to lower concentrations. Similar results were 

found in vegetable juice. The addition of lecithin had no effect on oil-water emulsion 
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droplet particle size. A hypothesis for the mechanism of lecithin enhancement of the 

antimicrobial activity of eugenol and carvacrol is that small quantities of lecithin promote 

ionic interactions between the EOs and negatively charged bacterial cells. 

Key words: Escherichia coli; lecithin; eugenol; carvacrol; homogenization; vegetable 

juice 
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Introduction 
 

Essential oils (EOs), also called volatile or ethereal oils, are aromatic oily liquids 

obtained from plant materials (flowers, buds, seeds, leaves, twigs, bark, wood, fruits and 

roots) and are classified as secondary metabolites. The essential oil components, eugenol 

and carvacrol, are generally recognized as safe as flavoring agents in the US (FDA 2006) 

and have been repeatedly shown to have strong antimicrobial activity against a wide 

variety of spoilage and pathogenic bacteria. The antimicrobial activity of EO components 

has been attributed to the presence of terpenoid and phenolic groups. Geranyl acetate, 

eugenyl acetate, trans-cinnamaldehyde, menthol, carvacrol, thymol, geraniol, eugenol, p-

cymene, limonene, γ-terpinene and carvone constitute up to 85% active components in 

EOs (Burt 2004).Most components in EOs are described as defined “fast-acting”, i.e. 

effective within one hour (Friedman, Henika et al. 2004). Eugenol has antimicrobial 

activity against foodborne pathogens at concentrations ranging from 0.4 to 2.5 µl ml-1 

(Burt and Reinders 2003), while, for carvacrol, the range is 0.15 to 0.75 mg g-1 (Ultee, 

Kets et al. 1999). 

 

The hydrophobic properties of EO components limit their dispersion and stabilization in 

aqueous food systems, leading to an increase in the concentration required for 

antimicrobial functions, which can lead to phase separation and negatively affect the 

quality of foods. Additionally, EO components have effects on the sensory properties of 

foods and thus it is often desirable to use them at the lowest possible concentrations. In 

order to optimize the use of EOs in food applications, a number of methods have been 
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studied including emulsification, encapsulation and incorporation into packaging (Taylor, 

Bruce et al. 2008), (Skandamis and Nychas 2001), (Zivanovic, Chi et al. 2005), (Varona, 

Kareth et al. 2010), (Xiao 2010; Xiao 2011), and (Varona, Kareth et al. 2010). Most or all 

of these processes are relatively costly. The focus of this research was to evaluate the 

direct use of an emulsifier, lecithin, to enhance the antimicrobial activity of eugenol and 

carvacrol and thus reduce the effective concentrations needed. 

 

An emulsifier is a surface-active substance, which has a strong tendency to adsorb at oil-

water interfaces, thereby promoting the formation of oil-in-water (O/W) emulsion, and 

the rapid stabilization of nano-size emulsion droplets by interfacial action. Lecithin, 

which consists of a mixture of various phospholipids, is the only natural small-molecule 

emulsifier available in food industry (Dickinson 1993). The specific objectives of this 

research were to evaluate the effect of lecithin on the antimicrobial activity of the 

essential oil components, eugenol and carvacrol, against E. coli K12 and E. coli O157:H7 

strains ‘Cider’ and ATCC 43889.  

  

Material and methods 

Culture preparation 
Escherichia coli K12, E. coli O157:H7 strains ‘Cider’ and ATCC 43889 were stock 

cultures obtained from the Department of Food Science and Technology collection at the 

University of Tennessee, Knoxville. All cultures were grown statically under aerobic 

conditions in tryptic soy broth (TSB; Difco, Sparks, MD) for 24 h and stocks were made 
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using glycerol and stored at -20°C. Working cultures were prepared by inoculating 

glycerol stocks into TSB and incubating at 37°C overnight. 

Time kill assays 
Laboratory grade vegetable lecithin (Fisher Scientific, Fair Lawn, NJ) solutions were 

prepared by dissolving in phosphate buffer (ca. pH = 7.20) and then heating to boiling 

with stirring for at least 5 min. Sterilized deionized water was added to the cooled 

mixture to replace the water lost during boiling. 

