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Abstract 

 Consumption of toxic endophyte-infected (E+) tall fescue pastures is known to 

have a negative impact on bull reproductive performance. Since decreased cleavage 

rates of embryos fertilized with spermatozoa from bulls grazing E+ tall fescue pastures 

have been observed in several studies using differing sets of bulls, technicians, 

pastures, and other methods of inducing tall fescue toxicosis (ergotamine tartrate), it is 

hypothesized that spermatozoa function from bulls grazing E+ is impaired in ways 

undetectable by gross semen examination.   

During a three-month grazing study, 6 Angus bulls were utilized to determine the 

effects of grazing E+ tall fescue pastures on growth performance and spermatozoa 

function. Bulls were appointed to graze Kentucky 31 tall fescue (Festuca arundinacea 

Schreb.) infected with Neotyphodium coenophialum, an ergot alkaloid producing 

endophyte (n=3) or Jesup tall fescue infected with non-ergot alkaloid producing 

endophyte (NTE) MaxQTM (n=3). Bulls were grouped by body weight (BW) and scrotal 

circumference (SC) to graze pastures from April 18-June 26, 2007. Blood samples, BW, 

SC, semen, and rectal temperatures (RT) were collected every 7 d. Scrotal 

temperatures (ST) were obtained before semen collection each week in June. Semen 

was evaluated for gross motility, morphology, and Computer Assisted Semen Analysis 

(CASA) parameters. Semen from a subset of bulls (n=2 per treatment) was used to 

assess spermatozoa ability to function utilizing in vitro assays.  

Growth performance was decreased in E+ bulls compared to bulls grazing NTE 

tall fescue pastures (P = 0.002). Concentrations of prolactin were reduced in bulls 
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grazing E+ compared to bulls grazing NTE tall fescue pastures (P = 0.055). Motility 

post-thaw and during a 3-hour stress test were decreased (P = 0.024 and P < 0.0001, 

respectively), in addition to altered CASA parameters for spermatozoa. Penetration was 

reduced in oocytes fertilized with spermatozoa from bulls grazing E+ (64.54 ± 3.28%) 

compared to NTE tall fescue pastures (87.42 ± 1.63%, P < 0.0001) coupled with 

hastened meiotic completion, and reduced intracellular calcium parameters. These 

findings indicate impaired spermatozoa function in bulls grazing E+ tall fescue pastures 

that extends beyond gross semen characteristics, and may provide direction for future 

studies.   
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Chapter 1 

Introduction 

Improving economic returns for beef cattle producers and lowering expenses to 

consumers is of utmost importance for sustainability of animal agriculture. In 

Tennessee, only 76% of beef cows wean a calf annually (Neel 2004). Most of this 

inefficiency is due to reproduction failure and loss during establishment of pregnancy. A 

potential cause of this reproductive failure may be due to the primary forage base in 

Tennessee, namely Kentucky 31 endophyte-infected tall fescue (E+). 

Consumption of E+ tall fescue pastures causes severe economic and production 

losses for beef operations (Hoveland 1993). The endophyte (Neotyphodium 

coenaphialum) that resides within tall fescue grass contributes both positive (drought 

and insect tolerance of host plant) and negative (decreased performance of grazing 

animals) components in beef cattle production systems in the midsouth eastern United 

States. The endophyte is responsible for numerous declines in production traits such as 

weight gains (Paterson et al. 1995) and reproductive efficiency in both males and 

females (Browning et al. 1998; Burke et al. 2001a; Schuenemann et al. 2004; 

Schuenemann et al. 2005a; Schuenemann et al. 2005b; Schuenemann et al. 2005c; 

Seals et al. 2005). 

In cows and heifers, reductions in pregnancy rates (Seals et al. 2005), embryo 

quality and development (Schuenemann et al. 2005c), calving rates, milk yield, and 

circulating hormones (Burke et al. 2001a; Burke et al. 2001b) have been observed. 

However, follicular dynamics, luteal function, and uterine environment have been shown 
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not to be affected during simulation of fescue toxicosis (feeding ergotamine tartrate) 

(Schuenemann et al. 2005c; Seals et al. 2005).   

In bulls grazing E+ tall fescue pastures, core testicular temperatures were 

reduced (Schuenemann et al. 2005b), but gross semen morphology and motility were 

similar to bulls grazing non-toxic endophyte-infected (Max-Q) tall fescue. However, 

cleavage rates of oocytes fertilized with spermatozoa from bulls grazing E+ tall fescue 

were reduced (Schuenemann et al. 2005b). Simulation of tall fescue toxicosis by 

feeding ergotamine tartrate resulted in identical patterns of semen quality and cleavage 

rates as observed in the above grazing trial (Schuenemann et al. 2005a). Furthermore, 

tall fescue toxicosis is a syndrome that is worsened by high environmental 

temperatures, making associated symptoms more obvious during the hot summer 

months (Porter and Thompson 1992). 

The effects of reduced testicular core temperatures (possibly restricted blood 

supply) on the function of sperm have yet to be examined in cattle. It is known that 

maintenance of testicular temperature between 30 and 33 ºC is critical for effective 

spermatogenesis in the bull (Harrison and Weiner 1948). Spermatogenesis is an 

essential process by which spermatozoa are produced in the testes (Johnson et al. 

2000) and matured in the epididymis (Amann and Hammerstedt 1993). If this process is 

altered, consequences would be detrimental to fertility. Spermatozoa from bulls grazing 

E+ tall fescue pastures appear normal in terms of gross motility and morphology, but it 

is not known if sperm from these bulls are being altered in a way that is not detectible 

with a microscope. Thermoregulation is important for bull fertility since complex 
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processes occur in spermatozoa; and if these are impaired, then decreases in fertility 

would be seen (Kastelic 1999).  

The objectives of the current study are to evaluate penetration rates (i.e. 

fertilization), intracellular calcium oscillations, and embryo development in oocytes 

fertilized with semen from bulls grazing toxic endophyte infected (E+) and non-toxic 

endophyte infected (NTE) tall fescue pastures. The following review of literature will 

discuss attributes of tall fescue, effects on male and female reproductive performance, 

spermatogenesis, and the remodeling that occurs in order for an oocyte and 

spermatozoa to become an embryo. 
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Chapter 2 

Literature Review 

Consumption of endophyte-infected (E+) tall fescue pastures is estimated to be 

responsible for losses totaling more than $609 million annually for the United States 

beef industry (Hoveland 1993).  In the United States, over 14 million ha of tall fescue 

grass exists, most of which is contained in the eastern half of the country (Paterson et 

al. 1995). Many studies have been conducted on the use of novel strains of endophyte 

tall fescue, endophyte-free varieties of tall fescue, and other options to minimize effects 

of tall fescue on animal performance (Hoveland 1993; Gunter and Beck 2004). 

However, the endophyte and tall fescue plant have a symbiotic relationship, and plants 

do not survive well without the endophyte (Hoveland 1993). The effects on female 

reproductive performance have been heavily studied, but the male’s contribution in 

reproductive performance is currently of interest. The female is typically blamed as the 

cause of reproductive failure with the bull being overlooked as a potential source. This is 

why spermatozoa function from bulls grazing toxic (E+) and non-toxic (NTE) endophyte-

infected tall fescue pastures is of interest to our laboratory and to beef cattle producers 

who depend heavily on tall fescue pastures.  

2.1 Tall Fescue Toxicosis 

 Tall fescue toxicosis is a major burden to producers, and the economic effects 

are well known (Hoveland 1993). It has been estimated that greater than 95% of tall 

fescue pastures in the United States are infected with the endophyte Neotyphodium 

coenophialum (Shelby and Dalrymple 1993). As mentioned above, tall fescue grass 

benefits from its relationship with the endophyte. These benefits to the E+ tall fescue 
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plant include pest resistance as well as persistence and drought tolerance. The 

endophyte provides defensive qualities to the tall fescue plant, and the plant provides 

the endophyte with protection, nutrients, and the means to proliferate (Bacon 1995). 

This beneficial relationship is due to the ergot alkaloids (n > 40) that are produced by 

the plant in response to the fungus (Clay 1988). Strains of tall fescue grass absent of 

the endophyte have been developed but these have not proven to be hardy and 

therefore impractical for use over an extended period of time (Jones et al. 2004). 

 Cattle exposed to E+ tall fescue experience symptoms such as decreased feed 

intake and overall performance, elevated body temperatures, photosensitization 

(Thompson et al. 1993), elevated respiration rates, rough hair coats, and loss of 

circulation due to vasoconstriction of capillaries that results in necrosis of extremities 

(Paterson et al. 1995; Burke et al. 2001a; Klotz et al. 2010). Reproductive effects of 

endophyte consumption and resulting tall fescue toxicosis include a decrease in 

pregnancy rates (Seals et al. 2005), calving rates, serum prolactin (Seals et al. 2005), 

serum progesterone, estradiol and cholesterol (Bond et al. 1984), serum luteinizing 

hormone (Browning et al. 1998), and milk yield (Thompson and Stuedemann 1993).  

2.2 Effects of Tall Fescue Toxicosis 

2. 2. 1. Issues Associated with Female Reproduction 

Female reproduction has been a heavily studied topic in reproductive physiology. 

The female is an essential component of the developing offspring and shares 

responsibility in establishing the embryo, maintaining a healthy fetus, and carrying that 

fetus to term. However, without the bull or semen these events will not occur (except in 

the extreme case of cloning). Fescue toxicosis in females is reported to be responsible 
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for many detrimental side effects as mentioned previously. Barth (2007) estimated that 

for every 21 days of the breeding season that a female remains open, it will cost the 

producer a loss of 20-30 kg of weaning weight for the calf in the following year. This 

could cost producers an economic loss of $65 per calf based on current market prices. 

This value depends on how severe sub-fertility is, what the bull-female ratios are and 

current market prices for weaned calves (Barth 2007).  

Burke et al. (2001b) reported that the diameter of the pre-ovulatory follicle was 

reduced in heifers fed E+ tall fescue seed and exposed to heat stress conditions in an 

environmental chamber. It has also been reported that pregnancy rates and embryonic 

losses do not differ between cows consuming non-toxic endophyte infected fescue seed 

(NTE) and cows consuming toxic endophyte infected fescue seed (E+) (Burke et al. 

2001a). However, exposure to elevated environmental temperatures seems to 

exacerbate tall fescue toxicosis symptoms (Aldrich et al. 1993). 

In contrast, Seals et al. (2005) demonstrated that follicular dynamics of heifers 

fed ergotamine tartrate to simulate tall fescue toxicosis were similar to control animals. 

Average daily gains, concentrations of progesterone, estradiol and follicle stimulating 

hormone did not differ between treatment groups. Heifers fed ergotamine tartrate 

displayed longer estrous cycles than did control animals, but follicular parameters (total 

number of follicles, age and diameter of the F1 and F2 follicles, age and size of the 

ovulatory follicle) were similar between treatments. Serum prolactin was reduced for 

heifers consuming ergotamine tartrate indicating simulation of tall fescue toxicosis was 

achieved. Furthermore, pregnancy rates of ergotamine tartrate fed heifers were reduced 
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compared to controls. These results suggest a possible issue with the oocyte within 

what would appear to be a normal growing follicle. 

Subsequently, Schuenemann et al. (2005c) reported decreased embryo recovery 

and percentage of transferable embryos from heifers being fed ergotamine tartrate to 

simulate fescue toxicosis. However, the uterine environment appears capable of 

establishing and maintaining pregnancy in heifers receiving ergotamine tartrate and 

transfer of a good quality embryo day 7 post-estrus (Schuenemann et al. 2005c). Burke 

et al. (2001b) reported that there was a greater frequency of dysfunctional corpora lutea 

(dysfunctional meaning that the corpus luteum produced lower levels of progesterone) 

using heat-stressed heifers that were fed E+ seed. Decreased serum concentrations of 

total cholesterol were also observed, which could possibly lead to decreased 

steroidogenesis. Reduced levels of luteinizing hormone have also been reported when 

heifers were given acute injections of ergotamine tartrate or ergonovine maleate 

(Browning et al. 1998). 

