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Abstract

In 1980, L. Adleman, C. Pomerance, and R. Rumely invented the first cyclotomic

primality test, and shortly after, in 1981, a simplified and more efficient version

was presented by H.W. Lenstra for the Bourbaki Seminar. Later, in 2008, Rene

Schoof presented an updated version of Lenstra’s primality test. This thesis presents a

detailed description of the cyclotomic primality test as described by Schoof, along with

suggestions for implementation. The cornerstone of the test is a prime congruence

relation similar to Fermat’s “little theorem” that involves Gauss or Jacobi sums

calculated over cyclotomic fields. The algorithm runs in very nearly polynomial time.

This primality test is currently one of the most computationally efficient tests and is

used by default for primality proving by the open source mathematics systems Sage

and PARI/GP. It can quickly test numbers with thousands of decimal digits.
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Chapter 1

Introduction

Since the time of Fermat, mathematicians have tried to find the most efficient methods

for determining the primality of large numbers. Prior to Fermat, the methods of

primality testing were derivations of factoring methods, like trial division and the

sieve of Eratosthenes. These methods are computationally heavy and often rely on

large tables of primes making them practical for only small numbers, 107 being a

conservative upper bound. For practical implementations of these tests, see §8.1 of

[4] and §3.1/3.2 of [7].

A groundbreaking advancement in primality testing came from Pierre de Fermat

when he discovered his famous congruence on prime numbers, informally known as

Fermat’s little theorem.

Theorem 1.0.1. Let p be a prime number and a a natural number. Then

ap ≡ a (mod p),

or, if (a, p) = 1, then

ap−1 ≡ 1 (mod p).

This congruence is true for all prime numbers p, but is also true for some composite

numbers. Otherwise put, all prime numbers satisfy this congruence, but numbers
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satisfying this congruence are not necessarily prime. This is the cornerstone of the

first efficient compositeness tests (not primality tests!). In general, a compositeness

test only returns a verdict if it discovers the input n to be composite. If the test

cannot find a witness to the compositeness of n, it returns no absolute verdict. A

primality test is different because it returns an absolute verdict whether n is prime

or composite. Thus compositeness tests are good for showing that a number is very

likely prime, but primality tests are needed for guaranteeing a number is prime.

For example, a simple compositeness test might be trying k different values of a in

Theorem 1.0.1. If the congruence fails for a single a, then n is declared composite, and

if the congruence is true for all k values, then n is declared possibly prime. However,

regardless of the size of k, this test can never guarantee the primality of n! Composite

numbers exist that satisfy this congruence for every natural number. These numbers

are known as Carmichael numbers.

To have a proper compositeness test that was not susceptible to the Carmichael

number defect, a stronger version of Fermat’s theorem was needed. In [18], R. Solovay

and V. Strassen presented such a compositeness test. It utilized the following theorem.

Theorem 1.0.2. Let n be an odd prime number, and let a be a natural number such

that a 6≡ 0 (mod n). Then

a(n−1)/2 ≡
(a

n

)

≡ ±1 (mod n),

where
(

a
n

)

denotes the Legendre symbol, defined to be 1 if a is a quadratic residue

modulo n, −1 if a is a quadratic nonresidue modulo n, and zero if n | a.

The test involved verifying the congruence for different base values a. If the

congruence failed for a single a, then n would be declared composite. It was shown

that for an odd composite number n, at most half of all a ∈ {1, 2, . . . , n− 1} satisfied

this congruence. Thus, if the congruence held for many values of a, the number tested

n was declared very likely prime.

2



Shortly after this discovery, in [16], Michael Rabin described what has spawned

the most efficient compositeness test, the Miller-Rabin test. The test was similar in

form to the other tests we have seen. It relies on the following congruence.

Theorem 1.0.3. Let n be an odd prime, and write n− 1 as 2s · d, where s and d are

positive integers and d is odd. Then for a ∈ (Z/nZ)∗, either

ad ≡ 1 (mod n)

or

a2
r ·d ≡ −1 (mod n)

for some 0 ≤ r ≤ s− 1.

The test procedure was similar to the Solovay-Strassen test. Many different base

values of a were verified, and the more values verified, the more likely it was that the

number tested n was prime. However, the Miller-Rabin test was more efficient. It was

shown that for an odd composite number n, at most one quarter of all a ∈ (Z/nZ)∗

satisfied these congruences.

Although the Miller-Rabin test and its variants are very efficient at showing

compositeness, it is sometimes necessary to know for certain the compositeness or

primality of a number.

Efficient large number primality tests were known since the end of the 19th century,

but these tests relied on a constrained input. For example, to test the primality of

a number n, the most common requirement was the known factorization or partial

factorization of n−1 or n+1. In 1876, Éduardo Lucas proved the following theorem.

Theorem 1.0.4. If a, n are integers with n > 1, and an−1 ≡ 1 (mod n), but

a(n−1)/q 6≡ 1 (mod n) for every prime q that divides n− 1, then n is prime.

For a complete proof, see [7] p. 173. This theorem was later adapted by Derrick

Lehmer in [11] to create the Lucas-Lehmer primality test. While variants of the
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test are still used to find the largest known Mersenne primes, primes of the form

2p − 1, they are not effective as general-purpose primality tests. However, it is worth

noting, [3] described a very effective primality test that was a combination of the

Lucas-Lehmer primality test and the cyclotomic primality test.

The cyclotomic primality test, first described by L. Adleman, C. Pomerance, and

R. Rumley in [1], was the first modern general-purpose primality test. With an

expected running time bounded by (log n)c log log logn, where n is the number tested

and c is an effectively computable constant, this was the first primality test that could

routinely test numbers with thousands of decimal digits [15]. The invention of the

cyclotomic primality test was a major breakthrough in computational number theory.

The test relied on a Fermat-like congruence that involved Jacobi sums calculated

over cyclotomic fields. Like the compositeness tests before it, if the number tested n

did not fulfill the congruence, it was declared composite. But unlike the compositeness

tests, if n satisfied the congruence for all tested values, then it only took a few more

steps to prove that n was prime. This primality test is now informally known as the

APR primality test.

