
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

8-2011

Unit Commitment Methods to Accommodate
High Levels of Wind Generation
Alexander Charles Melhorn
amelhorn@utk.edu

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Melhorn, Alexander Charles, "Unit Commitment Methods to Accommodate High Levels of Wind Generation. " Master's Thesis,
University of Tennessee, 2011.
http://trace.tennessee.edu/utk_gradthes/1006

http://trace.tennessee.edu
http://trace.tennessee.edu
http://trace.tennessee.edu/utk_gradthes
http://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a thesis written by Alexander Charles Melhorn entitled "Unit Commitment
Methods to Accommodate High Levels of Wind Generation." I have examined the final electronic copy
of this thesis for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Master of Science, with a major in Electrical Engineering.

Kevin Tomsovic, Major Professor

We have read this thesis and recommend its acceptance:

Fangxing Li, Leon Tolbert

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



Unit Commitment Methods to

Accommodate High Levels of

Wind Generation

A Thesis Presented for

The Master of Science

Degree

The University of Tennessee, Knoxville

Alexander Charles Melhorn

August 2011



c© by Alexander Charles Melhorn, 2011

All Rights Reserved.

ii



This work is dedicated to my grandfathers, Charles Kulynych and John E. Melhorn.

They have been behind me since the day I was born teaching and pushing me to do

my best with what is given to me and then aspire for more.

iii



Acknowledgements

I would like to thank my family, especially my parents. Without their tremendous

amount of selfishness this thesis would never have been completed. I would also like

to thank my sponsors: everyone who is involved with the Bodenheimer Fellowship

which has covered my tuition throughout graduate school, the Oak Ridge National

Laboratory for supporting me throughout the summer, allowing me to gain new

experiences in the energy and power field, the National Science Foundation (ECCS-

1001999) and the Global Climate and Energy Project which have sponsored my

research at the University of Tennessee. Finally a big thanks goes out to my committee

members; Kevin Tomsovic, Fangxing Li, and Leon Tolbert; which have directed and

guided me through the world of academics and research.

iv



We cannot solve our problems with the same thinking as we used when we created

them.

- Albert Einstein

v



Abstract

The United State’s renewable portfolio standards call for a large increase of renewable

energy and improved conservation efforts over today’s current system. Wind will

play a major role in meeting the renewable portfolio standards. As a result, the

amount of wind capacity and generation has been growing exponentially over the

past 10 to 15 years. The proposed unit commitment method integrates wind energy

into a scheduable resource while keeping the formulation simple using mixed integer

programming. A reserve constraint is developed and added to unit commitment

giving the forecasted wind energy an effective cost. The reserve constraint can be

scaled based on the needs of the system: cost, reliability, or the penetration of wind

energy. The results show that approximately 24% of the load can be met in the given

test system, while keeping a constant reliability before and after wind is introduced.

This amount of wind will alone meet many of the renewable portfolio standards in

the United States.
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Chapter 1

Introduction

As of the 1st quarter of 2011, 30 of the 50 U.S. states have a renewable portfolio

standard (RPS) mandating some percentage of generation or sales of energy coming

from renewable energy sources [1]. The state RPS call for a large increase of renewable

energy and improved conservation efforts over today’s current system. Wind will play

a major role in meeting the RPSs. As a result, the amount of wind capacity and

generation has been growing exponentially over the past 10 to 15 years. This growth

will continue as the target dates of the RPS come to term. Figure 1.1 graphs the

impressive growth rate of wind generation between 1999 and 2009 [2].

With an increase use of wind energy the effects of its stochastic and volatile

nature increase as well. However, a report shows that wind energy over the U.S.

eastern shore can be stabilized if the location of the wind farms are planned carefully

and are connected sufficiently with the power grid [3]. Moreover, this work shows the

cost benefit of building transmission over electrical storage and demonstrates that

the correct position of the wind farms can lead to a steady output of electricity. This

output rarely reaches full power, or minimum power, and the changes of power occur

slowly over the whole system.