 

In preliminary experiments, 0.047 %, 0.058 %and 0.058 % v/v eugenol showed 3 to 6 log 

CFU/ml reduction after 30 min for E. coli K12, E. coli O157:H7 strains ‘Cider’ and 

ATCC 43889, respectively. For carvacrol, 2-3 log CFU/ml reductions for the same 

respective strains was obtained with 0.015%, 0.0188%, and 0.0188% v/v. Eugenol, 99% 

or carvacrol, ≥98% (Acros Organics, Fair Lawn, NJ) was suspended in 47 ml phosphate 

buffer with or without the addition lecithin to a final concentration 0.025%, 0.05% 

0.10%, 0.15% w/v. All samples and controls (no lecithin) were subjected to rotary 

homogenization using a Polytron PT 10/35 GT (Kinematica, Inc., Bohemia, New York) 

at about 10,000 rpm (rotary head diameter 12 mm) for 3 min. The droplet size was 

measured (2 ml of sample) using a Delsa NanoTM C particle size analyzer (Beckman 

Coulter, Fullerton, CA). Zeta potential was measured only for 0.094% v/v eugenol and  

0.030% v/v carvacrol; each sample was measured at least 3 times. All samples were then 

mixed with 45 ml of phosphate buffer (pH = 7.2) and 10 ml of overnight culture of E. 

coli to achieve an initial count of ca. 8.6 log CFU/ml.  
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Vegetable juice (VJ; V8, Campbell Soup Company, Camden, NJ) was purchased from a 

local grocery store. The pH of the VJ ranged from 4.16 to 4.21. Ninety ml of VJ were 

mixed with or without sterile? water containing lecithin at (0.1 % w/v and 0.080% v/v  

eugenol. Samples were then subjected to rotary homogenization as described above. 

Homogenized emulsions were then mixed with 10 ml of E. coli to ca. 8 log CFU/ml. 

Every 10 min, a sample was taken, serially diluted and plated in tryptic soy agar (TSA; 

Fisher Scientific, USA), and survivors enumerated after 24 h aerobic incubation at 37°C. 

A D-value (time at a specific concentration of eugenol or carvacrol to achieve a 90% 

reduction in E. coli cells) was calculated in the log linear region of the inactivation curve. 

All experiments were done in triplicate and average values were reported. 

Statistical analysis 
Data were analyzed as a complete randomized design with at least 3 replicates by 

analysis of variance (ANOVA) using the general linear model (SAS 9.2, SAS Institute, 

Cary, NC). Least significant differences (LSD) were used to compare treatment mean 

values when significant differences were found (p < 0.05). Error bars represent half of the 

LSD in all figures centered by the mean. The correlation between particle size / D-value 

and zeta potential / D-value were evaluated (SAS 9.2, SAS Institute, Cary, NC). 
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Results and Discussion 
Prior to homogenization, rapid phase separation of free eugenol was observed in the 

phosphate buffer (pH = 7.2). Treatment with a rotary homogenization eliminated the 

phase separation for the duration of experiments. Emulsions made with lecithin were 

light yellowish in color and exhibited a thin foam layer on top. Emulsions without 

lecithin appeared transparent following rotary homogenization. Carvacrol emulsion 

showed similar appearance. No phase separation was observed in any of the 

homogenized samples throughout the experiments.  

A strong enhancement of the activity of both eugenol and carvacrol was demonstrated 

with all three strains of E. coli (Figure 2 - 7) at low concentrations of lecithin. The lowest 

concentration of lecithin exhibited the greatest antimicrobial enhancement against all E. 