2. 2. 2. Reproduction Issues Associated with Bulls Grazing Tall Fescue 

Function of spermatozoa from bulls ingesting ergotamine tartrate or grazing E+ 

tall fescue pastures is known to negatively impact the ability of oocytes to cleave after 

fertilization (Schuenemann et al. 2005a; Schuenemann et al. 2005b). Reduced 

cleavage rates have been seen in multiple studies with multiple sets of animals in our 

lab (Schuenemann et al. 2005a; Schuenemann et al. 2005b), and resulted in further 

interest in spermatozoa function from bulls grazing E+ tall fescue pastures. Scrotal 

circumference, gross sperm morphology and motility, and blastocyst development of 

cleaved embyros are all normal when fertilized with spermatozoa from bulls grazing E+ 
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tall fescue pastures. However, scrotal temperatures and serum prolactin concentrations 

are reduced. These differences could be partially responsible for reductions in fertility.  

Many factors contribute to a bull’s success in terms of reproductive performance. 

A bull must possess the following characteristics in order to be considered fertile: 

adequate libido, physical soundness, and good semen quality (Barth 2007). The most 

practical  and straightforward way to evaluate a bull’s worth in terms of reproductive 

soundness is through a breeding soundness evaluation (Kennedy et al. 2002). This 

examination evaluates parameters such as physical conformation, scrotal 

circumference, status of the accessory sex glands and penis, and gross sperm motility 

and morphology. However, a bull can pass this evaluation and still not be able to settle 

a group of females. The bull is the most important part of the beef herd when using a 

natural breeding scenario; and if he is unable to impregnate females, then genetic 

progress will be impeded. The breeding soundness evaluation does not test the bull’s 

ability to produce pregnancies, it only predicts reproductive performance on the day the 

evaluation was performed. Therefore, problems associated with actually fertilizing an 

oocyte and contributing to the development of an embryo cannot be addressed with this 

examination and may be overlooked until excessive non-pregnant females result from 

the bull’s continued breeding efforts. After which it is usually too late to salvage the 

breeding season.  

 As discussed above, a breeding soundness exam can only evaluate a bull’s 

predicted performance in terms of sperm quality (gross motility and morphology). These 

measurements are often performed on farm and with the use of a microscope. In the 

laboratory, additional means exist for testing certain parameters associated with 
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spermatozoa quality. Computer assisted spermatozoa analysis (CASA) using an 

integrated visual optic system (IVOS) can be used to provide more objective evaluations 

of spermatozoa characteristics than visual appraisals using a microscope. Although this 

is not a completely valid method for on-farm determination of motility (mobile units do 

exist with significant cost), it is certainly useful in a laboratory setting and is highly 

repeatable (Farrell et al. 1998). CASA is capable of measuring many variables that can 

be used to assess spermatozoa characteristics and path velocities (Table 1). 
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Table 1. Spermatozoa parameters measured by Hamilton-Thorne Sperm Analyzer- CASA (Version 12 IVOS, 

Hamilton-Thorne Biosciences, Beverly, MA) 

 
Variable      Description 
 
Motile    % of total spermatozoa moving at path velocity > 30 µm/sec and progressive velocity > 15 µm/sec 
Progressive   % of total spermatozoa moving at path velocity > 50 µm/sec and straightness > 70% 
Rapid    Progressive % with path velocity > 50 µm/sec 
Medium   Progressive % with path velocity < 50 µm/sec but > 30 µm/sec 
Slow    Progressive % with path velocity < 30 µm/sec and progressive velocity < 15 µm/sec 
Static    Immobile sperm 
Path velocity (VAP)  Mean velocity of the smoothed cell path (µm/sec) 
Progressive velocity (VSL) Mean velocity measured in a straight line from the beginning to end of the track 
Track speed (VCL)  Mean velocity measured over the actual point-to-point track 
Lateral amplitude (ALH) Average width of the head oscillation as the sperm swims 
Beat frequency  Frequency of spermatozoa head intersecting the sperm average path in either direction 
Straightness   Measures departure of mean sperm path from straight line (ratio of VSL/VAP) 
Linearity    Measures departure of actual sperm track from straight line (ratio of VSL/VCL) 
Elongation   Ratio (%) of head width to head length 
Area    Mean size of sperm heads (µ2) 
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2. 3. Spermatogenesis 

 Spermatogenesis is an important factor when considering male fertility. In the 

bull, it is a 61-day process that requires specific temperature control and adequate 

hormone production. If alterations occur in the testis such as temperature 

increase/decrease, trauma or disease, then spermatogenesis will be affected (Kastelic 

1999). Increased testicular temperatures have been linked to increased production of 

abnormal spermatozoa and unstable chromatin (Saacke et al. 2000). Integrity of 

spermatozoa chromatin is essential for normal pronuclear formation once the sperm has 

gained entrance into the oocyte. If chromatin is altered or otherwise compromised, then 

reductions in embryo development could be seen. Sperm chromatin abnormalities are 

an uncompensable deficiency, where increasing insemination dose will not increase 

fertility (Saacke et al. 2000). 

Spermatogenesis is the process by which mature spermatozoa are produced in 

the testes of the male (Johnson et al. 2000). This process involves levels of cellular 

differentiation and division that are critical for production of spermatozoa capable of 

fertilizing an oocyte (Johnson et al. 2000). The seminiferous tubules in the testicle are 

the location for the production of spermatozoa. Before birth, primordial germ cells 

populate at the urogenital ridge. The primordial germ cells divide and form 

undifferentiated gonocytes (Parker et al. 1999). The first step in the production of 

spermatozoa is for spermatogonia (differentiated primordial germ cells) to undergo 

mitosis and divide into primary spermatocytes. These primary spermatocytes undergo 

meiosis to produce secondary spermatocytes, which go through a second meiotic 

division to produce spermatids (Johnson et al. 2000). Spermatids undergo cellular 
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differentiation to form spermatozoa cells but do not continue dividing. Spermatids must 

undergo further processing to become spermatozoa cells that can actually fertilize an 

oocyte. This process is termed spermiogenesis.  

During spermiogenesis, spermatozoa are formed from spermatids that have 

undergone a conformational change in their nuclei to resemble germ cells shaped 

appropriately for their respective species. A tail is developed from the flagellum, and the 

head forms from the nucleus (Johnson et al. 2000). Along with these morphological 

changes, the chromatin condenses and the acrosomal cap develops, which is the 

responsibility of the golgi apparatus (Johnson 1995). The acrosome is important since it 

contains hydrolytic enzymes necessary for the spermatozoa to fertilize an oocyte 

successfully (Johnson 1995). These enzymes include hyaluronidase, which is 

responsible for aiding the sperm’s entrance into the oocyte by dissolving cumulus cells. 

Without the acrosome a sperm will not be successful at fertilization attempts.  

Spermiation occurrence is coincident with spermatozoa being considered mature 

and is characterized by spermatozoa being released into the lumen of the seminiferous 

tubules. Spermiation can be physiologically compared to ovulation in the female 

(Johnson 1995). Amann (1970) discovered that spermatocytogenesis occurs in 21 days, 

meiosis takes 23 days, and spermatocytogenesis occurs during a 17-day time period. 

Therefore the entire process of spermatozoa formation takes 61 days in the bovine 

(Amann 1970), with sperm moving into the epididymis.  

The epididymis plays a critical role in the process of sperm maturation and 

storage. According to thermography images acquired by Schuenemann et al. (2005b), 

testicular temperatures were lowest in the region of the epididymis. Due to the inherent 
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nature of the epididymis and mixing occurring therein, the population of sperm cells in 

this region are heterogeneous in nature. Sperm in the epididymis and sperm that have 

been ejaculated have no ability to synthesize molecules such as proteins and lipids 

(Amann et al. 1993). Spermatozoa have other attributes that help them to survive in the 

female reproductive tract and the epididymis is critical for these processes. This is why 

epididymal maturation and bathing in seminal fluids through the process of emission 

(travel through the male reproductive tract) is important for spermatozoa to acquire the 

ability to fertilize an oocyte (Amann et al. 1993). The epididymis and efferent ducts are 

storage sites for spermatozoa. Amann and co-workers (1993) described four processes 

that the epididymis and efferent ducts are responsible which include: removal of water, 

transport via smooth muscle contractions, maturation, and storage/maintenance. If 

proper spermatozoa numbers are not maintained in these regions, then fertility could be 

negatively altered. Consequently, spermatozoa must go through the entire epididymis to 

obtain maximal fertilization potential (Robaire et al. 2006). Therefore, the epididymis is 

an important organ that is very complex in nature. 

2. 3. 1. Alterations in Spermatozoa Production 

 Spermatogenesis is a critical process that requires specific temperatures and 

hormone concentrations. If either of these is altered, then significant decreases in 

fertility would be observed. Increases in testicular temperature have been shown to 

increase the amount of abnormal spermatozoa in the ejaculate (Vogler et al. 1993). 

However, with fescue toxicosis, a decrease in scrotal temperature is seen due to 

vasoconstriction and subsequent decreased blood flow to the testicles (Schuenemann 

et al. 2005b). Bulls grazing E+ tall fescue pastures have been shown to have decreased 
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blood flow to the testicles when compared to bulls grazing NTE tall fescue pastures due 

to vasoconstriction of the testicular artery (Glen Aiken, personal communication). 

Decreased blood flow to the testicles could mean detrimental effects on spermatozoa. 

 Seminal plasma, secreted from the accessory sex glands in the bull is very 

important to spermatozoa in an ejaculate. These fluids, which are the sum of secretions 

from the testis, epididymis and accessory sex glands, comprise the major fluid portion in 

semen (Vishwanath and Shannon 1997). Seminal plasma is credited with several 

important roles including sperm motility (Vishwanath and Shannon 1997), capacitation 

(Miller et al. 1990), antibacterial properties, and providing antioxidant activity to protect 

spermatozoa (Jones et al. 1979). However, seminal plasma can also be detrimental to 

sperm under the appropriate conditions. Seminal plasma protects spermatozoa during 

emission and transit through the female reproductive tract. This is necessary because 

the vagina is very acidic and seminal plasma protects spermatozoa from this hostile 

environment (Harper 1994). Seminal plasma has to be removed prior to 

cryopreservation since prolonged exposure can alter spermatozoa membranes by 

increasing permeability, leading to cryogenic injury and decreased survival (Pangawkar 

et al. 1988). Nonetheless, alterations in seminal plasma can have deleterious effects on 

spermatozoa since they are in close contact with one another for a period of time.  

2. 4. The Process of Fertilization 

 Fertilization is the process by which the sperm binds to the oocyte to gain 

entrance and eventually form a zygote. After ejaculation from the male reproductive 

tract, spermatozoa face the challenge of traversing the female reproductive tract and 

going through two processes in order to successfully fertilize an oocyte. They are motile 
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once ejaculated, but have not undergone capacitation or the acrosome reaction at this 

point.  

Capacitation is the process by which the glycoprotein layer surrounding the 

spermatozoa head is removed (Hunter and Rodriguez Martinez 2004). This exposes the 

acrosome and its receptors that are necessary for zona pellucida binding. Capacitation 

occurs in the female’s reproductive tract ideally, and is also associated with increasing 

spermatozoa motility by hyperactivation (Yanagimachi 1994). Once the spermatozoon is 

capacitated, the plasma membrane changes characteristics and becomes more fluid-

like. Additionally, de-capacitation factor is removed (this anchors zona receptors on the 

spermatozoa). These changes are primarily due to cholesterol efflux (Yanagimachi 

1994). 

Hyperactivation facilitates spermatozoa transport to the site of fertilization. 

Spermatozoa must be morphologically normal in order to successfully complete the 

journey from the site of insemination to this region of the oviduct (Scott 2000). In the 

mouse, spermatozoa with head abnormalities will likely not be able to pass through the 

utero-tubal junction (Scott 2000) hence, the female’s reproductive tract serves as a type 

of filter for sperm. The occurrence and timing of the acrosome reaction are very 

important for spermatozoa. If the acrosome reaction occurs too soon, then the sperm 

will be excluded from entering the cumulus cells surrounding the oocyte. If it occurs too 

late, sperm will also be excluded. Only capacitated, acrosome-intact sperm are allowed 

to proceed to the oocyte (Saling 1991). 