Wind is stochastic in nature making it difficult to forecast accurately, especially

over long periods of time. The short term forecast error can reach upwards of 15 to
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Figure 1.1: Wind Growth Over Ten Years
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30 percent [4, 5]. This causes the relative reliability of wind turbines to effectively be

between 20 and 50 percent when compared to traditional thermal units, even with

a wind turbine’s high mechanical availability of 95 percent or more [6], making it

impractical to use the standard measures of reliability that are used on traditional

thermal units. The effective load carrying capacity (ELCC) [7] is proposed by [6, 8, 9],

as an established reliability theory that works well on all unit types, to calculate the

capacity factor of wind. The ELCC derives the capacity credit for generator in a

specific system. Traditionally, ELCC does not take the transmission constraints into

account. The derived capacity credit gives a measurement for wind energy that can be

used in a similar fashion to the more common reliability measurement, forced outage

rate (FOR), of traditional generators. These methods will be discussed in more detail

in Section 2.1.

Unit commitment (UC) is an optimization problem that commits the generation

units of the system by optimizing the cost around the forecasted load and other

system constraints. Since wind has little to no fuel cost, the direct generation cost

cannot be used in committing wind energy. Currently, wind is used as a negative

load before UC is run. This means that the forecasted wind generation is subtracted

from the forecasted load. Using wind as a negative load can force the base load to

operate below its minimum. This causes an excess of energy to be generated which

either needs to be spilled or the base load generators need to be shutdown [10, 11].

Both scenarios can be costly. Being able to determine the capacity credit or a similar

reliability measurement of wind turbines is very important for integrating wind energy

into UC. The reliability measurement allows for a reserve constraint to be added, the

main topic in the proposed work. The additional reserve constraint adds a cost to

the scheduled wind by adding extra operational cost due to the required reserve that

needs to by met from the traditional units.

3



1.1 Literature Review

Currently, research in integrating wind energy into UC leans towards adding a

secondary reserve constraint on top of the traditional N - 1 security criterion, which

can be met with spinning reserve [5, 9, 10, 12–18]. The additional reserve constraint

addresses the stochastic nature of wind. The amount of reserve and its formulation

differs between each method. Some approaches enforce reserve constraints outside of

the main UC optimization [15]. If the solution of the UC is found to be infeasible for

the set reliability constraints, then the variables are modified and UC is run again.

The newer approach integrates the additional reserve constraint directly into the UC

formulation [5, 11, 13, 14, 16–19]. While some base the new reserve constraint off of a

normal distribution of the wind forecast error [4, 5, 10, 15, 17], others use a two state

model model to derive a reliability measurement similar to the FOR of a thermal unit

[13].

Traditionally, wind has been used as negative load in UC and some research

continues to use this approach [10–12, 17]. It allows for simple use of existing UC

approaches to the optimal solution. It is noted that using wind as a negative load

mainly effects the commitment of the intermediate and peak load generation units

[10]. Minimal load problems can occur when there is a large quantity of wind. These

problems increase with the amount of wind energy and it is found that this method

only saves on operating costs 50 percent of the time [12]. Using wind as a negative

load will not be very effective as the penetration of wind energy in the power system

increases.

Optimizing the amount of wind energy scheduled in UC, can help solve minimum

load issues with the current load reduction method. One approach represents wind

energy as multi-state units and uses the reliability measure of the different states to

implement a cost on the wind energy so that an appropriate amount of wind will

be scheduled [12]. Another adds a cost constraint to the emissions output of the
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thermal units. This effectively forces the higher costs of reserve to seem lower than

the thermal generation and create a higher use of wind energy [13].

With wind being represented in a different method than the traditional units,

new formulations for UC to account for wind unit variations need to be developed.

One method uses a genetic algorithm, operated particle swarm optimization, to find

an approximation of the optimum and requires a more accurate wind forecast for a

more accurate solution [11], while [14, 15, 17, 18] use various forms of mixed integer

programing (MIP). MIP gives an absolute solution to UC, based on the respective

constraints. The downfall to MIP is that an equilibrium needs to be found between

the reserve constraints and the cost [5]. If one is too high or too low, either no wind

energy will be used or the system will be overly dependent on wind. The addition of

wind to UC has been found to be beneficial by reducing the system risk and increasing

its load carrying capacity [9]. This leads to the proposed UC method in this thesis.
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1.2 Objectives and Scope

The main objective of this thesis is to demonstrate that an addition reserve constraint

will allow the addition of wind into UC. Secondary objectives include keeping the UC

simple, using a more traditional yet advanced approach; keeping the over all reliability

of the system consistent with the standard test system; lowering the overall cost of

generation; and allowing for a high percentage of generation to come from wind

energy.