Two versions of the APR algorithm were originally presented, a completely

deterministic version and a probabilistic version. The deterministic version was

theoretically interesting, but the probabilistic version was simpler and more practical.

One should not be confused, both versions were genuine primality tests (i.e.,

the probabilistic version is not a compositeness test!) and both had the same

computational time complexity bound. The only difference was the variable running

time of the probabilistic algorithm.

Shortly after the invention of the APR primality test, in [5], H. Cohen and H. W.

Lenstra described an improved and simplified version of the cyclotomic primality test.

Like the APR test, two versions of the test were presented, one utilizing Gauss sums

and the other Jacobi sums. Both versions used a Fermat-like congruence to create

a small list of possible divisors that could be manually checked for divisibility. The

Gauss sum version of the test required calculations in a larger finite ring, whereas the

4



Jacobi sum version required calculations in a smaller finite ring, making the Jacobi

sum test more practical. This primality test is now informally known as the APRCL

primality test, and is currently the default primality proving test used by the open

source mathematics software projects Sage and PARI/GP.

In [17], René Schoof presented an updated version of the APRCL primality test.

Schoof’s primality test is the topic of this thesis. Like Cohen and Lenstra, Schoof

presented a Gauss sum and Jacobi sum version of the test. Schoof focused mostly on

the Gauss sum test, and so this thesis will also focus on the Gauss sum version. We

will describe the primality test from a theoretical and a practical viewpoint.

For the sake of completeness, it should be mentioned that the most commonly

used alternative to the cyclotomic primality test is the elliptic curve primality (ECP)

test. H.W. Lenstra first described using elliptic curves for prime factoring in 1985,

and in 1986, S. Goldwasser and J. Killian extended this work to primality testing.

The largest advantage of the ECP test was its ability to produce for n a quickly

verifiable certificate of primality (or compositeness). Primality certificates allow the

primality of n to be rapidly checked with limited resources. For further details, see

[8].

Lastly, the most recent innovation to primality testing was the (truly) polynomial

time AKS algorithm first described by M. Agrawal, N. Kayal, and N. Saxena in 2002.

More efficient variants of the algorithm were quickly published by many others, most

notably [14]. Although this variant boasted a time of (logn)6 · (2 + log logn)c, where

c is an effectively computable real number, in practice, the AKS algorithm has yet to

yield a computationally effective test.
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Chapter 2

Background

2.1 Essentials in Algebra

Definition 2.1.1. An algebraic number is a complex number α that is a root of a

polynomial

a0x
n + a1x

n−1 + a2x
n−2 + · · ·+ an = 0, where ai ∈ Q and a0 6= 0.

An algebraic integer is a complex number β that is a root of a polynomial

xn + b1x
n−1 + b2x

n−2 + · · ·+ bn = 0, where bi ∈ Z.

Definition 2.1.2. An algebraic number field is a finite field extension of the field

of rationals, e.g., [Q(
√
2) : Q] = 2. (One can easily show that the elements of an

algebraic extension are algebraic.)

Given an algebraic number field K, the algebraic integers contained in K form a

commutative ring OK , called the ring of integers in K.

Proposition 2.1.3. The group of units (Z/pZ)∗ is cyclic and of order p− 1, where

p is a prime number.

For a complete proof, see [10] p. 39-40.
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Definition 2.1.4. Let a, n ∈ Z. Then a is a primitive root modulo n if the residue

class of a modulo n generates the group of units (Z/nZ)∗.

Theorem 2.1.5 (Fundamental Theorem of Finitely-Generated Abelian Groups).

Every finitely generated abelian group is a direct sum of cyclic groups of prime power

orders and of a free abelian group.

For a complete proof, see [2] p. 472-3.

Example 2.1.6. The finitely-generated abelian group Z/120Z⊕Z/36Z can be written

as the direct sum Z/22Z⊕ Z/23Z⊕ Z/3Z⊕ Z/32Z⊕ Z/5Z.

2.2 Cyclotomic Fields

Definition 2.2.1. A complex number ζ is called an n-th root of unity if it satisfies

the equation ζn − 1 = 0 for some integer n > 0. If n is the least positive integer with

this property, then ζ is called a primitive n-th root of unity. Throughout this thesis

we denote ζn = e2πi/n.

Example 2.2.2. The 4-th roots of unity are the solutions to the equation x4−1 = 0,

namely 1, e2πi/4 = i, e(2πi/4)2 = −1, e(2πi/4)3 = −i. And among these e(2πi/4)k, where

(4, k) = 1, are the primitive 4-th roots of unity, namely i and −i.

Proposition 2.2.3. Suppose ζ = ζn. Then the set

〈ζ〉 = {ζj : j = 1, 2, . . . , n}

forms a cyclic multiplicative group of order n.

Proof. Since ζ is a primitive n-th root of unity, its order in the group of complex units

C∗ is n. Therefore, the cyclic subgroup 〈ζ〉 is the same set as above and its order is

n.

The group identity is ζn = 1. And the inverse of ζa is ζn−a ∈ 〈ζ〉.
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Corollary 2.2.4. Let p be a prime number. Then

〈ζp−1〉 ∼= (Z/pZ)∗.

Proof. This is a direct result of Propositions 2.1.3 and 2.2.3.

Definition 2.2.5. Let n be a positive integer. Then the n-th cyclotomic field is the

algebraic number field Q(ζn). One has [Q(ζn) : Q] = φ(n), where φ is Euler’s totient

function ([10], p. 195).

Remark 1. The extension Q(ζn)/Q is Galois since Q(ζn) is a splitting field of the

polynomial xn − 1. This leads to the Galois group

G = Gal(Q(ζn)/Q)) = {σa : (a, n) = 1, where σa(ζn) = ζan}.

The generators of G are the elements σk such that k is a primitive root modulo n, and

the order of G is equal to φ(n). Since σa ◦ σb = σab, we can conclude G ∼= (Z/nZ)∗.