 There are two extracellular matrices that the spermatozoa must negotiate before 

it can access the oocyte (Saling 1991). First is the cumulus matrix which is thought to 



16 
 

serve as a filter for sperm that possess adequate fertilizing potential. Cumulus cell 

navigation is accomplished via acrosomal enzymes that assist the sperm by softening 

the cumulus cells and allowing access to the second extracellular matrix surrounding 

the oocyte, the zona pellucida. The zona pellucida contains specific glycoproteins that 

are important in the process of spermatozoa-oocyte binding (Saling 1991).  

 These glycoproteins are thought to have separate functions, but are very similar 

to one another. For example, in most mammals, zona pellucida protein 3 (ZP3) is a 

specific receptor for spermatozoa and is thought to induce the acrosome reaction 

whereas zona pellucida protein 2 (ZP2) binds exclusively to acrosome-reacted 

spermatozoa and is a secondary receptor (Hinsch et al. 2005). Zona pellucida receptor 

1 (ZP1) does not participate in gamete interaction but is more responsible for structural 

stability (Saling 1991). The spermatozoon must first bind to the ZP3 receptor, undergo 

acrosome reaction, bind to the ZP2 receptor, and gain access to the perivitilline space 

(Howes and Jones 2002). More specifically, sperm are challenged to interact with the 

oocyte in such a way as to deliver genetic material to the egg cytoplasm successfully. 

This requires sperm motility and certain enzymes from the spermatozoon relating to 

zona-adhesion (Primakoff and Myles 2002).  

 The acrosome is a structure that resembles a cap and is bound by a membrane. 

It covers the anterior portion of the spermatozooon’s nucleus (Yanagimachi 1994).  It 

contains many hydrolytic enzymes which include hyaluronidase and acrosin. These 

enzymes aid in the process of spermatozoa entrance through the zona pellucida. The 

acrosome reaction occurs upon binding to the zona pellucida receptor 3, and can be 

considered a process of controlled cell lysis (Yanagimachi 1994; Primakoff and Myles 
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2002). This process is important for entrance into the zona pellucida and subsequent 

fertilization of the oocyte. However, if the zona pellucida receptor 3 peptide chain is not 

intact, then it cannot exert its ligand effects (Yanagimachi 1994). Interestingly, 

spermatozoa possess certain receptors (RZP) that are specific for the zona pellucida 3 

receptor. Once the spermatozoa have completed the acrosome reaction, another series 

of events must occur for successful oocyte entrance.  

 The zona pellucida is penetrated only by acrosome-reacted spermatozoa (Saling 

1991; Yanagimachi 1994). Once the spermatozoa penetrates the zona pellucida, then it 

must pass through the perivitilline space and interact with the oocyte plasma membrane 

(Ben-Yosef and Shalgi 1998). The spermatozoa and the oocyte must navigate the 

process of remodeling to become a viable embryo beginning with oocyte activation.  

2. 5. The Remodeling of an Oocyte 

  The oocyte is ovulated while arrested at metaphase of the second meiotic 

division, or metaphase II (Yanagimachi 1994; Yoon and Fissore 2007). The 

spermatozoon must penetrate the zona pellucida in order for the oocyte to resume 

meiosis and become activated. The spermatozoon is essential because it causes an 

increase in intracellular free calcium ions (Ca2+) in the oocyte (Malcuit et al. 2006). This 

intracellular rise in free calcium allows the ovum to undergo activation events that are 

essential for continued progression (Schultz and Kopf 1995). These events include 

cortical granule exocytosis for prevention of polyspermy, completion of the meiotic cell 

cycle, and pronuclear formation (Malcuit et al. 2006). These activation events are 

initiated within the hour of the first onset of Ca2+ oscillations. 
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The mechanism by which spermatozoa perform the event of activation and 

induce intracellular Ca2+ oscillations is not specifically known but is thought to be the 

result of a certain sperm factor. This could be a specific phospholipase C (PLC-ζ) as 

reviewed by Malcuit et al. (2006). It is not known if this is actually the sperm factor or if it 

simply is activated by the sperm factor that is released. Nonetheless, a soluble sperm 

factor that is delivered to the oocyte by the spermatozoa activates the phosphoinositide 

pathway, which triggers Ca2+ release and oocyte activation (Swann 1990). This factor is 

a sperm specific protein, since it is heat and protease sensitive. Nor is this protein 

species specific since spermatozoa extracts have been injected into mouse, human, 

cow, hamster, and nemertean worm eggs resulting in subsequent Ca2+ oscillations 

(Swann 1990). Additionally, it has been reported that all sperm factor activity was 

released into the ooplasm within a time period of 2 hours following sperm entry (Yoon 

and Fissore 2007). 

 Once the soluble sperm factor is released into the oocyte, an increase in inositol 

1,4,5-triphosphate (IP3) has been shown (Wu et al. 2001). This is the result of the 

hydrolysis of phosphoinositol 4,5-bisphosphate (PIP2) by a PLC. Inositol triphosphate is 

responsible for stimulating Ca2+ release from the endoplasmic reticulum (Yoon and 

Fissore 2007). The patterns of Ca2+ release (i.e. duration, frequency and amplitude) are 

species dependent, and not just a single rise in Ca2+ concentration. Instead, Ca2+ 

release consists of patterns that are synchronized with the cell cycle (Ducibella et al. 

2006). Fissore and co-workers (1992) showed that the frequency of intracellular Ca2+ 

oscillations depend on how far the maternal and paternal chromatin have progressed 

through the cell cycle. Furthermore, a zygote with one Ca2+ peak displayed a larger 
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increase in intracellular Ca2+ concentration than a zygote with multiple Ca2+ peaks. It is 

thought that the duration of the interval between Ca2+ peaks is dependent upon how 

quickly the cell can regain its Ca2+ stores and oscillate again (Fissore et al. 1992). This 

is why different zygotes have altered responses to sperm-induced Ca2+ oscillations. 

Individual sperm from bulls could also have the ability to alter the patterns of 

intracellular Ca2+ concentrations.  

2. 6. Summary of Literature 

In conclusion, tall fescue toxicosis results in numerous economic declines for 

producers in the eastern midsouth. Function of spermatozoa from bulls grazing toxic 

endophyte infected (E+) tall fescue pastures and non-toxic endophyte infected (NTE) 

tall fescue pastures is of interest due to repeated findings in our laboratory. Decreased 

cleavage rates of oocytes fertilized with semen from bulls grazing E+ pastures have 

been observed multiple times and the experiments in this present study will address 

mechanisms of this discovery. Penetration will be assessed to determine if the 

spermatozoa’s ability to penetrate the zona pellucida and gain entrance into the oocyte 

is sufficient. Intracellular calcium oscillations are of interest because an increase in 

cytosolic calcium concentrations is important for completion and initiation of embryonic 

cell cycles, thus marking the beginning of development (Fissore et al. 1992). Embryo 

development will be assessed in order to repeat previous findings of decreased 

cleavage rates (Schuenemann et al. 2005a; Schuenemann et al. 2005b). 

In addition to in vitro assessment of spermatozoa, other data were collected on 

the bulls in each respective treatment. These data include body weights, rectal 
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temperatures, scrotal circumference measurements, blood samples, thermography 

scans of the testicles, and gross motility and morphology. 
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Chapter 3 

Materials and Methods 

3.1 Animals and Treatments 

 During a three-month grazing period, sexually mature, phenotypically similar, 

Angus bulls (n=6, mean age=15.1 ± 0.042 months) were used to determine effects of 

grazing toxic (E+) and non-toxic endophyte (NTE) infected tall fescue on growth 

performance, semen attributes, endocrine profiles and spermatozoa function. These 

animals were obtained from the East Tennessee Research and Education Center 

(Knoxville, TN) and were managed under station standard operating procedures (SOPs) 

for nutrition and care. Animals were allowed ad libitum access to water, mineral, and 

artificial shade (west fence line of paddocks was also lined with trees) in each 1.2 ha 

pasture. All experimental procedures were reviewed and approved by the University 

Institutional Animal Care and Use Committee. Beginning on April 18, 2007, bulls (n=3 

per treatment; mean weight at start of experiment = 656.06 ± 10.86 kg; mean scrotal 

circumference at start of experiment = 39.29 ± 1.23 cm), were placed on ‘Kentucky 31’ 

endophyte-infected tall fescue pastures (E+), or ‘Jesup’ Max-QTM pastures (NTE) both 

without clover. Ergovaline content of E+ pasture was 410 ppb with 93-95% infestation 

rate, and NTE pasture had non-detectible ergovaline concentrations with 93-95% 

infestation rate (Dr. J.C. Waller, personal communication).  

Beginning in mid-May, semen and blood samples were collected once weekly 

from bulls. Collection of blood, semen, scrotal circumference, body weight, rectal 

temperature, and scrotal temperatures were collected as described by Schuenemann et 

al. (2005b). Briefly, body weights (scales: Moly Manufacturing, Lorraine, KS, USA), 
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scrotal circumference (scrotal tape: Lane Manufacturing, Denver, CO, USA), and rectal 

temperature (RT; thermometer: GLA Agricultural Electronics, San Luis Obispo, CA, 

USA) were measured each week. Blood samples (Monovette; Sarstadt, Newton, NC, 

USA) were obtained for prolactin and testosterone assays via caudal venipuncture and 

placed on ice until centrifugation. Scrotal temperatures (ST) were obtained before 

semen collection for each date in June using thermography (Harrison and Weiner 

1948). The camera utilized had an opaque chopper and internal calibration which 

allowed absolute temperatures to be obtained (eMerge Vision DTIS 500, eMerge 

International Inc., Sebastian, FL, USA). EResearch software allowed analysis of images 

recorded. Images were imported to the software and a region of interest (ROI) was 

drawn on each testis. Each ROI contained the same number of pixels and the same 

region was drawn on each testis. The program calculated absolute temperatures for 

each ROI based on this information. 

3.2 Semen Collection and Cryopreservation 

Semen was collected once weekly beginning in mid-May and ending the last 

week of June between 0600-0800 each morning. Semen was immediately evaluated for 

gross morphology and motility by a board certified theriogenologist (Dr. F. M. Hopkins or 

Dr. T. M. Prado) with no knowledge of treatments. Semen was collected using an 

electroejaculator (Lane Manufacturing Co.; Denver, CO) and was placed in a 10 mL 

sterile conical tube.  

 Estimation of progressively motile spermatozoa was obtained using a light 

microscope at 400X. Twenty-five microliters of semen were added to a pre-warmed 

glass slide and covered with a cover slip to assess motility. A separate sample of 
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semen was placed on a glass slide, mixed with eosin-nigrosin stain, smeared using 

another glass slide and allowed to dry. Evaluation of morphology was performed under 

oil immersion at 1000X using a light microscope (Spitzer et al. 1988).  

 Semen was extended according to procedures described by Schuenemann et al. 

(2005b). After estimations of progressive motility and gross morphology were obtained, 

semen was extended using Bioxcell® animal protein-free formula (IMV, Aigle, France) 

extender solution. Total ejaculate volume, concentration, and motility were recorded at 

collection and this information was used to determine the amount of Bioxcell® extender 

solution to add. Antibiotics (CSS 1000) were added to the raw semen at 2% of total 

volume. This antibiotic solution was comprised of 11.5 mL distilled water and 0.5 mL 

antibiotics. The solution was pre-warmed to 32-34°C, added to semen, mixed and 

allowed to stand for 5 minutes. After completion of the antibiotic treatment, semen was 

extended with Bioxcell® CSS1 (400 mL of distilled water and 100 mL concentrated 

extender pre-warmed to 32-34°C) at a 1:1 ratio of extender to semen and allowed to 

stand for 10 minutes at 32-34°C. Extended semen was then packaged in a cooler with 

cold packs for transport back to the laboratory.  

 Upon return to the laboratory, extended semen concentration and motility were 

determined using a computer assisted semen analyzer (CASA Version 12 Integrated 

Visual Optic System-IVOS, Hamilton-Thorne Biosciences, Beverly, MA, USA) and the 

final dilution was determined. To achieve the desired spermatozoa concentration of 20 

million sperm/straw, a final dilution was obtained by adding CSS2 (400 mL of distilled 

water and 100 mL of concentrated extender pre-cooled to 4°C in a cold room) over a 

period of 1-2 minutes at 4°C and swirled gently to mix. The extended semen was 
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allowed to equilibrate over a period of 3 hours at 4°C in a cold room, then packaged in 

straws, sealed, and allowed to sit for 30 minutes. Straws of semen were then frozen for 

7 minutes in static vapor of liquid nitrogen and plunged into liquid nitrogen filled goblets, 

and stored at –196ºC until further analysis. 