In order to stay focused on the objectives several assumptions are made. The first

assumption is that the inter-hour constraints of the units can be ignored and each

hour will be evaluated separately. The spinning reserve is assumed to be fast enough

to meet the volatile nature of wind and the base load will be consistent enough to

assume that the base load units will stay consistently committed. This allows the use

a simple MIP method. The second major assumption assumes that no transmission

constraints will be considered. Line constraints could become a limiting factor for

scheduling wind energy, taking focus away from the proposed reliability constraint.

The last assumption involves the distribution of wind and its forecast error. The

chosen probability distribution shouldn’t effect the proposed method because the

multi-state generation levels of the wind energy are broken up by their availability

rate, not by the generation level.

6



1.3 Contributions

The proposed method integrates wind energy into a scheduable resource in a

traditional UC format. This method adds a reserve constraint to the wind energy

giving the wind an effective cost. The reserve constraint also address the stochastic

nature of wind, wind’s forecast error, and allows the scheduling of wind energy to be

optimized around the required level of reserve. During the research and analysis of

the proposed method, several conclusions are made on defining the capacity outage

probability table (COPT) for a set of generators. The traditional recursive algorithm

used to derive the COPT is found to be missing important details and a lesser known

method is reintroduced as a more effective and less complicated probability method.

The contributions of this thesis and the proposed UC are:

• A simple UC formulation that can take advantage of existing approaches

• A multi-state representation of wind energy availability

• An additional reserve constraint to provide wind energy a cost, allowing it to

be scheduled within UC

• Results showing the effect of the scaling factor on the reserve constraint

compared to the system reliability, generation cost, and amount of scheduled

wind

• Demonstrate further steps needed for Billinton’s recursive algorithm to derive

the COPT

• Bring light to the convolution method for deriving the COPT

7



Chapter 2

Background Information

2.1 Power System Reliability

Table 2.1 provide the data for four generators that are used in multiple examples in

this section. It lists the minimum generation, maximum generation, and the forced

outage rate (FOR) of the generators.

2.1.1 Forced Outage Rate

The FOR of a generator is its unavailability rate, (1- availability). This is the standard

reliability measure of thermal generator units. Equations (2.1) and (2.2) represent

a simple two state model [20]. The two state model will be used to represent all

the thermal generators in this thesis. According to [20] the FOR is an adequate

estimation for generators with long term cycles but is not adequate for short term.

Table 2.1: Four Generator Example Data

Num. of Gen. Min. Gen. Max. Gen. FOR

1 25 75 0.02
1 15 50 0.05
2 10 20 0.08
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Short term cycles include peaking and intermittent operating times, in which case

using a multi-state unit is recommended .

Availability = A =
µ

λ + µ
=

m

m + r
=

m

T
=

f

λ
(2.1)

Unavailability = U = FOR =
λ

λ + µ
=

r

m + r
=

r

T
=

f

µ
(2.2)

where:

λ = expected failure rate

µ = expected repair rate

m = mean time to failure = 1/λ

r = mean time to repair = 1/µ

m + r = mean time between failures = 1/f

T = cycle time = 1/f

2.1.2 Capacity Outage Probability Tables

A COPT is just array of different states of generation and their respective probabili-

ties. Using the the four generator system in Table 2.1, the COPT 2.2 can be derived.

A full COPT using two-state generators will have 2n states, where n is the number of

generators. The example system has four generators, therefor it has 16 states. Table

2.3 illustrates each state and its configuration for the four generator system.

2.1.3 Binomial Distribution Method

The binomial distribution method is a simple way to determine the probabilities for

the COPT. It is a straight forward way to calculate the individual probability of

every possible state in the system. The first four columns in Table 2.3 represent the

availability of one of the four generators. A “1” represents that that unit is available

9



Table 2.2: Four Generator Capacity Outage Table

MW Out MW In Ind. Prob. Cum. Prob.