coli strains. The same response was observed with lecithin at 0.0025% or 0.005% w/v in 

vegetable juice against E. coli O157:H7 Cider (Figure 8). 
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Figure 2. Inactivation of E. coli K12 in vitro at 37°C with varying concentrations of lecithin, 0.047% 
v/v eugenol and an initial count of ca. 8.6 logs CFU/ml. Error bars are LSD for the mean. 
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Figure 3. Inactivation of E. coli strain ‘Cider’ in vitro at 37°C with varying concentrations of lecithin, 
0.058% v/v eugenol and an initial count of ca. 8.6 logs CFU/ml. Error bars are LSD for the mean. 
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Figure 4. Inactivation of E. coli O157:H7 ATCC strain 43889 in vitro at 37°C with varying 
concentrations of lecithin, 0.058% v/v eugenol and an initial count of ca. 8.6 logs CFU/ml. Error bars 
are LSD for the mean. 
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Figure 5. Inactivation of E. coli K12 in vitro at 37°C with varying concentrations of lecithin, 0.0150% 
v/v carvacrol and an initial count of ca. 8.6 logs CFU/ml. Error bars are LSD for the mean. 
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Figure 6. Inactivation of E. coli O157:H7 strain ‘Cider’ in vitro at 37°C with varying concentrations 
of lecithin, 0.0188% v/v carvacrol and an initial count of ca. 8.6 log CFU/ml. Error bars are LSD for 
the mean. 



 

 38 

 
Figure 7. Inactivation of E. coli O157:H7 ATCC strain 43889 in vitro at 37°C with varying 
concentrations of lecithin, 0.0188% v/v carvacrol and an initial count of ca. 8.6 log CFU/ml. Error 
bars are LSD for the mean. 
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Figure 8. Inactivation of E. coli O157:H7 strain ‘Cider’ in vitro at 37°C with varying concentrations 
of lecithin, 0.080% v/v eugenol and an initial count of ca. 8.0 log CFU/ml. Error bars are LSD for the 
mean.  
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Eugenol 
For E. coli K12 in the presence of eugenol, the D-value was decreased from 13.32 ± 1.23 

for the control to 6.31 ± 1.42 min with 0.0025% w/v lecithin (p < 0.05, Figure 9). As the 

lecithin concentration increased, the D-value also increased. At 0.010, 0.015, 0.02 % w/v 

lecithin, D-values were not significantly different than samples without lecithin (p > 

0.05). At 0.015% w/v lecithin, the D-value (23.52 ± 1.42 min) was greater than the 

control (p < 0.05).  For E. coli O157:H7 ‘Cider’, the D-value decreased from 4.01 ± 0.47 

to 1.23 ± 0.47 min in the presence of 0.025% w/v lecithin (p < 0.05, Figure 10). 

However when the lecithin concentration increased, the D-value also increased. For E. 

coli O157:H7 ATCC 43889, the D-value decreased significantly (p<0.05) from 6.27 ± 

0.34 for the control to 3.60 ± 0.34 and 3.51 ± 0.31 min with 0.0025% and 0.005% w/v 

lecithin, respectively (Figure 11). Increasing the lecithin concentration resulted in an 

increased D-value up to 6.97 ± 0.34 min at 0.015% lecithin (p < 0.05). In vegetable juice, 

the D-value was 15.31 ± 4.10 min in the control (0% lecithin). At 0.0025% and 0.005% 

lecithin, the D-value was significantly lower at 7.77 ± 0.65 min and 8.11 ± 1.49 min, 

respectively (p<0.05, Figure 15).  
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Figure 9. D-value of E. coli K12 in vitro at 37°C with varying concentrations of lecithin, 0.047% v/v 
eugenol and an initial count of ca. 8.6 log CFU/ml. Error bars are LSD for the mean. 
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Figure 10. D-value of E. coli O157:H7 strain ‘Cider’ in vitro at 37°C with varying concentrations of 
lecithin, 0.058% v/v eugenol and an initial count of ca. 8.6 log CFU/ml. Error bars are LSD for the 
mean. 
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Figure 11. D-value of E. coli O157:H7 ATCC strain 43889 in vitro at 37°C with varying 
concentrations of lecithin, 0.058% v/v eugenol and an initial count of ca. 8.6 log CFU/ml. Error bars 
are LSD for the mean. 
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Carvacrol 
The D-value with carvacrol emulsion showed similar effect with the addition of lecithin. 