Example 2.2.6. Consider the case where G = Gal(Q(ζ6)/Q)). Let a ∈ Q(ζ6) such

that a = αζ6 + β, where α, β ∈ Q. Then ord(G) = φ(6) = 2, and we have

σ1(a) = ασ1(ζ6) + β = αζ6 + β

σ5(a) = ασ5(ζ6) + β = αζ56 + β = αζ−1
6 + β.

Note that 5 is the only primitive root modulo 6, so G = 〈σ5〉.

Proposition 2.2.7. Let K be equal to the n-th cyclotomic field. Then the ring of

algebraic integers OK is equal to Z[ζn].

Proof. For a complete proof, see Theorem 2.6 of [19]. For a simpler proof of only the

prime case, see Proposition 13.2.10 of [10].

In this thesis, we will only be concerned with the cyclotomic fields Q(ζq) and

Q(ζr), where q is a prime number and r is a power of a prime.
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Definition 2.2.8. For the field extension Q(ζq)/Q, write the Galois group G as

G = {σi : i ∈ (Z/qZ)∗, where σi(ζq) = ζ iq}.

Then the group ring Z[G] is the set

Z[G] = {
q−1
∑

i=1

aiσi : ai ∈ Z, σi ∈ G}.

Let α, β ∈ Z[G] with α =
∑

i aiσi and β =
∑

i biσi. Addition and multiplication in

the ring are defined to be

α + β =

q−1
∑

i=1

aiσi +

q−1
∑

i=1

biσi =

q−1
∑

i=1

(ai + bi)σi,

and

α · β =

q−1
∑

i=1

q−1
∑

j=1

(aibj)(σiσj), where σiσj ∈ G.

The group ring Z[G] acts on Q(ζq), and we use exponential notation for these actions:

Let f ∈ Z[G] such that f =
∑

i aiσi, and let x ∈ Q(ζq). Then

xf = x
∑

i aiσi =

q−1
∏

i=1

σi(x)
ai .

Example 2.2.9. Let ζ3 + 5 ∈ Q(ζ3), and let G = Gal(Q(ζ3)/Q). Let f ∈ Z[G] such

that f = 2σ1 + σ2. Then

(ζ3 + 5)f = σ1(ζ3 + 5)2σ2(ζ3 + 5) = (ζ3 + 5)2(ζ23 + 5) = ζ43 + 30ζ23 + 50ζ3 + 135.

2.3 Characters

Definition 2.3.1. Let k be a positive integer. A Dirichlet character χ modulo k

is a group homomorphism from (Z/kZ)∗ to C∗, i.e., χ(ab) = χ(a)χ(b) for all a, b ∈
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(Z/kZ)∗. We can lift this definition naturally to go from (Z/kZ) to C (or even Z to

C) by setting χ(a) = 0 when a 6∈ (Z/kZ)∗. The trivial character χ0 is defined to be

χ0(a) = 1 for all a such that (a, k) = 1 and 0 otherwise.

For the purposes of this thesis we are only interested in characters modulo a prime.

Proposition 2.3.2. Let χ be a character modulo p where p is a prime, and let

a ∈ (Z/pZ)∗. Then

1. χ(1) = 1,

2. χ(a) is a (p− 1)-st root of unity,

3. χ(a−1) = χ(a)−1 = χ(a), the complex conjugate.

Proof.

1. Since χ is a homomorphism, χ(1) = χ(1 · 1) = χ(1)χ(1). And χ(1) 6= 0 because

χ(1) ∈ C∗. Thus χ(1) = 1.

2. Recall that the ord((Z/pZ)∗) = φ(p) = p− 1. Thus we have ap−1 = 1. And this

implies that 1 = χ(1) = χ(ap−1) = χ(a)p−1.

3. Observe that 1 = χ(1) = χ(a−1a) = χ(a−1)χ(a), yielding the equation

χ(a−1)χ(a) = 1. Right multiplying both sides by χ(a)−1 yields the equality

χ(a−1) = χ(a)−1.

Proposition 2.3.3. The set of characters χ modulo prime p which we denote by Gp

forms a multiplicative group isomorphic to (Z/pZ)∗.

Proof. Let g be a generator of the group (Z/pZ)∗. It follows that every a ∈ (Z/pZ)∗

is equal to a power of g. And if a = gl, then χ(a) = χ(gl) = χ(g)l for χ ∈ Gp. Thus

each χ in Gp is completely determined by its value χ(g).
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We show next that Gp has a bijection onto 〈ζp−1〉. By Proposition 2.3.2, all values

of χ are p − 1st roots of unity, so given λ ∈ Gp we have that λ(g) = e2πi(r/(p−1)) for

some uniquely determined integer r, where 0 ≤ r < (p− 1).

Conversely, if 0 ≤ r < (p − 1), then define λ(gl) = e2πi(lr/(p−1)). It is easy to

see that λ is in fact a well-defined character. By Proposition 2.2.3, there are exactly

(p− 1) of these roots of unity, so there must be exactly p− 1 characters on (Z/pZ)∗.

To show that Gp is cyclic, let χ1 ∈ Gp such that χ1(g) = ζp−1. If λ ∈ Gp as defined

above, then χ1(g
r) = χr

1(g) = λ(g), which implies λ = χr
1. And it follows that Gp is

generated by χ1.

Only one cyclic group of order p − 1 exists (up to isomorphism). Therefore, by

Proposition 2.1.3, Gp
∼= (Z/pZ)∗.

Note 1. The trivial character χ0 is the unit element of the group. The order of a

character χmodulo p, denoted ord(χ), is the order of χ when considered as an element

of the group of characters, i.e., the smallest positive integer l such that χl = χ0. We

shall keep the notation of χ0 for the identity and χ1 for the generator of Gp.

Proposition 2.3.4. Suppose χ is a character modulo prime p not equal to χ0. Then

∑

a∈(Z/pZ)∗

χ(a) = 0.

Moreover, if χ = χ0, then
∑

a∈(Z/pZ)∗

χ(a) = p− 1.