 Post-thaw characteristics of semen were analyzed using computer assisted 

semen analysis (CASA). Semen was thawed in water at 36.7°C for 45 seconds and 

then decanted into black micro-centrifuge tubes for protection from light and maintained 

at 36.7°C. A 3.5 µl sample of semen was analyzed using CASA at 0 and 3 hours post-

thaw.  

3.2 In Vitro Evaluation of Spermatozoa 

 In vitro production of bovine embryos was performed as previously described by 

Edwards et al. (2009) with certain modifications. All chemicals were purchased from 

Sigma Chemical Company (St. Louis, MO, USA) unless otherwise noted. Medium-199 

(M199) containing Earle’s salts was purchased from Invitrogen (Division of Life 

Technologies; Carlsbad, CA, USA) while M199 with Hank’s salts was purchased from 

Mediatech (Manassas, VA, USA). Penicillin-streptomycin was purchased from Millipore 

(Billerica, MA, USA). Standard fetal bovine serum (S-FBS) was purchased from Atlanta 

Biologicals (Lawrenceville, GA, USA) while premium fetal bovine serum (P-FBS) and 

gentamicin were purchased from BioWhittaker (Walkersville, MD). Oocyte maturation 

medium (OMM) consisted of M199 (with Earle’s salts), 10% P-FBS, 50 µl/mL 

gentamicin, 5 µl/mL FSH, 0.2 mM sodium pyruvate, and 2 mM L-glutamine (Schrock et 

al. 2007). Modified Tyrodes’ Albumin Lactate Pyruvate media was prepared in the 

laboratory (HEPES-TALP, IVF-TALP, and Sperm-TALP) as per Parrish et al. (1988). 
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Potassium simplex optimized medium was prepared as previously described (Biggers et 

al. 2000) but modified to contain 0.5% BSA, 10 mM glycine, 1 mM L-glutamine, 1x 

nonessential amino acids, 50 U/mL penicillin, and 50 µl/mL streptomycin (KSOM). 

Dulbecco’s Phosphate Buffered Saline (DPBS) without MgCl2 and CaCl2 was purchased 

and prepared in the laboratory.  

 Ovaries were obtained from a local abbatoir (Southeastern Provision LLC., Bean 

Station, TN, USA) and placed in thermoses before transport in a cooler to the 

laboratory. Upon arrival, ovaries were quickly rinsed in warm water that was equilibrated 

to the arrival temperature of the ovaries (between 28 to 30°C). Tissue surrounding the 

ovary was removed with scissors and ovaries were washed once more with pre-

equilibrated water. 

Ovaries were processed for oocyte recovery within ~4 hours of collection at the 

abbatoir. Briefly, cumulus oocyte complexes (COC) were harvested from antral follicles 

(~3-10 mm) on ovaries selected for COC collection. Ovaries were held firmly by a pair of 

hemostats that was clamped onto the base of the ovary. Small, lengthwise incisions 

were made across follicles and were followed by crosswise incisions to create a 

checkerboard pattern on the surface of the ovary. Ovaries were washed thoroughly in 

oocyte collection medium (OCM) supplemented with 1% fetal bovine serum, penicillin-

streptomycin, and L-glutamine to liberate cumulus oocyte complexes. Oocyte collection 

medium was filtered and rinsed using an Emcon filter (Vet Concepts, Spring Valley, WI, 

USA) until medium was clear of debris. This medium was then poured into a gridded 

plastic culture dish for oocyte retrieval. Upon recovery, COC were then placed into a 

plate of 2% oocyte collection medium supplemented with 2% fetal bovine serum, 
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penicillin-streptomycin, and L-glutamine, where they were washed four times to 

eliminate cell debris, and evaluated for quality. Only cumulus oocyte complexes with a 

dark, evenly distributed ooplasm and compact cumulus were matured in groups of 30-

45 in 500 µl of oocyte maturation medium (OMM). Maturation was performed in an 

incubator at 5.5% CO2 in humidified air at 38.5°C until time of fertilization. Oocyte 

maturation medium was pre-equilibrated in the incubator (5.5% CO2 in air at 38.5°C) for 

a minimum of 5 hours before oocyte collection was performed.  

Approximately 24 hours after placement into OMM, maturation medium was 

aspirated from each well containing oocytes using a small bore glass pipette and 500 µl 

of fertilization medium (IVF-TALP) and 25 µl of penicillamine/hypotaurine/epinephrine 

(PHE) were added back to each well. Fertilization was performed as per Edwards et al. 

(2003) with certain modifications. Briefly, approximately two straws of semen from each 

bull collected and cryopreserved on June 12 and 26 were used for in vitro fertilization. 

One bull from each treatment group (toxic endophyte infected tall fescue-E+, and non-

toxic endophyte infected fescue-NTE) was used to fertilize oocytes from each collection 

date. Straws of semen were removed from the liquid nitrogen dewar by an independent 

observer to keep bull identification number and treatments unknown by evaluators. 

Straws were placed in water at 36.7°C for 45 seconds and decanted onto a 10 mL 

column of DPBS (without MgCl2 and CaCl2) in a sterile 15 mL conical tube. Only one 

straw was placed onto each column of DPBS in order to adequately wash the 

spermatozoa contained in each straw. Each column was then centrifuged at 800 x g for 

3 minutes in order to remove excess extender and debris. Upon completion of 

centrifugation, almost all DPBS was aspirated from columns and the spermatozoa 
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pellets from two different columns were combined. This gave one sample of DPBS 

purified spermatozoa for each bull. Once the pellets were combined, 50 ul of IVF-TL 

containing heparin (8.75 units / µl) was added to each spermatozoa sample. A 3.5 µl 

spermatozoa sample was then placed into a chamber in the CASA for motility and 

concentration assessment. The spermatozoa to be used for fertilization were placed into 

the incubator for 15 minutes (5.5% CO2 in air at 38.5°C). IVF-TALP and IVF-TL 

containing heparin were both pre-equilibrated in the incubator (5.5% CO2 in air at 

38.5°C) for a minimum of 5 hours prior to in vitro fertilization. Following 15 minute 

incubation, another 3.5 µl sample of spermatozoa was evaluated by CASA. Then 

motility and concentration values were used to calculate volume of motile spermatozoa 

to add to each 500 µl well containing oocytes (750,000 motile spermatozoa).  

 Approximately 6.5-7.5 hours post fertilization, presumptive zygotes (PZs) were 

denuded of cumulus cells by vortexing for 4.5 minutes in a sterile 15 mL conical tube 

containing 500 µl of a solution comprised of 700 µl of HEPES-TALP and 300 µl of 

hyaluronidase. Recovered presumptive zygotes were washed four times in HEPES-

TALP and evaluated. After evaluation, presumptive zygotes were used for the 

penetration assay, intracellular calcium assay, or were placed into KSOM to assess 

development to blastocyst stage (Figure 3.1). 
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Figure 3.1 Experimental Schematic of In Vitro Evaluation of Spermatozoa 
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3.2.1 Penetration Assay 

Penetration rates were assessed as described by Payton et al. (2004). In brief, 

between 7.5-9.5 hours after IVF, presumptive zygotes were denuded and then placed 

sequentially in 0.5% pronase for zona pellucida removal, 10% paraformaldehyde 

(paraformaldehyde diluted in Dulbecco’s phosphate buffered saline) for fixation, and a 

10 µg/mL concentration of Hoechst 33342 for chromatin staining respectively. 

Presumptive zygotes were then mounted on a glass slide, covered with a cover slip, 

sealed and chromatin status assessed using a Nikon TE300 inverted optical microscope 

at a minimum of 20X magnification using fluorescence imaging. This experiment was 

replicated on 33 different occasions evaluating a total of 2,547 presumptive zygotes. 

3.2.2 Intracellular Calcium Assay 

 Intracellular calcium measurements were performed as described by Fissore et 

al. (1995) and Takahashi et al. (2000) with minor modifications. Briefly, presumptive 

zygotes (PZs) were completely denuded of cumulus cells approximately 6.5-7.5 hours 

post insemination, then incubated in IVF-TALP (pre-equilibrated at 38.5°C and 5.5% 

CO2) containing 3 µM Fura-PE3/AM (Calbiochem, La Jolla, CA, USA), 0.06% Pluronic 

F127 (Invitrogen, Carlsbad, CA, USA) and 2.5 µM CellTracker™ Orange CMTMR or 2.5 

µM CellTracker™ Green CMFDA for a minimum of 45 minutes at 38.5°C. Two different 

CellTracker™ reagents were used so that groups of PZs fertilized by two different bulls 

could be measured simultaneously (Figure 3.2).  The dye-loaded presumptive zygotes 

were washed three times in HEPES-TALP, and transferred to pre-warmed HEPES-TL 

(BSA-free). Intracellular calcium was monitored in each presumptive zygote using a 
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Nikon Ti-E microscope with Super Fluor 10 X 0.5 NA objective and heated stage 

adaptor (Delta T® Open Dish System, Bioptechs, Butler, PA, USA). Presumptive 

zygotes were measured in a group of ~30 (15 from each treatment group) in a 30 µl 

droplet of HEPES-TL overlaid with mineral oil pre-warmed to 38.5°C on a Delta T® dish 

(Bioptechs) pre-coated with poly-L-lysine. Nikon Elements Advanced Research 

Software was utilized to obtain fluorescence values (340 and 380 nm excitations with 

510 nm emission) every 5 seconds for 90 minutes. Intracellular calcium concentrations 

were determined from fluorescence ratio (R=F340/F380) and calibration solutions 

according to Grynkiewicz et al. (1985), Kd * β * [(R-Rmin)/(Rmax-R)] , where Kd is the 

dissociation constant for Fura-PE3 for calcium binding, β is the ratio of fluorescence at 

380 nm for free and bound Fura-PE3, and Rmin and Rmax are the fluorescent ratios at 

zero and saturating, respectively. Calibration solution of 10 µM Fura-3 salt in HEPES-TL 

with a 60% sucrose (w/v) supplement to correct for intracellular viscosity (Poenie 1990) 

was used to determine 340 to 380 nm fluorescence ratio at zero (Rmin; containing 5 mM 

EDTA) and saturating calcium (Rmax; containing 8 mM CaCl2) concentrations. Value of β 

was determined using ratio of fluorescence readings at 380 nm wavelength for zero 

calcium to saturating calcium solutions. Background values for subtraction were 

acquired by measuring calibration solution without Fura-3 salt. This experiment was 

replicated on 4 different occasions with a total of 192 oocytes.  
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Figure 3.2 SNAP Image of Putative Zygotes using CellTracker™ reagents 
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3.3. Statistical Analysis 

The experiment was divided into three separate analyses. Analysis I evaluated 

performance of bulls and gross characteristics of semen in each treatment. Analysis II 

evaluated CASA parameters for sperm characteristics post-thaw and after a three-hour 

stress test, in addition to sperm utilized for IVF assessment. Analysis III assessed IVF 

function of spermatozoa: penetration, intracellular calcium oscillations, and embryo 

development. 

3. 3. 1. Analysis I 

Bull performance and gross semen characteristics were analyzed for bulls 

grazing toxic endophyte-infected (E+) and non-toxic endophyte-infected tall fescue 

pastures (NTE). In general, data were analyzed as a randomized block design (RBD) 

with fixed effects of treatment, random effects of date and date*treatment, and blocking 

on date of semen collection using the mixed models procedure (SAS 9.2, SAS Inst., Inc, 

Cary, NC, USA). Data were tested for normality (Shapiro-Wilk W ≥ 0.90), and treatment 

differences were determined using F-protected least significant differences, reported as 

least squares means ± SEM.  

3. 3. 2. Analysis II 

 Semen parameters as measured by Computer Assisted Sperm Analysis (CASA) 

were evaluated for bulls grazing E+ tall fescue pastures and NTE tall fescue pastures.  