For E. coli K12, the D-value decreased from 17.36 ± 4.25 for the control to 9.73 ± 1.12 

min and 10.49 ± 0.73 with 0.0025% and 0.005% w/v lecithin (p<0.05, Figure 12). For E. 

coli O157:H7 ‘Cider’, the D-value dramatically dropped from 10.24 ± 3.17 without 

lecithin to 6.30 ± 0.48 min, 4.88 ± 0.48 min by adding 0.0025% and 0.005% w/v lecithin 

respectively (p < 0.05, Figure 13). For E. coli O157:H7 ATCC 43889, the D-value 

started at 12.08 ± 1.20 min without lecithin. With 0.0025% w/v lecithin, the D-value 

significantly decreased to 4.92 ± 0.88 min (p<0.05, Figure 14). Extensive lecithin 

hindered the interaction of carvacrol. 

 

The particle sizes of eugenol droplets were between 100 to 700 nm and zeta potentials 

were between – 40 to – 110 mV (Table 3) in all experiments. There were no statistically 

significant correlations between the particle size and D-value, or zeta potential and D-

value for E. coli strains (p > 0.05 and r < 0.7).  
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 Figure 12. D-value of E. coli K12 in vitro at 37°C with varying concentrations of lecithin, 0.0150% 
v/v carvacrol and an initial count of ca. 8.6 log CFU/ml. Error bars are LSD for the mean. 
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Figure 13. D-value of E. coli O157:H7 strain ‘Cider’ in vitro at 37°C with varying concentrations of 
lecithin, 0.0188% v/v carvacrol and an initial count of ca. 8.6 log CFU/ml. Error bars are LSD for the 
mean. 
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Figure 14. D-value of E. coli O157:H7 strain ‘Cider’ in vitro at 37°C with varying concentrations of 
lecithin, 0.0188% v/v carvacrol and an initial count of ca. 8.0 log CFU/ml. Error bars are LSD for the 
mean. 

 
Figure 15. D-value of E. coli O157:H7 strain ‘Cider’ in vitro at 37°C with varying concentrations of 
lecithin, 0.080% v/v eugenol and an initial count of ca. 8.0 log CFU/ml. Error bars are LSD for the 
mean. 
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Table 3. Average and standard deviation for particle size (nm) and zeta potential (mV) of the eugenol 
and carvacrol droplets dispersed in phosphate buffer containing different concentration of lecithin. 

E. coli strain - 

 

K12 ‘Cider’ ATCC 43889 _ 

 

K12 ‘Cider’ ATCC 43889 _ 

Eugenol 

Concentration 

(% v/v) 

0.094 0.116 0.116 0.094 0.0030 0.0376 0.0376 0.030 

Lecithin 

Concentration 

(% w/v) 

Average Particle Size ± std (nm) 

Zeta 

Potential 

± std 

(mV) 

Average Particle Size ± std (nm) 

Zeta 

Potential 

± std 

(mV) 

0 
636.9±53.9 313.83±48.69 381.02±15.74 -49.3±5.5 638.83±374 410.03±90.69 212.60±26.20 -70.0±4.7 

0.0025 
389.31±101.43 327.80±73.41 362.12±36.87 -67.8±1.5 229.9±26.09 239.77±25.61 280.1±88.96 -53.6±13.4 

0.005 
407.19±263.90 435.61±60.41 416.74±27.76 -69.0±13.8 207.6±2035 239.22±24.16 240.83±9.66 -58.3±9.4 

0.01 
596.90±144.16 435.61±60.11 486.08±108.17 -70.8±11.2 263.53±22.49 265.831±41.68 314.10±14.19 53.76±1.03 

0.015 
514.27±153.99 496.50±70.28 558.49±136.45 -107±15.2 247.93±17.45 222.8±77.78 252.23±3.97 -62.7±6.1 

0.020 
 483.37±20.50       
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Results indicate that lecithin-induced surface modifications of the nano-size EO droplet 

are beneficial, not only to promote a better stability of essential oils in aqueous systems, 

but also to improve their antimicrobial properties. The critical micelle concentration 