Proof. To prove the first part of the proposition, we assume χ 6= χ0; so then there

must exist an a ∈ (Z/pZ)∗ such that χ(a) 6= 1. Let S =
∑

b∈(Z/pZ)∗ χ(b). Then

χ(a)S =
∑

b∈(Z/pZ)∗

χ(a)χ(b) =
∑

b∈(Z/pZ)∗

χ(ab) = S.

The last equality holds because ab runs over all elements of (Z/pZ)∗ as b does

since (Z/pZ)∗ is a multiplicative group. And since χ(a) 6= 1, it must be that S = 0.
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The second part of the proposition is a direct consequence of Proposition 2.1.3.

Proposition 2.3.5. Suppose a is an element in Z/pZ such that a 6= 1, then

∑

χ∈Gp

χ(a) = 0.

Moreover, if a = 1, then
∑

χ∈Gp

χ(a) = p− 1.

Proof. To prove the first part of the proposition, suppose a ∈ (Z/pZ)∗ such that

a 6= 1. Let g be a generator of (Z/pZ)∗. Since g is a generator, it follows that a = gl,

where 0 < l < (p− 1) as ord((Z/pZ)∗) = p− 1. Thus (p− 1) ∤ l, and so

χ1(a) = χ1(g
l) = χ1(g)

l = ζ lp−1 = e2πi(l/(p−1)) 6= 1.

Next, let T =
∑

χ∈Gp
χ(a). Then

χ1(a)T =
∑

χ

χ1(a)χ(a) =
∑

χ

χ1χ(a) = T.

The last equality holds because χ1χ runs over all characters of Gp as χ does. And

since χ1(a) 6= 1, it must be that T = 0.

The second part of the proposition is a direct consequence of Proposition 2.3.3.

Example 2.3.6. There are φ(5) = 4 characters modulo 5. The group is wholly

determined by χ(2) as (Z/5Z)∗ = 〈2〉.

Table 2.1: Characters modulo 5

1 2 3 4

χ0(n) 1 1 1 1
χ1(n) 1 ζ4 = i ζ34 = −i ζ24 = −1
χ2(n) 1 ζ24 = −1 ζ24 = −1 1
χ3(n) 1 ζ34 = −i ζ4 = i ζ24 = −1
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2.4 Gauss and Jacobi Sums

Definition 2.4.1. Let χ be the character modulo p. Then the Gauss sum τ(χ) is

defined by

τ(χ) =
∑

a∈(Z/pZ)∗

χ(a)ζap , where ζp = e2πi/p.

Proposition 2.4.2. Let χ be a nontrivial character modulo p, and let τ(χ) be the

corresponding Gauss sum. Then

τ(χ)τ(χ) = q,

where τ(χ) denotes the complex conjugate.

Proof. By Proposition 8.2.2 of [10], we have that |τ(χ)| = √
p. It follows that

τ(χ)τ(χ) = |τ(χ)|2 = p.

Definition 2.4.3. Let χ and λ be the characters modulo p. Then the Jacobi sum

j(χ, λ) is defined by

j(χ, λ) =
∑

a∈(Z/pZ)∗

χ(a)λ(1− a).

2.5 p-adic Numbers

We present here only the most rudimentary introduction to p-adic numbers since that

will suffice for this thesis. For a thorough introduction to this vast and fascinating

subject, see [9].

Definition 2.5.1. For a nonzero integer n, the p-adic valuation is

vp(n) = max{r : pr | n}, and vp(0) = ∞.
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For a/b ∈ Q, the p-adic valuation is

vp

(a

b

)

= vp(a)− vp(b).

And for m ∈ Q, the p-adic norm is

|m|p =











p−vp(m), if m 6= 0

0, if m = 0 .

Definition 2.5.2. The p-adic numbers Qp are the completion of the rationals Q with

respect to the p-adic norm (just as the reals R are the completion of Q with respect

to the usual absolute value).

Remark 2. It should be noted that the p-adic norm and the p-adic valuation extend

naturally to Qp.

Definition 2.5.3. The p-adic integers Zp are the elements in the closed unit disc of

Qp,

Zp = {x ∈ Qp : |x|p ≤ 1} = {x ∈ Qp : vp(x) ≥ 0}.

The p-adic integer x can be represented as the formal power series

x =

∞
∑

i=0

aip
i,

where ai ∈ Z. It is important to note that this representation is not unique.

The p-adic integers form a ring. Addition and multiplication in the ring are the

same as for formal power series. If x, y ∈ Zp, then

x · y =

(

∞
∑

i=0

aip
i

)(

∞
∑

i=0

bip
i

)

=
∞
∑

i=0

cip
i,

14



where ci =
∑i

j=0 ajbi−j , and

x+ y =
∞
∑

i=0

(ai + bi)p
i.

The zero element is 0 = 0+ 0 · p+ 0 · p2 + · · · , and the unit element is 1 = 1+ 0 · p+
0 · p2 + · · · .

Remark 3. The units of Zp are elements of the form x =
∑∞

i=0 aip
i, where a0 6= 0.

This is clear from the description of the unit element above. (One can show that the

converse also holds.)

Furthermore, note that Zp ∩ Q = {a
b
∈ Q : vp(a) ≥ vp(b)}. Therefore, such

fractions have representations as formal power series like above. For example,

∞
∑

i=0

pi =
pN − 1

p− 1
+ pN

∞
∑

i=0

pi = − 1

p− 1
.

Definition 2.5.4. For Zp we define the p-adic logarithm to be

log(x+ 1) =

∞
∑

j=1

(−1)j+1x
j

j

with a radius of convergence |x|P < 1.

Similarly, we define can exponentiation for the p-adic numbers. Let a, b ∈ Qp such

that a ≡ 1 (mod p) and b =
∑

i bip
i. Then

ab = lim
N→∞

a
∑N

i=0 bipi.