Data were analyzed as a randomized block design with fixed effects of treatment, 

blocking on semen collection date, utilizing the mixed models procedure (SAS 9.2, SAS 

Inst., Inc, Cary, NC). Data were tested for normality (Shapiro-Wilk W ≥ 0.90), and 
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treatment differences were determined using F-protected least significant differences, 

reported as least squares means ± SEM. 

3. 3. 3. Analysis III 

  In general, data were analyzed as a randomized block design with fixed effects of 

treatment, semen collection date, and hours post-insemination at time of denuding, 

blocking on replicate (date of oocyte collection), with use of binomial or normal 

distributions as appropriate and generalized linear mixed models (PROC GLIMMIX; 

SAS 9.2, SAS Inst., Cary, NC, USA) unless otherwise noted.  

Initiation and termination of intracellular increase in calcium were determined by 

fitting a four straight-line segmented nonlinear model (PROC NLIN, SAS 9.2), with 

segments consisting of an initial flat baseline, then a rise to the peak, followed by a fall 

to the termination of release, and then a final plateau which was in general not flat. Join 

points provided estimates for initiation and termination. Once these were estimated 

variables of interest were calculated. Variables included basal calcium concentration 

(baseline), time of rise, amplitude, time of decline, duration of the calcium peak, area 

under the curve (total calcium oscillation) and post-release plateau. Data were tested for 

normality (Shapiro-Wilk W ≥ 0.90) and analyzed using the mixed models procedure 

(SAS 9.2, SAS Inst., Inc, Cary, NC) with a main effect of treatment (spermatozoa from 

E+ or NTE tall fescue bulls) and hours post insemination (HPI), while blocking on 

replicate. Data were tested for normality (Shapiro-Wilk W ≥ 0.90), and treatment 

differences were determined using F-protected least significant differences, reported as 

least squares means ± SEM. 
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Chapter 4 

Results 

4.1. Analysis 1: Bull Performance 

4. 1. 1. Animal Parameters 

 Likely attributable to severe drought and higher than normal ambient 

temperatures in Knoxville, TN during the experimental period in 2007, bulls in both 

treatment groups had decreased weight gain over time. However, bulls grazing E+ tall 

fescue pastures lost more weight weekly on average (-11.14 ± 1.34 kg) during the study 

compared to bulls grazing NTE tall fescue pastures (-4.65 ± 1.34 kg, P = 0.002, Figure 

4.1). Serum concentrations of prolactin were reduced in bulls grazing E+ tall fescue 

pastures (97.13 ± 9.23 ng/ml) compared to bulls grazing NTE (123.43 ± 9.23 ng/ml, P = 

0.055). Concentrations of testosterone from bulls grazing E+ and NTE tall fescue 

pastures were not affected by treatment (1263.22 ± 169.89 vs. 1444.61 ± 169.89 dL/mL 

respectively, P = 0.47). Treatment did not affect how much scrotal circumference (cm) 

was reduced over the three month grazing period as all bulls had decreasing scrotal 

circumference measurements throughout the study (P = 0.447, Figure 4.2). Rectal 

temperatures were not different in bulls grazing E+ tall fescue pastures (38.6 ± 0.08 ºC)  

and NTE tall fescue pastures (38.6 ±  0.08°C, P = 0.8708). Scrotal temperatures were 

obtained on June 12, 19, and 26. Scrotal temperatures were not altered in bulls grazing 

E+ and NTE tall fescue pastures (29.4 ± 0.75 vs. 29.7 ± 0.75 °C, P = 0.54).  
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Figure 4.1 Bulls grazing E+ tall fescue pastures lost more weight on average during the 

experimental period when compared to bulls grazing NTE tall fescue pastures. (P = 

0.002). 
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Figure 4.2 There were no treatment differences in scrotal circumference 

measurements. Each treatment group decreased in scrotal circumference throughout 

the duration of the experimental period. (P = 0.45).  
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4. 1. 4. Semen: Gross Motility, Morphology, and Concentration After Collection 

 Gross motility and morphology were assessed immediately after semen 

collection on specific dates in May and June. Gross semen motility was not different 

between bulls grazing E+ and NTE tall fescue pastures (P = 0.17, Table 2). Percent 

morphologically normal spermatozoa were similar between bulls grazing E+ (77.61 ± 

1.93%) and NTE tall fescue pastures (77.14 ± 1.93%, P = 0.87). Percentage of primary 

and secondary abnormalities were also similar between treatments (18.61 ± 1.67 and 

4.00 ± 0.65% vs. 17.71 ± 1.67 and 4.71 ± 0.65%, P = 0.71 and P = 0.40, for primary and 

secondary, respectively). Finally, concentration of raw ejaculate was similar between 

bulls grazing E+ and NTE tall fescue pastures (544.20 ± 108.88 vs. 469 ± 108.88 

million/ml, respectively, P = 0.50).  
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Table 2. Motility means from semen collection to post-thaw CASA assessment 

      NTE E+ P-value 

Gross Motility1 90.95 ± 2.67A 85.62 ± 2.67A 0.17 

Pre-Freeze Motility2 94.88 ± 0.98A 94.23 ± 1.01A 0.65 

Post-Thaw 0 hr2 58.27 ± 2.81A 43.84 ± 5.30B 0.02 

Post-Thaw 3 hr2 51.13 ± 3.88A 23.33 ± 3.23B < 0.0001 

0 hr. – 3 hr. Difference -5.99 ± 3.81A -18.50 ± 4.12B 0.05 

1 Motility assessed .visually by individuals at farm uninformed of treatment origin 

2 Motility assessed using Computer Assisted Semen Analysis (CASA) 

A,B  Values with different superscripts within a row differ. 
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4. 2.  Analysis 2: CASA Evaluation of Semen 

4. 2. 1. Post-Thaw CASA Semen: Stress Evaluation 

4. 2. 1. 1. Spermatozoa Concentration 

Concentration of semen loaded into individual straws (i.e. breeding units) did not 

differ between treatments or time of assessment (0 vs. 3 hours) post-thaw (P = 0.08 vs 

P = 0.55, respectively, data not shown). Motility of extended semen prior to 

cryopreservation (i.e. pre-freeze) was similar between bulls grazing E+ and NTE tall 

fescue pastures (P = 0.17, Table 2). Independent of time of assessment post-thaw, the 

percentage of motile sperm was less when derived from bulls grazing E+ (32.77 ± 3.7%) 

versus those for bulls grazing NTE tall fescue pastures (54.72 ± 2.34%, P < 0.0001). 

Additionally, at 0 hours and 3 hours post-thaw, percent motility was decreased for bulls 

grazing E+ when compared to NTE tall fescue pastures (P = 0.02 and P < 0.0001 for 0 

and 3 hours post-thaw respectively, Table 2). Bulls grazing E+ experienced a greater 

decrease in percentage of motile spermatozoa (-18.50 ± 4.12%) during the 3 hour 

stress test versus bulls grazing NTE tall fescue pastures (-5.99 ± 3.81, P = 0.05, Table 

2). Independent of treatment, there were more percent motile spermatozoa at 0 hours 

(51.08 ± 2.85%) than at 3 hours post-thaw (36.07 ± 3.59%, P = 0.0025). Treatment had 

a significant effect on percent progressively motile spermatozoa with bulls grazing E+ 

having lower percent progressive motile spermatozoa (10.42 ± 0.99%) when compared 

to bulls grazing NTE tall fescue pastures (22.44 ± 1.38%, P < 0.0001). Independent of 

treatment and time of assessment post-thaw, date of semen collection had a significant 

effect on percent progressively motile spermatozoa (15.27 ± 1.42% vs.18.84 ± 1.48% 

vs. 12.85 ± 1.50% for June 12, 19, and 26, respectively, P = 0.02).   
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4. 2. 1. 2. CASA Semen Parameters 

The impact of grazing E+ and NTE tall fescue pastures on VAP (i.e. path velocity 

or mean velocity of the smoothed sperm path, P = 0.001, Figure 4.3), VSL (i.e. 

progressive velocity or mean velocity measured in a straight line from the beginning to 

the end of the track, P = 0.003, Figure 4.4), and VCL (i.e. track speed or mean velocity 

measured over the actual point-to-point track, P = 0.002; Figure 4.5) depended on date 

of semen collection.  

In evaluation of ALH (lateral amplitude or average width of the sperm head 

oscillation as the sperm swims), treatment differences depended on the date semen 

was collected (P = 0.01, Figure 4.6). Treatment differences in BCF (i.e. beat frequency 

or frequency of the sperm head intersecting the sperm average path in either direction) 

depended on the time of assessment post-thaw (0 vs. 3 hours) (P = 0.05; Figure 4.7). 

Independent of treatment, an interaction was also noted for BCF between time of 

assessment post-thaw (0 vs. 3 hours) and date of semen collection (P = 0.04; Figure 

4.8). 

Treatment differences for straightness (departure of the mean sperm path from a 

straight line VSL/VAP) depended on time of assessment post-thaw (0 vs. 3 hours) (P = 

0.04; Figure 4.9). The impact of grazing E+ and NTE tall fescue pastures on linearity 

(i.e. departure of the actual sperm track from a straight line, VSL/VCL), differed 

depending on date of semen collection (P = 0.01; Figure 4.10). No effect of treatment, 

time of assessment post-thaw (0 vs. 3 hours), or date of semen collection was observed 

on elongation (ratio of spermatozoa head width to length). Differences between 
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treatments in area of the spermatozoa head depended on time of assessment (0 vs. 3 

hours) (P = 0.04; Figure 4.11).  
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Figure 4.3 Treatment differences in VAP: path velocity or mean velocity of the smoother 

sperm path, differed depending on date of semen collection. Path velocity was lower in 

general for bulls grazing E+ tall fescue pastures when compared to bulls grazing NTE 

tall fescue pastures. (A,B,C,D Least squares means differ between treatments and 

between date of semen collection; P = 0.001).   
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Figure 4.4 Treatment differences in VSL: progressive velocity or mean velocity 

measured in a straight line from the beginning to the end of the track, differed 

depending on date of semen collection. (A,B,C Least squares means differ between 

treatments and between date of semen collection; P = 0.003).    
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Figure 4.5 Treatment differences in VCL: track speed or mean velocity measured over 

the actual point-to-point track, differed depending on date of semen collection. (A,B,C,D 

Least squares means differ between treatments and between date of semen collection; 

P = 0.002).   
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Figure 4.6 Treatment differences in ALH: lateral amplitude or average width of head 

oscillation as the sperm swims, depended on date of semen collection. On June 19, 

2007 spermatozoa from bulls grazing E+ tall fescue pastures showed decreased lateral 

amplitude when compared to spermatozoa from bulls grazing NTE tall fescue pastures 

(A,B,C Least squares means differ between treatments and between date of semen 

collection; P = 0.01).    
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Figure 4.7 Treatment differences in BCF: beat frequency or frequency of the sperm 

head intersecting the sperm average path in either direction, depended on time of 

CASA assessment post-thaw (0 vs. 3 hours). At 0 hours post-thaw beat cross frequency 

of the spermatozoa head was decreased for bulls grazing E+ tall fescue pastures. There 

was no difference in beat cross frequency at 3 hours post-thaw. (A,B,C Least squares 

means differ between treatments and between time of assessment post-thaw; P = 0.05).   
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Figure 4.8 Date of semen collection differences in BCF: beat frequency or frequency of 

the sperm head intersecting the sperm average path in either direction, depended on 

time of CASA assessment post-thaw (0 vs. 3 hours). (A,B,C,D Least squares means differ 

between time of assessment post-thaw and between date of semen collection; P = 

0.04).   
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Figure 4.9 Treatment differences in straightness: departure of the mean spermatozoa 

path from a straight line (VSL/VAP), depended on time of assessment post-thaw (0 vs. 

3 hours). (A,B,C Least squares means differ between treatments and between date of 

semen collection; P = 0.04). 
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Figure 4.10 Treatment differences in linearity: departure of the actual sperm track from 

a straight line (VSL/VCL), depended on date of semen collection. (A,B,C,D Least squares 

means differ between treatments and between date of semen collection; P = 0.01). 
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Figure 4.11 Area treatment differences depended on time of CASA assessment post- 

Thaw (0 vs. 3 hours). Between treatment groups there were no differences in area. 