(CMC) of phosphatidycholine, the major components in lecithin, is ca. 0.1 wt% (McKee, 

Layman et al. 2006). Because the concentrations of lecithin used in the study were lower 

than the CMC, micelle formation of lecithin did not occur and was not playing a role in 

enhancement of the antimicrobial activity of the EO components. The findings indicated 

that, at low concentrations lecithin enhanced the antimicrobial activity of eugenol and 

carvacrol against E. coli. However, above some critical concentration of lecithin, the 

antimicrobial activity returned to the level found in control samples without lecithin. Our 

results with high concentration of lecithin are in agreement with Friedman et al. who 

observed that 0.25% soy lecithin reduced the antimicrobial activity of oregano and thyme 

essential oils (Friedman, Henika et al. 2004).  

 

Lecithin is a natural zwitterionic surfactant. It is hypothesized that lecithin promotes 

antimicrobial activity by improving interaction between the charged EO droplets and the 

generally negatively charged bacterial surface (Schwegmann, Feitz et al. 2010). In this 

way, lecithin not only helps stabilize the emulsion by forming a surfactant layer against 

aggregation, but improves the antimicrobial properties by promoting better EO droplet-

bacteria contact. According to literature, the proposed mechanisms of bacterial inhibition 

by EOs or their components involves charged EO component droplets contacting the 

bacterium, the EO components disrupting into the lipid cell membrane, the EO 

components disrupting membrane structures, resulting in increased permeability 
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(Lambert, Skandamis et al. 2001; Estevez and Cava 2006) and leakage (Burt 2004). 

Furthermore enzymes such as ATPases, known to be located in the cytoplasmic 

membrane, are disturbed which causes leakage of ions and other cell contents (Burt 

2004). Changes in the internal pH of the cells has also been observed (Ultee, Kets et al. 

1999; Lambert, Skandamis et al. 2001; Skandamis and Nychas 2001). 

 

At high concentrations of lecithin, it is hypothesized that lecithin phospholipids form bi-

layers or multilayers, which physically hinder contact between EO component droplets 

and bacterial surfaces (Burt and Reinders 2003). Phosphatidylcholine, a major 

phospholipid in lecithin, can partially neutralize the antimicrobial activity of EO 

components against bacterial cells. These results also explain the negative effect of 

lecithin used in studies to improve antimicrobial activity of EOs (Friedman, Henika et al. 

2004). Further studies are needed to elucidate specific mechanisms of action and to 

implement further applications in fluid foods. 
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Figure 16. Schematic representation of the effect of low (A) and high (B) concentration of 
phosphatidylcholine, a major component in lecithin, on the ability of eugenol oil droplets to exhibit 
electrostatic interaction with bacterial surfaces. 

 

Aqueous 
phase 

Oil droplet 

Aqueous 
phase 

(A) (B) 

Available for 
electrostatic 
interactions 

NOT available 
for electrostatic 

interactions 

Oil droplet 



 

 52 

Conclusion 
 
Both in microbiological media and food, low concentration of lecithin can effectively 

enhance the antimicrobial activities of eugenol / carvacrol to prevent the growth of E. coli 

O157:H7. In contrast, in most cases at high concentrations of lecithin, the antimicrobial 

activities of the isolated EO component were hindered. The hypothesis is that lecithin 

promotes antimicrobial activity by improving interaction between the charged EO 

droplets and the generally negatively charged bacterial surface. Further studies are 

needed to elucidate specific mechanisms of action and to implement further applications 

in fluid foods as a food additive to prevent the growth of E. coli O157:H7. 

 



 

 53 

Acknowledgments  

The Agricultural Experiment Station of the University of Tennessee Institute of 

Agriculture partially supported this research. 

  

 

 

 

 

 

 

 

 

 

 

 

 



 

 54 

LIST OF REFERENCES  
Asbaghian, S., A. Shafaghat, et al. (2011). "Comparison of Volatile Constituents, and 

Antioxidant and Antibacterial Activities of the Essential Oils of Thymus 

caucasicus, T. kotschyanus and T. vulgaris." Natural Product Communications 

6(1): 137-140. 