(It can be shown that the limit exists in this case.)
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Chapter 3

The Gauss Sum Test

3.1 Mathematical Underpinnings

In this section, we construct the propositions and theorem required for the cyclotomic

primality test. We begin by explicitly constructing a character χ modulo prime q of

order r, where r is relatively prime to q and r | (q − 1). This will be denoted as χr,q

throughout. To construct χr,q, begin by setting g to be a primitive root modulo q,

so for all a ∈ (Z/qZ)∗ we have gk = a for some k ∈ (Z/qZ)∗. And define χr,q by

χr,q(a) = χr,q(g
k) = ζkr , where ζr is a primitive r-th root of unity. This is well-defined

as r | (q − 1), and one can easily show that χr,q is of order r.

Let χ = χr,q and let τ(χ) be the corresponding Gauss sum. Then we have

τ(χ) =
∑

a∈(Z/qZ)∗

χ(a)ζaq =
∑

k∈(Z/qZ)∗

χ(gk)ζg
k

q =
∑

k∈(Z/qZ)∗

ζkr ζ
gk

q .

It follows that τ(χ) is an algebraic integer in the cyclotomic field Q(ζr, ζq).

We will next describe the Galois groups and group rings necessary for our

calculations.

Let ∆ be the Galois group of the extension Q(ζr, ζq)/Q(ζq). We know this

extension is Galois because Q(ζr, ζq) is the splitting field of the polynomial (xr − 1)
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over Q(ζq). We can write ∆ = {σi : i ∈ (Z/rZ)∗}, where σi ∈ ∆ is the isomorphism

from Q(ζr, ζq) to itself that acts trivially on q-th roots of unity, while its action on

r-th roots of unity is given by σi(ζr) = ζ ir. Let Z[∆] be the group ring of ∆ over Z

that acts on Q(ζr, ζq)
∗.

Similarly, let G be the Galois group of the extension Q(ζr, ζq)/Q(ζr). We can write

G = {ρj : j ∈ (Z/qZ)∗}, where ρj ∈ G is the isomorphism from Q(ζr, ζq) to itself that

acts trivially on r-th roots of unity, while its action on q-th roots of unity is given by

ρj(ζq) = ζjq . Let Z[G] be the group ring of G over Z that acts on Q(ζr, ζq)
∗.

We then have the following diagram

Q(ζr, ζq)

∆

JJJJJJJJJ

G

ttttttttt

Q(ζr)

KKKKKKKKKKK
Q(ζq)

sssssssssss

Q

Figure 3.1: Cyclotomic field layout

It may still be a bit unclear what Gauss sums have to do with primality testing,

but in the next proposition, we present a Fermat-like congruence that will be used to

build our primality test. We first require one lemma.

Lemma 3.1.1. Let χ = χr,q, let τ(χ) be the corresponding Gauss sum, and let σi ∈ ∆

(as defined as above). Then we have

τ(χ)σi = τ(χi), for i ∈ (Z/rZ)∗.
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Proof. Let a ∈ (Z/qZ)∗, and observe that σi(x) = xi for all x ∈ 〈ζr〉. Then

τ(χ)σi = σi





∑

a∈(Z/qZ)∗

χ(a)ζaq





=
∑

a∈(Z/qZ)∗

σi (χ(a)) ζ
a
q

=
∑

a∈(Z/qZ)∗

χi(a)ζaq

= τ(χi).

Now we can state the Fermat-like congruence that is necessary for the cyclotomic

primality test.

Proposition 3.1.2. Let q be a prime number, and let r be a positive integer relatively

prime to q with r | (q − 1). Let χ = χr,q, and let τ(χ) be the corresponding Gauss

sum. Then, for every prime number p such that (p, qr) = 1, we have

τ(χ)σp−p = χp(p), in the ring Z[ζr, ζq]/(p).

Proof. Since we are working modulo prime p, we can distribute the exponent p within

the sum, and we have

τ(χ)p ≡





∑

a∈(Z/qZ)∗

χ(a)ζaq





p

≡
∑

a∈(Z/qZ)∗

χp(a)ζpaq (mod p).

Then, as χ is a group homomorphism, we have

χp(p)τ(χ)p ≡ χp(p)
∑

a∈(Z/qZ)∗

χp(a)ζpaq ≡
∑

a∈(Z/qZ)∗

χp(pa)ζpaq (mod p).
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Next, we substitute b = pa, as p is a unit, and apply our lemma. This yields

∑

a∈(Z/qZ)∗

χp(pa)ζpaq ≡
∑

b∈(Z/qZ)∗

χp(b)ζbq ≡ τ(χp) ≡ τ(χ)σp (mod p).

Recall that ord(χ) = r implying χ 6= χ0, and so by Proposition 2.4.2 we have

τ(χ)τ(χ) = q. And as (q, p) = 1, it follows that τ(χ) is a unit in Z[ζr, ζq]/(p).

Therefore,

χp(p) ≡ τ(χ)σp · τ(χ)−p ≡ τ(χ)σp−p (mod p).

Next, we present the main theorem of the thesis. Its two conditions form the

majority of the primality test.

Theorem 3.1.3. Let n be a natural number. Let q be a prime not diving n, let r be a

power of a prime number l not dividing n with r | (q− 1) and r 6= 1, and let χ = χr,q.

If

1. for every prime p dividing n there exists λp in the ring Zl of l-adic integers such

that

pl−1 = n(l−1)λp , in Z∗
l ;

2. the Gauss sum τ(χ) satisfies

τ(χ)σn−n ∈ 〈ζr〉, in the ring Z[ζr, ζq]/(n),

then we have

χ(p) = χ(n)λp

for every prime divisor p of n.

Before we prove this theorem, we must first prove a few lemmas.
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Lemma 3.1.4. Let p be a prime. If a ≡ b (mod p), then for all positive integer M

we have ap
M ≡ bp

M

(mod pM).

Proof. We prove the lemma by induction on M . For M = 1, the lemma is a well

known result which follows from the fact that

vp

((

p

i

))

> 1, for i ∈ {1, . . . , (p− 1)}.

Now assume that for some M > 1 we have that ap
M−1 ≡ bp

M−1
(mod pM−1), i.e.,

there exists c such that ap
M−1

= bp
M−1

+ pM−1c. Then,

ap
M

= bp
M

+ pMcb(p−1)pM−1

+

p
∑

i=2

(

p

i

)

p(M−1)icib(p−i)pM−1

.