However, spermatozoa from bulls grazing E+ tall fescue pastures decreased in size 

over time(A, B Least squares means differ between treatments and time of 

assessment post-thaw; P = 0.04). 
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4. 2. 1. 3. Velocity Distribution 

The effect of bulls grazing E+ and NTE tall fescue pastures on percentage of 

“rapid” spermatozoa was significant, whereas, bulls grazing E+ had less percentage of 

“rapid” spermatozoa when compared to bulls grazing NTE (P < 0.0001, Figure 4.12). 

Time of assessment post-thaw (0 vs. 3 hours) had an impact on percentage of “rapid” 

spermatozoa independent of treatment. Mean percentage of “rapid” spermatozoa 0 

hours post-thaw was higher (21.48 ± 1.33%) than percentage of “rapid” spermatozoa 3 

hours post-thaw (13.68 ± 1.14%, P < 0.0001).  

 Spermatozoa from bulls grazing E+ tall fescue pastures showed less percent 

“medium” spermatozoa when compared to bulls grazing NTE tall fescue pastures (P = 

0.004, Figure 4.12). Time of assessment post-thaw (0 vs. 3 hours) had an impact on 

percent “medium” spermatozoa independent of treatment. Mean percentage of 

“medium” spermatozoa 0 hours post-thaw (5.31 ± 0.37%) was higher than percentage 

of “medium” spermatozoa 3 hours post-thaw (3.04 ± 0.25%, P = 0.0003). Bulls grazing 

E+ tall fescue pastures had an increased percentage of “static” spermatozoa when 

compared to bulls grazing NTE tall fescue pastures (P < 0.0001.Figure 4.12). Treatment 

differences in percentage of “slow” spermatozoa depended on time of assessment (0 

vs. 3 hours) post-thaw (P = 0.02; Figure 4.13). Independent of treatment, time of 

assessment (0 vs. 3 hours) post-thaw had an impact on percentage of “static” 

spermatozoa (48.92 ± 2.85% vs. 63.92 ± 3.59%, 0 and 3-hours post-thaw, respectively, 

P = 0.002). 
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Figure 4.12 Bulls grazing E+ and NTE tall fescue pastures had a significant impact on 

all measurements of spermatozoa velocity distribution (rapid, medium, slow, and static).
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Figure 4.13 Percentage of “slow” spermatozoa decreased significantly at 3 hours post 

thaw for bulls grazing E+ compared to bulls grazing NTE tall fescue pastures (A,B Least 

squares means differ between treatments and between time of assessment post-thaw; 

P = 0.02). 
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4. 2. 2. CASA: Characteristics of Semen Utilized in IVF Protocols 

4. 2. 2. 1. Spermatozoa Concentration 

Total concentration of semen loaded into straws (i.e. breeding units) did not differ 

for bulls grazing E+ tall fescue pastures when compared to semen from bulls grazing 

NTE tall fescue pastures (data not shown). As expected, concentration of semen before 

heparin incubation was higher (63.45 ± 2.63 million/mL) when compared to semen total 

concentration after heparin incubation (53.47 ± 2.62 million/mL, respectively, P = 

0.0001). Furthermore, concentration of semen for straws dated 6-12-07 was more 

concentrated (64.45 ± 3.85 million/mL) when compared to straws labeled 6-26-07 

(52.48 ± 2.53 million/mL respectively, P = 0.01). Percent motile spermatozoa for bulls 

grazing E+ tall fescue pastures was significantly decreased (26.64 ± 1.33%) when 

compared to bulls grazing NTE tall fescue pastures (51.97 ± 1.84% respectively, P < 

0.0001). Independent of treatment, percent motile spermatozoa decreased from semen 

collection dates of 6-12-07 to 6-26-07 (46.60 ± 2.00 vs. 31.05 ± 1.28% respectively, P < 

0.0001). Treatment differences in percent progressively motile spermatozoa depended 

on date of semen collection (P = 0.009; Figure 4.14).  
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Figure 4.14 Treatment differences in percent progressively motile spermatozoa 

depended on date of semen collection. In general, spermatozoa from bulls grazing E+ 

tall fescue pastures had decreased percent progressive motility when compared to bulls 

grazing NTE tall fescue pastures. (A,B,C,D Least squares means differ between 

treatments and date of semen collection; P = 0.009). 
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4. 2. 2. 2. CASA Parameters for IVF Semen 

 Spermatozoa from bulls grazing E+ had decreased VAP (i.e. path velocity or 

mean velocity of the smoothed cell path, 96.09 ± 1.79 µm/sec), when compared to bulls 

grazing NTE tall fescue pastures (109.70 ± 1.86 µm/sec, P < 0.0001). Before heparin 

incubation, sperm had higher VAP than sperm assessed after heparin incubation 

(104.77 ± 1.81 µm/sec vs. 101.03 ± 1.80 µm/sec, respectively, P = 0.05). Independent 

of heparin incubation time, sperm from bulls grazing E+ had reduced VSL (i.e. 

progressive velocity or mean velocity measured in a straight line from the beginning to 

the end of the track, 77.05 ± 1.73 µm/sec) than bulls grazing NTE tall fescue pastures 

(88.83 ± 1.80 µm/sec, P < 0.0001). Bulls grazing E+ had decreased VCL (i.e. track 

speed or average velocity measured over the actual point-to-point track, 171.58 ± 2.85 

µm/sec) than sperm from bulls grazing NTE tall fescue pastures (192.82 ± 2.94 µm/sec, 

P < 0.0001). Mean VCL for sperm was higher before heparin incubation when 

compared to after heparin incubation values (192.24 ± 2.87 vs. 172.16 ± 2.86 µm/sec, 

respectively, P < 0.0001).  

 Lateral amplitude (i.e. average width of the head oscillation as the sperm swims 

or ALH) was decreased for sperm from bulls grazing E+ (7.83 ± 0.12 µm) when 

compared to sperm from bulls grazing NTE tall fescue pastures (8.22 ± 0.11 µm, P = 

0.004). Independent of treatment, ALH was decreased for sperm before heparin 

incubation versus after heparin incubation values (7.48 ± 0.12 vs. 8.57 ± 0.12 µm, 

respectively, P < 0.0001). Treatment differences in BCF depended on before and after 

heparin incubation values (P = 0.01, Figure 4.15). No treatment differences were 

detected in straightness (i.e. departure of the mean sperm path from a straight line, 



57 
 

VSL/VAP). Straightness was greater for sperm after heparin incubation than sperm 

before heparin incubation (80.77 ± 0.58 µm/sec vs. 76.76 ± 0.58 µm/sec respectively, P 

< 0.0001). The same was true for linearity of sperm (i.e. departure of the actual sperm 

track from a straight line, VSL/VCL) after heparin incubation as compared to sperm 

before heparin incubation values. Linearity was increased in sperm after heparin 

incubation (49.45 ± 0.62 µm/sec) when compared to sperm before heparin incubation  

(44.21 ± 0.63 µm/sec, P < 0.0001). There were no differences for elongation between 

treatment groups, before and after heparin incubation or date of semen collection (P = 

0.2030, data not shown).  

4. 2. 2. 3. Velocity Distribution 

 Differences in percent “rapid” spermatozoa depended on date of semen 

collection (P = 0.0287; Figure 4.16). Spermatozoa from bulls grazing E+ tall fescue 

pastures had reduced percent “medium” spermatozoa (2.76 ± 0.24%) when compared 

to bulls grazing NTE tall fescue pastures (5.36 ± 0.36%, P < 0.0001). Date of semen 

collection also had an influence on percent “medium” spermatozoa. Percent of 

“medium” spermatozoa decreased from 6-12-07 to 6-26-07 (4.6 ± 0.40% vs. 3.1 ± 

0.23% respectively, P = 0.0010). Percent “slow” spermatozoa was decreased for 

spermatozoa from bulls grazing E+ (7.4 ± 0.61%) in comparison to bulls grazing NTE 

tall fescue pastures (10.90 ± 0.82%, P < 0.0001). After heparin incubation, percent 

“slow” spermatozoa increased when compared to before heparin incubation values 

(9.97 ± 0.77% vs. 8.1 ± 0.65%, respectively, P = 0.0042). Bulls grazing E+ tall fescue 

pastures had a greater percentage of “static” spermatozoa (73.36 ± 1.3%) when 

compared to bulls grazing NTE tall fescue pastures (48.03 ± 1.84%, P < 0.0001). 
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Semen collection date influenced percent “static” spermatozoa as well. Percent of 

“static” spermatozoa increased from 6-12-07 to 6-26-07 (53.40 ± 2.0% vs. 68.95 ± 

1.28%, respectively, P < 0.0001). 
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Figure 4.15 Treatment differences in BCF: beat frequency or frequency of the sperm 

head crossing the sperm average path in either direction, depended on before and after 

heparin incubation values. (A,B,C Least squares means differ between treatments and 

before and after heparin incubation values; P = 0.0108). 
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Figure 4.16 Treatment differences in percent “rapid” spermatozoa depended on date of 

semen collection. In general, percent “rapid” spermatozoa for bulls grazing E+ tall 

fescue pastures were decreased between treatment groups and over time when 

compared to bulls grazing NTE tall fescue pastures. (A,B,C,D Least squares means differ 

between treatments and date of semen collection; P = 0.0287). 
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4.3 Analysis 3: In Vitro Evaluation of Semen 

4. 3. 1. Embryo Development 

Percent of presumptive zygotes recovered and percent of presumptive zygotes 

lysed did not differ between treatments (P = 0.48 and 0.15, respectively, Table 3). 

Percent 2-cell (P = 0.21), 4-cell (P = 0.84), and 8-16 cell (P = 0.34) relative to proportion 

of embryos cleaved at time of cleavage evaluation were not different for oocytes 

fertilized with spermatozoa from bulls grazing E+ tall fescue when compared to NTE tall 

fescue pastures (Table 3). However, percent of embryos that cleaved was significantly 

lower for oocytes when fertilized by spermatozoa from bulls grazing E+ tall fescue 

pastures when compared to NTE tall fescue pastures (P = 0.007, Table 3). However, 

percent blastocyst development relative to proportion of embryos cleaved was not 

different in presumptive zygotes fertilized with spermatozoa from bulls grazing E+ tall 

fescue pastures when compared to NTE (P = 0.7041, Table 2). Percent blastocyst 

development relative to proportion of presumptive zygotes placed into culture tended to 

differ between treatments (P = 0.0666, Table 3). Average blastocyst nuclei counts did 

not differ between treatments (163.27 ± 7.31 vs. 170.88 ± 7.10, E+ and NTE, 

respectively, P = 0.23).  
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Table 3.  Embryo development after otherwise developmentally competent ova underwent in vitro maturation (IVM) at 38.5°C  

  6.5-8.5 hpi  Cleavage, 70 to 97 hpi  Blastocyst, 184 to 212 hpi 

Treatment 
Total  
COC 

Rcd 

(%)1 
Lysed 
(%)2  

 
No. 
PZ 

Cleaved 
(%) 

 
2-Cell3 

(%) 
4-Cell3 

(%) 

8 to 16- 
Cell3 
(%)  

 
   No. 
  PZ  

Blast 
of PZ 
(%) 

Blast of 
Cleaved 

(%)  

NTE 2032 94.56 0.70  789 76.30A 10.39 26.28 63.36  853 39.77 51.69  

E+ 1999 95.15 0.32  750 58.92B 13.07 26.86 60.27  856 29.63 50.45  

SEM 0.9150 0.2277   3.933 1.452 2.920 3.087   3.044 2.561  
P-Value 0.48 0.15   0.007 0.21 0.84 0.34   0.07 0.70  
 Abbreviations: NTE = non-toxic endophyte infected tall fescue; E+ = toxic endophyte infected tall fescue; Rcd = presumptive 
zygotes recovered after removal of cumulus; PZ = presumptive zygote; COC = cumulus oocyte complex 
1PZ recovered after denuding as a proportion of total number of cumulus-oocyte complexes matured, 2PZ without an intact 
plasma membrane after denuding as a proportion of recovered, 3Relative to proportion of embryos cleaved 
For all useable reps n=10 
A,B Values differ between row
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4. 3. 2. Penetration Assay  

Percent of presumptive zygotes recovered and percent of presumptive zygotes lysed 

did not differ between oocytes fertilized with sperm from bulls grazing E+ or NTE tall 

fescue pastures (data not shown). Rate of oocyte penetration by at least one sperm was 

significantly reduced for bulls grazing E+ tall fescue pastures (64.54 ± 3.28) when 

compared to bulls grazing NTE tall fescue pastures (87.42 ± 1.63%, P < 0.0001). Of all 

oocytes that were penetrated, there was no difference in percent polyspermic (8.20 ± 

1.23% vs. 10.74 ± 1.35%, E+ and NTE, respectively, P = 0.17) or monospermic 

fertilization (91.83 ± 1.25% vs. 89.37 ± 1.36%, E+ and NTE respectively, P = 0.19) 

between bulls grazing E+ and NTE tall fescue pastures. 