Bakkali, F., S. Averbeck, et al. (2008). "Biological effects of essential oils - A review." 

Food and Chemical Toxicology 46(2): 446-475. 

Baranauskiene, R., P. R. Venskutonis, et al. (2006). "Properties of oregano (Origanum 

vulgare L.), citronella (Cymbopogon nardus G.) and marjoram (Majorana 

hortensis L.) flavors encapsulated into milk protein-based matrices." Food 

Research International 39(4): 413-425. 

Baratta, M. T., H. J. D. Dorman, et al. (1998). "Antimicrobial and antioxidant properties 

of some commercial essential oils." Flavour and Fragrance Journal 13(4): 235-

244. 

Baskaran, S. A., G. W. Kazmer, et al. (2009). "Antibacterial effect of plant-derived 

antimicrobials on major bacterial mastitis pathogens in vitro." Journal of Dairy 

Science 92(4): 1423-1429. 

Bauer, K., Garbe, D., Surburg, H. (2001). "Common Fragrance and Flavor Materials: 

Preparation, Properties and Uses." Wiley-VCH, Weinheim: p. 293. 

Boyle, W. (1955). "Spices and essential oils as preservatives " The American Perfumer 

and Essential Oil Review 66: 25– 28. 

Brenes, A. and E. Roura (2010). "Essential oils in poultry nutrition: Main effects and 

modes of action." Animal Feed Science and Technology 158(1-2): 1-14. 



 

 55 

Burt, S. (2004). "Essential oils: their antibacterial properties and potential applications in 

foods - a review." International Journal of Food Microbiology 94(3): 223-253. 

Burt, S. A. and R. D. Reinders (2003). "Antibacterial activity of selected plant essential 

oils against Escherichia coli O157 : H7." Letters in Applied Microbiology 36(3): 

162-167. 

Burt, S. A., R. Vlielander, et al. (2005). "Increase in activity of essential oil components 

carvacrol and thymol against Escherichia coli O157 : H7 by addition of food 

stabilizers." Journal of Food Protection 68(5): 919-926. 

Canillac, N. and A. Mourey (2001). "Antibacterial activity of the essential oil of Picea 

excelsa on Listeria, Staphylococcus aureus and coliform bacteria." Food 

Microbiology 18(3): 261-268. 

Chaieb, K., H. Hajlaoui, et al. (2007). "The chemical composition and biological activity 

of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. 

myrtaceae): A short review." Phytotherapy Research 21(6): 501-506. 

Chao, S. C., D. G. Young, et al. (2000). "Screening for inhibitory activity of essential oils 

on selected bacteria, fungi and viruses." Journal of Essential Oil Research 12(5): 

639-649. 

Corbo, M. R., A. Bevilacqua, et al. (2009). "Prolonging microbial shelf life of foods 

through the use of natural compounds and non-thermal approaches - a review." 

International Journal of Food Science and Technology 44(2): 223-241. 

Cosentino, S., C. I. G. Tuberoso, et al. (1999). "In-vitro antimicrobial activity and 

chemical composition of Sardinian Thymus essential oils." Letters in Applied 

Microbiology 29(2): 130-135. 



 

 56 

Daferera, D. J., B. N. Ziogas, et al. (2000). "GC-MS analysis of essential oils from some 

Greek aromatic plants and their fungitoxicity on Penicillium digitatum." Journal 

of Agricultural and Food Chemistry 48(6): 2576-2581. 

De Giusti, M., C. Aurigemma, et al. (2010). "The evaluation of the microbial safety of 

fresh ready-to-eat vegetables produced by different technologies in Italy." Journal 

of Applied Microbiology 109(3): 996-1006. 

Dickinson, E. (1993). "Towards more natural emulsifiers." Trends in Food Science & 

Technology 4(10): 330-334. 

Estevez, M. and R. Cava (2006). "Effectiveness of rosemary essential oil as an inhibitor 

of lipid and protein oxidation: Contradictory effects in different types of 

frankfurters." Meat Science 72(2): 348-355. 

FDA (2006). Database of Select Committee on GRAS Substances (SCOGS) Reviews. 