But (M − 1)i ≥ M for i ≥ 2, and thus ap
M ≡ bp

M

(mod pM).

Lemma 3.1.5. Let p be prime, and set a ∈ Zp such that a ≡ 1 (mod p). If r ≡ s

(mod pM) in Zp, then

ar ≡ as (mod pM).

Proof. We have ar − as = as(ar−s − 1). Then set r − s = pM t, for some t ∈ Zp.

By the previous lemma, since a ≡ 1 (mod p), then ap
M ≡ 1 (mod pM). It follows

that

ar−s − 1 = (ap
M

)t − 1 ≡ (1)t − 1 ≡ 0 (mod pM).

Observe that the ring Z[ζr, ζq]/(p) is finite. This follows since elements of the ring

can be represented as

q
∑

i=1

r
∑

j=1

ai,jζ
i
qζ

j
r , where a ∈ Z/pZ.
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Thus the group of units H = (Z[ζr, ζq]/(p))
∗ is a finitely generated abelian group. By

Theorem 2.1.5, we can decompose H into a direct product of cyclic groups,

H ∼= (Z/lα1Z× Z/lα2Z× · · · × Z/lαkZ)× · · · , where α1 ≤ α2 ≤ · · · ≤ αk

and where αk is the largest power of the prime l in the decomposition. Set M = αk,

and let A denote the group H modulo lM -th powers, i.e., A = H/H lM ∼= Z/lα1Z ×
Z/lα2Z×· · ·×Z/lαkZ. Note that this notation will be used in the proof of the theorem

and following lemma.

Lemma 3.1.6. Let p be a prime number such that p ∤ r, where r is a prime l-power

such that l 6= p. Then the natural map 〈ζr〉 →֒ A (as above) is injective.

Proof. We first show that the natural map 〈ζr〉 →֒ H is injective. Note that the

natural map is simply reduction modulo p. It suffices to show that the kernel of this

map is trivial. Suppose ζ ir = 1 + pα where α ∈ Z[ζq, ζr]. Then we have

1 = (1 + pα)r =

r
∑

i=0

(

r

i

)

piαi = 1 +

r
∑

i=1

(

r

i

)

piαi,

which implies that
∑r

i=1

(

r
i

)

piαi = 0.

Suppose that α 6= 0, then we have

r + p

r
∑

i=2

(

r

i

)

pi−2αi−1 = 0,

which implies
r
∑

i=2

(

r

i

)

pi−2αi−1 = −r

p
.

But we know that the left-hand side of the equation above is an algebraic integer,

whereas the right-hand side is clearly not. Therefore, by this contraction, α = 0 and

the map is injective.
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In particular, the order of ζr in H is also r, and by the choice of M , we must have

that r | lM .

We next show that the natural map 〈ζr〉 →֒ H/H lM (i.e., modulo lM) is injective.

If ζ ir = 1 · αlM for α ∈ H , then (ζ l
M

r )i = 1 = (αlM )l
M

. Which implies that the order

of α is a multiple of l. Furthermore, ord(α) | lM because of our selection of M .

Therefore, as r | lM , we have αlM = 1 implying ζ ir = 1 in H , and thus in C.

We can now prove the main theorem of the thesis.

Proof of Theorem 3.1.3. We may assume that χ 6= χ0, the identity element, because

ord(χ) = r 6= 1. By condition (2) of the theorem, we have that

τ(χ)σn−n ≡ η̂ (mod n), for some η̂ ∈ 〈ζr〉.

It follows that

τ(χ)σnτ(χ)−n ≡ η̂ (mod n).

Multiplying through by τ(χ)n and applying σ−1
n yields

τ(χ) ≡ η̂σ
−1
n τ(χ)σ

−1
n n (mod n).

Observe that η̂σ
−1
n ∈ 〈ζr〉, so we may define η ∈ 〈ζr〉 such that η = η̂σ

−1
n . It follows

then that

τ(χ)σ
−1
n n ≡ ητ(χ) (mod n). (3.1)

Note that ησ
−1
n n = η, since for any ζ ir ∈ 〈ζr〉 we have σ−1

n (ζ ir) = ζ imr , where nm ≡ 1

(mod r). It follows that

(ζ ir)
σ−1
n n =

(

ζ imr
)n

= ζ ir. (3.2)

Therefore, for any integer L ≥ 0, applying σ−1
n n to equation (3.1) (l−1)L times yields

τ(χ)σ
−1
n n(l−1)L ≡ η(l−1)Lτ(χ) (mod n). (3.3)

22



For any prime divisor p of n, by Proposition 3.1.2, we have

τ(χ)σp ≡ χp(p)τ(χ)p (mod p).

Applying σ−1
p yields

τ(χ) ≡ (χ(p))σ
−1
p p τ(χ)σ

−1
p p (mod p).

By equation (3.2), we have

τ(χ) ≡ χ(p)τ(χ)σ
−1
p p (mod p).

And so

τ(χ)σ
−1
p p ≡ χ(p)−1τ(χ) (mod p).

If we apply σ−1
p p to the result l − 1 times, we have

τ(χ)(σ
−1
p p)l−1 ≡ χ(p)1−lτ(χ) (mod p). (3.4)

Next, let L be an integer between 0 and lM such that L ≡ λp (mod lM). We can

define L as such because we are working modulo lM , i.e., we are truncating the formal

power series expansion of λp at lM .

Observe that n(l−1)λp ≡ n(l−1)L (mod lM). This is a direct consequence of Lemma

3.1.5, and so condition (1) tells us that

pl−1 ≡ n(l−1)L (mod lM). (3.5)

Next, we show that (σ−1
n n)(l−1)L = (σ−1

p p)l−1 in the ring (Z/lMZ)[∆]. Using

equation (3.5), we have

(σ−1
n n)(l−1)L = (σ−1

n )(l−1)Ln(l−1)L = σ−1
n(l−1)Ln

(l−1)L ≡ σ−1
n(l−1)Lp

l−1 (mod lM).
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Applying equation (3.5) again yields

σn(l−1)L(ζr) = σpl−1+lM b(ζr) = ζp
l−1

r ζ l
M b
r for b ∈ Z.