 When evaluating maternal chromatin after penetration by spermatozoa from bulls 

grazing E+ tall fescue pastures more oocytes remained arrested at metaphase II when 

evaluated at 7.0-9.5 hours post insemination (12.43 ± 1.29% vs. 9.36 ± 0.96%, for E+ 

and NTE, respectively, P = 0.057). However, penetration by spermatozoa from bulls 

grazing NTE resulted in a higher percentage of oocytes whose maternal chromatin had 

progressed to the condensed stage of the meiotic cell cycle (58.24 ± 2.63%) compared 

to spermatozoa from bulls grazing E+ tall fescue pastures (36.31 ± 2.75%, P < 0.0001). 

Penetration by spermatozoa from bulls grazing E+ resulted in an increased percentage 

of oocytes whose maternal chromatin had progressed to anaphase II of the meiotic cell 

cycle (4.27 ± 0.64%) compared to spermatozoa from bulls grazing NTE tall fescue 

pastures (1.40 ± 0.31%, P < 0.0001). Additionally, spermatozoa from bulls grazing E+ 

tall fescue pastures resulted in an increased percentage of oocytes whose maternal 

chromatin had progressed to telophase II of the meiotic cell cycle (46.54 ± 2.88%) 
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compared to spermatozoa from bulls grazing NTE tall fescue pastures (30.10 ± 2.29%, 

P < 0.0001). Percentage of presumptive zygotes whose maternal chromatin had 

progressed to the pronuclear stage with a visible spermatozoa head, single pronuclear 

stage with no visible spermatozoa head, and two visible pronuclei were not different 

between treatment groups (data not shown). Percentages of maternal chromatin in 

metaphase II, condensed, anaphase II, and telophase II of the meiotic cell cycle are 

summarized in Figure 4.17.  
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Figure 4.17 Percentage of maternal chromatin in metaphase II, condensed, anaphase II, and telophase II of meiotic cell 

cycle 7.0-9.5 hours post insemination for oocytes penetrated by sperm from bulls grazing E+ and NTE tall fescue pastures 

differed for each stage.
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4. 3. 3. Intracellular Calcium Parameters 

 Baseline calcium concentrations were lower for presumptive zygotes fertilized 

with spermatozoa from bulls grazing E+ tall fescue pastures (268.95 ± 26.60 nM) 

compared to presumptive zygotes fertilized with spermatozoa from bulls grazing NTE 

tall fescue pastures (304.62 ± 26.47 nM, P = 0.01). Mean duration of calcium 

oscillations (time from start to end of peak) was not different between treatment groups 

(86.62 ± 10.53 ms vs. 88.42 ± 10.48 ms, E+ and NTE, respectively, P = 0.71). 

Amplitude of calcium oscillations was significantly decreased for presumptive zygotes 

fertilized with spermatozoa from bulls grazing E+ tall fescue pastures (383.49 ± 52.36 

nM) compared to presumptive zygotes fertilized with spermatozoa from bulls grazing 

NTE tall fescue pastures (520.72 ± 52.01 nM, P = 0.0002). Area under the curve, or 

total calcium response, was significantly reduced for presumptive zygotes fertilized with 

spermatozoa from bulls grazing E+ tall fescue pastures (15,784 ± 1,933.45 nM) 

compared to presumptive zygotes fertilized with spermatozoa from bulls grazing NTE 

tall fescue pastures (19,859 ± 1,917.71 nM, P = 0.006). Interval between oscillations for 

presumptive zygotes that had more than one calcium oscillation was not altered 

between treatments (33.46 ± 1.78 ms vs. 30.12 ±1.71 ms, E+ and NTE, respectively, P 

= 0.17). 
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Chapter 5 

Discussion 

5. 1. General Comments 

 Previous research has shown that consumption of endophyte-infected (E+) tall 

fescue decreases performance and reproductive efficiency in males (Jones et al. 2004; 

Schuenemann et al. 2005a; Schuenemann et al. 2005b). Examination of semen from 

E+ bulls indicated that motility post-thaw and during a 3 hour stress test was reduced. 

When semen was added at the same concentration as bulls grazing non-toxic tall 

fescue (NTE) in an IVP system, cleavage rates of oocytes were reduced when fertilized 

with semen from E+ bulls. Subsequent efforts observed lower penetration (i.e. 

fertilization) rates of oocytes, and altered intracellular calcium oscillations in those that 

were fertilized with sperm from E+ bulls. Collectively, these described results support 

altered spermatozoa function in bulls consuming E+ tall fescue pastures by inducing 

non compensatory effects.  

5. 2. Analysis 1: Bull Performance 

During the three-month grazing period, average daily gains were lower for all 

bulls regardless of treatment group, likely due to severe drought conditions and higher 

than normal ambient temperatures. Bulls grazing E+ tall fescue pastures had reduced 

serum concentrations of prolactin compared to bulls grazing NTE tall fescue pastures. 

This is a common indicator of fescue toxicosis seen consistently throughout the 

literature (Evans et al. 1988; Porter and Thompson 1992; Paterson et al. 1995; Waller 

2009).   
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However, another common indicator, rectal temperatures, were not different 

between treatment groups. This was due to collection of rectal temperatures between 

0600-0800 each morning, a time period when one would expect a “minimal” difference. 

Collection of semen and other experimental variables was performed at this time to 

reduce effects of environmental stress on animals that would also be incurring 

electroejaculation. Typically, increased body temperatures as observed during fescue 

toxicosis for animals grazing E+ tall fescue pastures are seen when measurements are 

made during the heat of the day or under heat stress conditions (Burke et al. 2001b; 

Schuenemann et al. 2005a; Schuenemann et al. 2005b). Scrotal temperatures were 

also collected between 0600-0800 each morning and were not different due to pasture 

type. Again, scrotal temperature may have been different if scrotal thermography had 

been performed during the heat of the day, as observed by Schuenemann et al. (2005a; 

2005b). Furthermore, scrotal temperatures may have been altered if exposure to E+ tall 

fescue had been longer as seen previously (Schuenemann et al. 2005a; Schuenemann 

et al. 2005b). All bulls had a decrease in scrotal circumference over the experimental 

period, most likely due to weight loss. Scrotal circumference and body weight are 

positively correlated with one another so it is not surprising that a decrease in scrotal 

circumference was seen for all bulls regardless of treatment (Pratt et al. 1991). Not 

surprisingly, testosterone concentration was similar between treatments in agreement 

with previous studies in our laboratory (Schuenemann et al. 2005a; Schuenemann et al. 

2005b). 

Motility of semen immediately after collection (gross motility) and in fresh 

extended semen was similar between treatment groups at time of semen collection. 
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Furthermore, semen morphology at collection was also not different between bulls 

grazing E+ and NTE tall fescue pastures. This agrees with previous research in our 

laboratory, and others, where differences in gross motility and morphology have not 

been seen in semen from bulls grazing E+ and NTE tall fescue pastures (Schuenemann 

et al. 2005a; Schuenemann et al. 2005b) or consuming endophytic tall fescue seed 

(Jones et al. 2004). These are considered subjective measurements of motility and 

morphology, but they were assessed by board certified theriogenologists with many 

years of experience in the field (Drs. F.M. Hopkins and T. M. Prado) and motility 

assessment of fresh extended semen was performed using CASA in this study.  

5. 3. Analysis 2: Post-Thaw Characteristics of Semen 

 Evaluation of semen immediately post-thaw (0 h) revealed decreased motility for 

spermatozoa from bulls grazing E+ tall fescue. This would be the same thaw time used 

to prepare semen for artificial insemination. As mentioned previously, gross motility 

immediately after collection was not different between treatment groups, nor was 

motility of extended fresh semen (immediately pre-freeze) when evaluated with CASA. 

Thus, consumption of E+ tall fescue causes a reduced ability to withstand damages due 

to cryopreservation. Furthermore, motility at 3 hours post-thaw was markedly decreased 

for sperm from bulls consuming E+ when compared to bulls consuming NTE tall fescue. 

This decrease in motility seen after 3 hour incubation further indicates that E+ tall 

fescue consumption impairs spermatozoa in a way that is not readily detectible via 

gross assessments of semen motility and morphology.  

Decreases in gross motility and CASA motility are supported by other semen 

evaluation parameters including VAP (i.e. path velocity or mean velocity of the 
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smoothed sperm path), VSL (i.e. progressive velocity or velocity of the sperm measured 

in a straight line from the beginning to the end of the track), and VCL (i.e. track speed or 

mean velocity measured over the actual point-to-point track). These are velocities that 

are highly correlated with fertility (Budworth et al. 1988), and were all lowered for sperm 

from bulls consuming E+ tall fescue. Differences in VAP, VSL, and VCL depended on 

date of semen collection, indicating that prolonged exposure to E+ tall fescue pastures 

further enhances problems in spermatozoa velocities. These findings indicate 

spermatozoa from E+ bulls are impaired, which is supported by other velocity estimates 

(rapid, slow and medium) and could be a reason for reductions in fertility. Bulls grazing 

E+ tall fescue had reduced velocities, indicating that sperm from these bulls are “slower” 

than control bulls. The same was true for progressive velocity of the smoothed sperm 

path. This further indicates not only “slower” spermatozoa, but also spermatozoa that 

are not progressive in their movement (i.e. moving forward in a straight line). Wang et 

al. (2009) reported that sperm motility was altered by addition of ergot alkaloids 

(ergotamine or dihydroergotamine) directly to semen. This alteration in motility occurred 

in a concentration dependent manner, and agrees that ergot alkaloids have an adverse 

effect on spermatozoa function after prolonged exposure in fed animals.  

 In addition to altered velocity parameters (VAP, VCL, and VSL) for spermatozoa 

from bulls grazing E+ tall fescue pastures, a decrease in ALH (i.e. lateral amplitude or 

average width of the head oscillation as the sperm swims) and BCF (i.e. beat frequency 

or frequency of the sperm head intersecting the sperm average path in either direction) 

were also observed. Lateral amplitude was influenced by date of semen collection. 

Alterations in spermatozoa velocity parameters mentioned previously could be 
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explained by reduced ALH and BCF. If head oscillations are not as fast or as frequent 

as normal, then impairments in motility could be seen that would alter the ability of the 

spermatozoa to fertilize oocytes. Looper et al. (2009) reported similar results for 

spermatozoa from Brahman-influenced bulls grazing E+ tall fescue (Kentucky 31); 

whereas, these bulls produced spermatozoa that were less motile and less progressive. 

In addition, spermatozoa from bulls grazing E+ tall fescue in the same study had 

reduced VAP, VSL, and ALH compared to controls (Looper et al. 2009). 

 Additional information about sperm function obtained from CASA indicated a 

higher percentage of “rapid” sperm from bulls grazing NTE tall fescue pastures. Bulls 

grazing E+ tall fescue pastures had a lower percentage of “medium” sperm independent 

of time of assessment post-thaw, a lower percentage of “slow” sperm at 3-hours post-

thaw, and a higher percentage of “static” spermatozoa independent of time of 

assessment post-thaw. These results are supportive of previous reports that showed 

alterations in velocity distributions for sperm from bulls grazing E+ tall fescue pastures 

(Looper et al. 2009) and also indicative of impaired spermatozoa function due to 

consumption of E+ tall fescue. Studies have also shown that ergot alkaloids alter post-

thaw motility of spermatozoa (Gallagher and Senger 1989; Wang et al. 2009).    