Fitzgerald, D. J., M. Stratford, et al. (2004). "Mode of antimicrobial action of vanillin 

against Escherichia coli, Lactobacillus plantarum and Listeria innocua." Journal 

of Applied Microbiology 97(1): 104-113. 

Friedman, M., P. R. Henika, et al. (2004). "Antibacterial activities of plant essential oils 

and their components against Escherichia coli O157 : H7 and Salmonella enterica 

in apple juice." Journal of Agricultural and Food Chemistry 52(19): 6042-6048. 

Gaysinsky, S., P. M. Davidson, et al. (2005). "Growth inhibition of Escherichia coli 

O157 : H7 and Listeria monocytogenes by carvacrol and eugenol encapsulated in 

surfactant micelles." Journal of Food Protection 68(12): 2559-2566. 



 

 57 

Gharsallaoui, A., G. Roudaut, et al. (2007). "Applications of spray-drying in 

microencapsulation of food ingredients: An overview." Food Research 

International 40(9): 1107-1121. 

Hammer, K. A., C. F. Carson, et al. (1999). "Antimicrobial activity of essential oils and 

other plant extracts." Journal of Applied Microbiology 86(6): 985-990. 

Helander, I. M., H. L. Alakomi, et al. (1998). "Characterization of the action of selected 

essential oil components on gram-negative bacteria." Journal of Agricultural and 

Food Chemistry 46(9): 3590-3595. 

Holley, R. A. and D. Patel (2005). "Improvement in shelf-life and safety of perishable 

foods by plant essential oils and smoke antimicrobials." Food Microbiology 

22(4): 273-292. 

Kim, Y. D., C. V. Morr, et al. (1996). "Microencapsulation properties of gum Arabic and 

several food proteins: Liquid orange oil emulsion particles." Journal of 

Agricultural and Food Chemistry 44(5): 1308-1313. 

Lambert, R. J. W., P. N. Skandamis, et al. (2001). "A study of the minimum inhibitory 

concentration and mode of action of oregano essential oil, thymol and carvacrol." 

Journal of Applied Microbiology 91(3): 453-462. 

McKee, M. G., J. M. Layman, et al. (2006). "Phospholipid nonwoven electrospun 

membranes." Science 311(5759): 353-355. 

Mead, P. S. and P. M. Griffin (1998). "Escherichia coli O157 : H7." Lancet 352(9135): 

1207-1212. 



 

 58 

Mejlholm, O. and P. Dalgaard (2002). "Antimicrobial effect of essential oils on the 

seafood spoilage micro-organism Photobacterium phosphoreum in liquid media 

and fish products." Letters in Applied Microbiology 34(1): 27-31. 

Mourey, A. and N. Canillac (2002). "Anti-Listeria monocytogenes activity of essential 

oils components of conifers." Food Control 13(4-5): 289-292. 

Ramadan, M. F. and M. M. S. Asker (2009). "Antimicrobial and antiviral impact of novel 

quercetin-enriched lecithin." Journal of Food Biochemistry 33(4): 557-571. 

Reverchon, E. (1997). "Supercritical fluid extraction and fractionation of essential oils 

and related products." Journal of Supercritical Fluids 10(1): 1-37. 

Roller, S. and P. Seedhar (2002). "Carvacrol and cinnamic acid inhibit microbial growth 

in fresh-cut melon and kiwifruit at 4 degrees and 8 degrees C." Letters in Applied 

Microbiology 35(5): 390-394. 

Schwegmann, H., A. J. Feitz, et al. (2010). "Influence of the zeta potential on the sorption 

and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli." Journal of 

Colloid and Interface Science 347(1): 43-48. 

Skandamis, P. N. and G. J. E. Nychas (2001). "Effect of oregano essential oil on 

microbiological and physico-chemical attributes of minced meat stored in air and 

modified atmospheres." Journal of Applied Microbiology 91(6): 1011-1022. 

Sofos, J. N. and I. Geornaras (2010). "Overview of current meat hygiene and safety risks 

and summary of recent studies on biofilms, and control of Escherichia coli 

O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat 

products." Meat Science 86(1): 2-14. 