But observe that ζ l
M b
r = 1, since r | lM as we have seen. Hence, σn(l−1)L(ζr) = σpl−1(ζr),

and so σ−1
n(l−1)L = σ−1

pl−1. Therefore,

(σ−1
n n)(l−1)L ≡ (σ−1

p p)l−1 (mod lM).

Taking the left-hand sides of equations (3.3) and (3.4), we have

τ(χ)(σ
−1
n n)(l−1)L

= τ(χ)(σ
−1
p p)l−1+lMf = τ(χ)(σ

−1
p p)l−1

(τ(χf ))l
M

,

for f ∈ Z[∆]. Therefore, τ(χ)(σ
−1
n n)(l−1)L

= τ(χ)(σ
−1
p p)l−1

, in the group A.

Also, since p | n and the left-hand sides of equations (3.3) and (3.4) are equal in

A, so are the right-hand sides, i.e.,

η(l−1)Lτ(χ) = χ(p)1−lτ(χ), in A.

And since τ(χ) is a unit, we have

η(l−1)L = χ(p)1−l, in A. (3.6)

Recall that ((l−1), r) = 1, and by Bézout’s identity, there exists an α, β ∈ Z such

that α(l − 1) + βr = 1. And raising equation (3.6) to the power α yields

ηλp = ηL = χ(p)−1, in A.

And since, by Lemma 3.1.6, the natural map 〈ζr〉 →֒ A is injective, it follows that

ηλp = ηL = χ(p)−1, in C. (3.7)
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Multiplying the first condition of the theorem, we have that for any positive divisor

d of n

dl−1 = n(l−1)λd , in Zl, where λd is unique.

From this computation, we have that if decomposing d into its prime divisors yields

d = pl11 · · · plkk , then λd = l1λp1 + · · · + lkλpk . And from equation (3.7), we can then

deduce that for all d | n,
ηλd = χ(d)−1.

As λn = 1, it follows that η = ηλn = χ(d)−1, and therefore,

χ(p)−1 = ηλp = χ(n)λp , in C.

for all prime divisors p of n.

The following proposition is not necessary for the cyclotomic primality test, but it

does provide a simple method for checking condition (1) of Theorem 3.1.3. Since it is

not a necessity and its proof is lengthy, we only state the proposition. For a complete

proof, see Proposition 4.3 in [17].

Proposition 3.1.7. Let n > 1 be an integer and let l be a prime number not dividing

n. Then there exists a prime divisor p of n an exponent λp ∈ Zl for which

pl−1 = n(l−1)λp in Z∗
l ,

if there exists a prime q not dividing n for which the following holds.

1. (If l 6= 2:) for some l-power r > 1 and χq,r = χ, the number τ(χ)σn−n is a

generator of the cyclic subgroup 〈ζr〉 of (Z[ζr, ζq]/(n))∗.

2. (If l = 2 and n ≡ 1 (mod 4):) for χ = χ2,q we have τ(χ)σn−n = −1.
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3. (If l = 2 and n ≡ 3 (mod 4):) for some l-power r ≥ 4 and χ = χr,q, the number

τ(χ)σn−n is a generator of the cyclic subgroup 〈ζr〉 of (Z[ζr, ζq]/(n))∗. And also,

τ(χ
r/2
2,q )

σn−n = −1 in the ring Z[ζq]/(n).

3.2 The Algorithm

3.2.1 An Overview

To aid in conceptual understanding, we begin by giving a very broad overview of the

algorithm. Suppose we have a positive integer n that we wish to prove is prime. We

begin the algorithm by using n to calculate the positive integers R and s. These values

are smaller than n and directly define the running time of the algorithm. Next, we

submit n to a number of congruence tests similar in style to Fermat’s “little theorem”,

with congruences that involve Gauss sums calculated in the ring Z[ζr, ζq]/(n), where

prime q and prime power r are derived from R and s (see Proposition 3.1.2). If n fails

any of the congruence tests, it is immediately declared to be composite. If n passes

all of the congruence tests, it could still be composite, but information is then known

about its possible divisors. And in the last step of the algorithm, if n is divisible by

any of the candidate divisors, it is declared to be composite. Otherwise, n is declared

to be prime.

3.2.2 A Detailed Description

Pre-compilation and Setup

We will now describe in detail the cyclotomic primality test based on Theorem 3.1.3

and Proposition 3.1.2. It will be described from both a theoretical and a practical

perspective.

Suppose we have an integer n that we wish to prove is prime. In practice, before

applying the cyclotomic test, we first apply to n a fast compositeness test, like the
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probabilistic Miller-Rabin test. After passing this test, n is declared very likely prime,

and we can begin the cyclotomic primality test to prove that n is prime.

The first step of the algorithm is to compute the integers R and s, where

s =
∏

(q−1)|R
q prime

q (3.8)

and s >
√
n.

It was shown by Pomerance in [1] that for every n > ee there exists positive

integers R and s such that R < (log n)c·log log logn, where c is an effectively computable

constant. From this the upper bound for the running time of the algorithm

O (logn)c·log log logn is derived, which is almost polynomial time since log log log n acts

like a constant. Moreover, it was shown in [13] and further described in [6], that with

slight modification to the algorithm, the condition on s could be loosened to s > 3
√
n,

greatly increasing the practical implementation of the test.

Ideally, R should be as small as possible while still satisfying the size condition

on s. As we will see, larger values of R and s directly translate to larger rings for our

computations and a greater number of calculations required.

The simplest method for generating the most efficient R and s values is the brute-

force method, i.e., trying increasing values R = 1, 2, 3, . . . until a proper s is found.