 Area of the sperm head was reduced in E+ grazing bulls after the 3-hour stress 

test. This finding indicates “shrinkage” of the sperm head or possibly compromised 

membranes. Wang et al. (2009) suggested that ergot alkaloids could be interacting with 

sperm membranes and their receptors in such a way as to directly affect intracellular 

signaling paths and sperm function in a negative way. Cryopreservation itself is known 

to have detrimental effects on sperm membrane structure (Parks and Graham 1992), 
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but it is not known if consumption of E+ tall fescue pastures is exaggerating this effect in 

the current study. Therefore, further research is need to fully elucidate the mechanisms 

by which ergot alkaloids are exerting their effects on spermatozoa from bulls grazing E+ 

tall fescue pastures. 

 Results reported for CASA characteristics of semen were similar for both the 

stress test and semen utilized in IVF protocols. Each of which are supportive of 

impaired spermatozoa function as a result of consumption of E+ tall fescue pastures.   
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5. 4. Analysis 3: In Vitro Evaluation of Semen 

5. 4. 1. Embryo Development 

 In the present study, cleavage rates were significantly reduced for oocytes 

fertilized with spermatozoa from bulls grazing E+ tall fescue pastures. This is in support 

of several studies conducted in our laboratory over numerous years, different sets of 

bulls, and multiple technicians (Schuenemann et al. 2005a; Schuenemann et al. 2005b). 

This repeatability indicates the importance of the present study, and aids in greater 

understanding of the problem: decreased reproductive efficiency of spermatozoa 

function due to E+ tall fescue consumption. While oocytes fertilized with sperm from 

bulls grazing E+ tall fescue pastures experienced a decreased ability to cleave, of those 

embryos that cleaved, there was not a significant difference in blastocyst development 

between treatments. This indicates cleavage as the primary problem in addition to 

possible alterations in sperm integrity as suggested by previous studies (Schuenemann 

et al. 2005a; Schuenemann et al. 2005b). The findings in the current study indicate that 

additional effort is needed to fully explain reduction in cleavage rates of oocytes 

fertilized with sperm from bulls grazing E+ tall fescue pastures.  

5. 4. 2. Penetration Assay 

 Previous research in our laboratory has reported a consistent decrease in 

cleavage rates of oocytes fertilized with sperm from bulls grazing E+ tall fescue 

pastures (Schuenemann et al. 2005b) or ergotamine tartrate to simulate fescue 

toxicosis (Schuenemann et al. 2005a). However, of those that cleaved, blastocyst 

development does not differ significantly between bulls experiencing and those not 
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experiencing tall fescue toxicosis. These findings indicate that a problem exists prior to 

cleavage that may be responsible for a reduction in cleavage rates.  

Males are often not blamed for cases of infertility in a beef herd, but sperm from 

the male contributes half of the genetic material needed to produce offspring. Therefore, 

sperm motility, morphology, and even membrane structure are critical for success: 

gaining entrance into the oocyte and producing a viable embryo. In order for an embryo 

to cleave, a multitude of events must occur in sequence. Spermatozoa have to be able 

to arrive at the oocyte located in the oviduct, and have the capability of gaining 

entrance.  

In the current study, an equal amount of motile spermatozoa (375,000 motile) 

was added to oocytes (n = 30-45) during in vitro fertilization (in a ~500 µl well), but a 

reduction in penetration rates was still observed for bulls grazing E+ tall fescue 

pastures. Thus, indicating that no matter how many motile sperm are present, 

penetration rates are reduced. Even with motility reductions mentioned previously, 

spermatozoa do not have to traverse the female reproductive tract because of the in 

vitro nature of this study, and therefore are at an advantage even with lower motility. If 

spermatozoa cannot gain entrance into the oocyte, therein lies a significant problem that 

cannot be compensated for with increased spermatozoa numbers; therefore, becoming 

uncompensable (Saacke et al. 1994). In other words, increased spermatozoa numbers 

delivered to the female in cases such as this will not result in an increase in fertility. 

Saacke et al. (1994) explains compensable and uncompensable in terms of semen 

quality. That which is compensable can be compensated for by increasing sperm 

dosage to the female, and is thought to be associated with the sperm’s incompetence 
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with regards to making it to the site of fertilization or initiating the block to polyspermy. 

As mentioned previously, semen quality which is uncompensable will not result in an 

increase in fertility with increased sperm dosage to the female. This type of trait is 

thought to be associated with the fertilizing sperm’s deficiency in maintaining the 

fertilization process or possibly sustaining early embryo development (Saacke et al. 

1994).  

Thundathil et al. (2000) reported that bulls whose spermatozoa had a high 

percentage of knobbed acrosome defect displayed a decreased ability to bind to and 

penetrate the zona pellucida, and the severity of the defect influenced the sperm’s zona 

pellucida binding capability. Spermatozoa with knobbed acrosome defects in the same 

study also produced lower cleavage, morulae, and blastocyst rates than the control bull.  

The alteration caused by consuing E+ tall fescue may not be severe enough to be 

detected via gross semen evaluation or affect subsequent blastocyst development, 

since spermatozoa in the present study were morphologically normal at collection but 

still displayed decreased cleavage rates of oocytes (with similar blastocyst 

development).  

   Spermatozoa are highly organized and contain a specific set of “safety nets” 

designed to aid in their journey from ejaculation to the site of fertilization, due to the fact 

that spermatozoa have limited biosynthetic capability at this point (Amann et al. 1993). If 

this structure is altered or compromised, then reductions in fertility would be seen. It is 

known that cryopreservation has a negative impact on sperm membrane structures 

(Parks and Graham 1992), but spermatozoa from bulls grazing NTE tall fescue pastures 

were cryopreserved identically to spermatozoa from E+ bulls. This indicates that 
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spermatozoa from E+ bulls have a decreased ability to penetrate oocytes, and maybe a 

decreased ability to even reach the two extracellular matrices that surround an oocyte 

because of ultrastructural damage. These matrices are the cumulus matrix and the zona 

pellucida (Saling 1991); both of which provide ultra-structural support and protection to 

the ova contained therein. If spermatozoa from bulls grazing E+ pastures are 

compromised in a way that is undetectable with a microscope (i.e. altered plasma 

membrane composition leading to weakness, premature acrosome reaction), then this 

could help explain the decreased penetrating ability seen in this study. It is possible that 

a deficiency in sperm’s ability to bind to the zona pellucida receptors (ZP2 and ZP3) is 

responsible for penetration failure as well as due to the fact that premature acrosome 

reaction could exclude spermatozoa from the oocyte (Saling 1991). Gallagher and 

Senger (1989) reported a reduced percentage of intact acrosomes prior to and after 

cryopreservation for sperm from semen that was extended with intermediate and high 

concentrations of ergonovine. These data, coupled with the current study, support a 

possible problem pertaining to acrosome reaction or plasma membrane structure 

possibly due to effect of ergot alkaloids. This suggests the need for further examination 

of molecular components unique to sperm membranes from E+ grazing bulls both 

before and after cryopreservation.  

 Purdy and Graham (2004) discovered that  addition of cholesterol to 

spermatozoa prior to cryopreservation led to increased survival of the cryogenic 

process, and maintenance of fertilization potential. If spermatozoa from E+ grazing bulls 

have intact but compromised membranes, the addition of cholesterol prior to 

cryopreservation could lead to increased survival, and it may help to improve 
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penetrating capability. Cholesterol efflux from the spermatozoon plasma membrane is a 

first step towards capacitation (Ehrenwald et al. 1988). Decreased cholesterol content 

could be to blame for the instability of associated membranes in sperm from E+ grazing 

bulls. Thus, further research is essential to understand the questions generated as a 

result of the present study.  

 Maternal chromatin status was assessed for presumptive zygotes that were 

penetrated by at least one sperm. Sperm from bulls grazing E+ tall fescue pastures 

appeared to hasten meiotic progression in presumptive zygotes. A great percentage of 

maternal chromatin in presumptive zygotes fertilized with spermatozoa from E+ bulls 

were in telophase II of the meiotic cell cycle compared to presumptive zygotes fertilized 

with spermatozoa from NTE bulls, whose maternal chromatin were mostly in the 

condensed stage at time of evaluation. A previous study with a different sperm 

preparation indicated that by 8-12 hours post insemination, 80.5% maternal chromatin 

in monospermic zygotes were in MII-TII (Long et al. 1993). This indicates that 

spermatozoa from E+ bulls accelerated meiotic progression since a larger percentage 

were in TII as early as 7.5-9.5 hours post insemination. However, it cannot be assumed 

that all spermatozoa from both treatment groups fertilized oocytes at the same time. It is 

possible that spermatozoa from bulls grazing E+ that penetrated an oocyte did so more 

quickly, and therefore were closer to the completion of meiosis at the time of evaluation 

than bulls grazing NTE tall fescue pastures.  

Interestingly, intracellular calcium oscillation parameters (baseline, amplitude, 

duration, and area under the curve) were all reduced for oocytes fertilized with 

spermatozoa from bulls grazing E+ tall fescue pastures. However, calcium oscillations 
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are necessary for all oocyte activation events, including resumption of meiosis (Malcuit 

et al. 2006). It appears that spermatozoa in the current study, while displaying altered 

intracellular calcium oscillations, were still perfectly capable of inducing meiotic 

resumption. Furthermore, E+ spermatozoa did this at an accelerated rate compared to 

NTE spermatozoa.  This indicates that hastened meiotic progression may not be as 

detrimental to early embryo development. However, additional research is required to 

completely understand the effects that hastened meiotic progression could have on 

cleavage of presumptive zygotes.  

 These findings indicate that not only are spermatozoa from E+ bulls less capable 

of penetrating an oocyte (altered membrane structure, possible decrease in cholesterol 

content) but these sperm are accelerated in their ability to navigate the meiotic path of 

an early embryo; hastened meiotic progress may or may not be a negative aspect. 

Future studies should closely examine sperm membranes, membrane receptors, and 

their interaction with the zona pellucida of the oocyte to help explain what this study has 

shown with regards to spermatozoa from bulls grazing E+ tall fescue pastures. 

5. 4. 3. Intracellular Calcium Assay 

 As mentioned previously, oocytes fertilized with spermatozoa from bulls grazing 

E+ displayed altered intracellular calcium parameters when compared to spermatozoa 

from bulls grazing NTE tall fescue pastures. Intracellular calcium oscillations are critical 

for activation success of the oocyte, and the sperm initiates these increases in cytosolic 

calcium (Malcuit et al. 2006). Typically, if an oocyte is fertilized it will exhibit calcium 

oscillations (Fissore et al. 1992) via the phosphoinositide pathway. Altered calcium 

parameters could compound the problems that an oocyte experiences when faced with 
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the challenge of making a viable embryo with sperm from bulls grazing E+ tall fescue 

pastures. The findings in the present study show reduced baseline calcium levels, 

amplitude of calcium oscillations, and total calcium response in presumptive zygotes 

fertilized with spermatozoa from bulls grazing E+ tall fescue pastures. All of which are 

indicative of altered oocyte activation that could further explain decreased cleavage 

rates.   

5.5 Summary and Conclusion 

 These data suggest that bulls grazing E+ tall fescue pastures exhibited tall 

fescue toxicosis, which subsequently decreased overall performance and spermatozoa 

function. Serum prolactin concentrations decreased, gross motility and morphology of 

semen remained uncompromised, and altered spermatozoa function was observed 

post-thaw in four instances: CASA semen parameters, penetration assessment, 

intracellular calcium parameters, and embryo development. These data further suggest 

that not only are spermatozoa from E+ grazing bulls compromised in terms of 

characteristics measured by CASA (i.e. path velocities, motility, area of the sperm 

head), but they also displayed a reduced ability to penetrate oocytes, and an apparent 

hastening of meiotic progression in fertilized oocytes. Moreover, a deficiency in 

intracellular calcium oscillations and a reduction in cleavage rates of presumptive 

zygotes were also seen. Therefore, while gross motility and morphology of spermatozoa 

from bulls grazing E+ tall fescue pastures do not differ, spermatozoa function post-thaw 

is impaired in ways undetectable by normal methodologies.  
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