 

 59 

Tassou, C. C., E. H. Drosinos, et al. (1995). "Effect of essential oil from mint (Mentha 

piperita) on Salmonella enteritidis and Listeria monocytogenes in  model food 

system at 4 degrees and 10 degrees C." Journal of Applied Bacteriology 78(6): 

593-600. 

Taylor, T. M., B. D. Bruce, et al. (2008). "Listeria monocytogenes and Escherichia coli 

O157 : H7 inhibition in vitro by liposome-encapsulated nisin and ethylene 

diaminetetraacetic acid." Journal of Food Safety 28(2): 183-197. 

Tiwari, B. K., V. P. Valdramidis, et al. (2009). "Application of Natural Antimicrobials 

for Food Preservation." Journal of Agricultural and Food Chemistry 57(14): 5987-

6000. 

Ultee, A., E. P. W. Kets, et al. (1999). "Mechanisms of action of carvacrol on the food-

borne pathogen Bacillus cereus." Applied and Environmental Microbiology 

65(10): 4606-4610. 

Unlu, M., E. Ergene, et al. (2010). "Composition, antimicrobial activity and in vitro 

cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae)." 

Food and Chemical Toxicology 48(11): 3274-3280. 

Varona, S., S. Kareth, et al. (2010). "Formulation of lavandin essential oil with 

biopolymers by PGSS for application as biocide in ecological agriculture." 

Journal of Supercritical Fluids 54(3): 369-377. 

Xiao, D. (2010). "Novel Delivery Systems of Nisin to Enhance Long- term Efficacy 

against Foodborne Pathogen Listeria monocytogenes." PhD diss., University of 

Tennessee, 2010. 



 

 60 

Xiao, D., P.M. Davidson,  Zhong Qixin (2011). "Spray-Dried Zein Capsules with 

Coencapsulated Nisin and Thymol as Antimicrobial Delivery System for 

Enhanced Antilisterial Properties." J. Agric. Food Chem., Article ASAP. 

Zivanovic, S., S. Chi, et al. (2005). "Antimicrobial activity of chitosan films enriched 

with essential oils." Journal of Food Science 70(1): M45-M51. 

 

 



 

 61 

Vita 

 
 Songsong Li was born in a beautiful village, named Yanghua, Hunan Province, 

China. He enjoyed the countryside life for fourteen years with his grandparents. After 

that, he moved to a small city to continue his primary school, Middle School.  After High 

School, he was luckily enrolled in Northeast Forestry University to pursue degrees in 

Food Science and Technology and English. It is the double majors that helped him 

improve his English writing, reading and speaking, introduce him an occidental 

worldview. After obtaining his Bachelor of engineering in Food Science and Technology 

and Bachelor of Arts in English from NEFU with excellent grades, he had the 

opportunity to continue his graduate study in the University of Tennessee, Knoxville. 

During his stay in UT, Knoxville, he majored in Food Science and Technology, minored 

in Statistics and worked as a graduate research assistant under the guidance of Dr. 

Federico Harte. His research is focusing on enhancement of the antimicrobial activity of 

eugenol and carvacrol against Escherichia coli O157:H7 by lecithin in microbiological 

media and food. Also he has developed a dragon fruit sports drink to compete in the 2011 

Danisco Knowledge Award New Product Competition. As a graduate student he was 

awarded the Hazelwood Graduate Student Scholarship from the College of Agricultural 

Sciences and Natural Resources (2009), and Graduate Student Travel Award (2011). He 

also volunteered in various activities: FSC cheese sale fundraising (2009, 2010), Relay 

for Life (2010, 2011), Bearden Middle School Science Olympia (2010. 2011), vice 

president of UTK Chinese Students and Scholars Association (2010) etc. In the future, he 

would like to start his challenge in the Food Industry to develop healthy and high quality 

food products.  


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2011

	Enhancement of the antimicrobial activity of eugenol and carvacrol against Escherichia coli O157:H7 by lecithin in microbiological media and food
	Songsong Li
	Recommended Citation