With the help of a computer and a sufficiently long list of primes in-hand, this is a

trivial task. Slight modifications can be made to this method to improve practical

performance, but typically in practice, a pre-compiled table of default R and s values

is used. For example, default values like R = 180 and s = 39921071190 could be used

for small values of n, i.e., log10 n ≤ 20. It is generally accepted that the product of

the first few small prime powers makes for a good R, e.g., 180 = 22 · 32 · 5.
After defining R and s, our next step is to construct the pairs q, r. For each prime

q dividing s, we must calculate the prime powers r such that r exactly divides q − 1,
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i.e., r = lk | (q − 1) but lk+1 ∤ (q − 1). Thus we have (r, q) = 1 and (r, R) = r. There

are at most O(R) of these pairs.

Once the pairs are constructed, for each pair we make sure that (n, qr) = 1.

Finding a single GCD greater than 1 would immediate indicate n was composite. For

fast implementations of GCD, see Ch. 2 of [7] or §1.3. of [4].
For each pair q, r, we must find a primitive root modulo q (for a fast implementa-

tion, see §1.4 of [4]). Then define the character χr,q and calculate the corresponding

Gauss sums in the ring Z[ζr, ζq]/(n). In practice, all of this data should be pre-

computed and stored in a table for small primes and prime powers.

The next two steps are the main part of the algorithm and are derived directly

from the two conditions of Theorem 3.1.3. For each pair q, r, we must perform these

two steps.

Step 1

Let l be the prime divisor of r. Then each l must satisfy condition (1) of Theorem

3.1.3. And although this condition cannot be checked directly, in practice it is quite

easy.

Claim 1. If l > 2, then verifying that nl−1 6≡ 1 (mod l2) satisfies condition (1) of

Theorem 3.1.3.

Proof. To satisfy condition (1), it suffices to show that vl(λp) ≥ 0.

By Theorem 1.0.1, we have that pl−1 ≡ nl−1 ≡ 1 (mod l), and this implies that

0 < |pl−1−1|l, |nl−1−1|l < 1. Therefore, we may apply the l-adic log to the equation

pl−1 = n(l−1)λp . Set pl−1 − 1 = la and nl−1 − 1 = lb, for some a, b ∈ Z. Then

λp =
log(pl−1)

log(nl−1)
=

log(1 + la)

log(1 + lb)
=

∑∞
j=1(−1)j+1 (la)

j

j
∑∞

j=1(−1)j+1 (lb)
j

j

=
(la)(1− (la)/2 + (la)3/3− . . . )

(lb)(1− (lb)/2 + (lb)2/3− . . . )
.

28



Thus, it suffices to show that

vl

(a

b

)

= vl(a)− vl(b) ≥ 0.

Which implies

vl(a) ≥ vl(b). (3.9)

Equation (3.9) is automatically satisfied when vl(b) = 0, which is satisfied by checking

that nl−1 6≡ 1 (mod l2).

If l = 2 or the above claim cannot be verified, then we resort to Proposition

3.1.7. The prime q defined in the proposition is not necessarily equal to the q from

our q, r pair. For each l, its associated q should be tried first, but failing that, all

other q’s should be attempted until one is found to work. In practice, this happens

very quickly. In the small chance that none of the q’s satisfy this condition, then the

condition is skipped and step 2 is tested for more primes q ≡ 1 (mod l).

Step 2

Next, χr,q is tested against condition (2) of Theorem 3.1.3. All calculations are

performed modulo n. If the character does not satisfy the condition, then n is

composite.

Final Step

If all q, r pairs pass these two steps, then something is known about the possible

divisors of n. To complete the algorithm, we set

ak = (nk mod s),

and then verify

ak ∤ n, for k = 1, . . . , R− 1. (3.10)
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Induction is the most efficient way to check this. Fast modular exponentiation is the

simplest method (while still being efficient). For implementation, see §1.2 of [4]. If n

satisfies equation (3.10), it is declared prime.

3.3 Proof of Correctness

If n is prime, then Proposition 3.1.2 implies that it passes all tests. Instead, assume

n is composite, and let p be a prime divisor of n such that p ≤ √
n. For every prime

divisor l that divides R, let λp be the l-adic integer from condition (1) of Theorem

3.1.3 and let r be the greatest prime power of l that divides R. Let Lr ∈ Z such that

Lr ≡ λp (mod r). (Note that an r′ from the theorem is not necessarily the same as

this r. But all r′ values divide r, and so we still have that χr′,q(p) = χr′,q(n)
Lr .) Then,

by the Chinese Remainder Theorem, we have a unique solution L in {0, . . . , R − 1}
of the system

x ≡ Lr (mod r), for all divisors r of R as above.

Then Theorem 3.1.3 implies that χr,q(p) = χr,q(n)
L for all q, r pairs. Furthermore,

we have

p ≡ nL (mod s), where s is from equation (3.8).

To see that this relation holds, assume p 6≡ nL (mod q). Then let (Z/qZ)∗ = 〈g〉,
and so we have p = gt1 and nL = gt2 , where t1 6≡ t2 (mod q − 1). Next, set

(q − 1) = r1 · · · rm, where ri is a power of a prime such that (ri, rj) = 1 if i 6= j, and

so t1 6≡ t2 (mod ri) for some ri. It then follows

χri,q(p) = χri,q(g
t1) = ζ t1ri 6= ζ t2ri = χri,q(g

t2) = χri,q(n
L),

which is a contradiction. Thus, since p ≡ nL (mod q) holds for all q, it must hold

modulo s as well.
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And since 0 < p < s, it follows that p is equal to the smallest non-negative residue

of nk modulo s for some k ∈ {0, 1, . . . , R − 1}. But this was the final test of the

algorithm, so by contradiction, n must be prime.

3.4 The Jacobi Sum Alternative

In practice, the best way to improve the performance of the Gauss sum test is to not

use Gauss sums! The original APR algorithm used Jacobi sums, and most current

implementations of the cyclotomic primality test use Jacobi sums. The only difference

is in the second condition of Theorem 3.1.3. The Gauss sums are calculated in the

finite ring Z[ζr, ζq]/(n) and require vectors of length φ(q)φ(r) to be stored. These

Gauss sums should in practice be exchanged for Jacobi sums calculated in the smaller

finite ring Z[ζr]/(n). This is significantly more efficient since q > r, and the difference

between q and r can be large.
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