0 165 0.7880 1.0000
20 145 0.1370 0.2120
40 125 0.0060 0.0750
50 115 0.0415 0.0690
70 95 0.0072 0.0275
75 90 0.0161 0.0203
90 75 0.0003 0.0042
95 70 0.0028 0.0039
115 50 0.0001 0.0011
125 40 0.0008 0.0010
145 20 0.0001 0.0002
165 0 0.0000 0.0000

and a “0” represents the unit the unit is unavailable. Column five shows the equation

to calculate the individual probability. Column six lists the MW of power out of

service and columns seven and eight are the individual and cumulative probabilities

of each state. The individual probability value is the exact probability that the exact

amount of power will be out of service. The cumulative probability is the probability

that the listed amount of generation or less will be in service [20].

For example state 6 in Table 2.3 has generator 1 and 3 being out of service and

generators 2 and 4 being in service. The equation for the individual probability is

then P (6) = FOR1(1 − FOR2)FOR3(1 − FOR4). The general equation is:

Individual Probability =

n
∏

i











FORi unit is off

(1 − FORi) unit is on

(2.3)

The total individual probability of a given MW outage is the sum of the individual

probabilities of all the states with the same MW outage. In the case of 20 MWs out,

the probability of states 5 and 9 are summed producing the the result, 0.1370, as

listed in Table 2.2.
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Table 2.3: Four Generator Binomial Calculation

Unit 1 Unit 2 Unit 3 Unit 4 Probability Calculation Ind. Prob. MW Out

1 1 1 1 (1 − 0.02) (1 − 0.05) (1 − 0.08) (1 − 0.08) 0.7880 0
0 1 1 1 (0.02) (1 − 0.05) (1 − 0.08) (1 − 0.08) 0.0161 75
1 0 1 1 (1 − 0.02) (0.05) (1 − 0.08) (1 − 0.08) 0.0415 50
0 0 1 1 (0.02) (0.05) (1 − 0.08) (1 − 0.08) 0.0008 125
1 1 0 1 (1 − 0.02) (1 − 0.05) (0.08) (1 − 0.08) 0.0685 20
0 1 0 1 (0.02) (1 − 0.05) (0.08) (1 − 0.08) 0.0614 95
1 0 0 1 (1 − 0.02) (0.05) (0.08) (1 − 0.08) 0.0036 70
0 0 0 1 (0.02) (0.05) (0.08) (1 − 0.08) 0.0000 145
1 1 1 0 (1 − 0.02) (1 − 0.05) (1 − 0.08) (0.08) 0.0685 20
0 1 1 0 (0.02) (1 − 0.05) (1 − 0.08) (0.08) 0.0014 95
1 0 1 0 (1 − 0.02) (0.05) (1 − 0.08) (0.08) 0.0036 70
0 0 1 0 (0.02) (0.05) (1 − 0.08) (0.08) 0.0000 145
1 1 0 0 (1 − 0.02) (1 − 0.05) (0.08) (0.08) 0.0060 40
0 1 0 0 (0.02) (1 − 0.05) (0.08) (0.08) 0.0001 115
1 0 0 0 (1 − 0.02) (0.05) (0.08) (0.08) 0.0003 90
0 0 0 0 (0.02) (0.05) (0.08) (0.08) 0.0000 165
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The cumulative probability is the sum of all of the MW outage probabilities above

and including the individual probability of the given outage. Using the 40 MW outage

as an example, the cumulative probability is the sum of the individual probabilities

of 50, 70, 75, 90, 95, 1115, 125, 145 and 165 MW outage states. The cumulative

probability is then 0.0750, as shown in Table 2.2.

The binomial method goes through every possible state of the system, this can

make the binomial method very time consuming. The number of states, 2n, grows

exponentially with the number of units, n, in the system. As the number of states to

calculate and combine increases so does the time it takes to complete the COPT. The

formulation of the COPT has a complexity of n · 2n. Another down fall to using the

binomial method occurs with system changes. If any unit in the system changes, even

just one unit, the table needs to be recalculated with the new system configuration.

The calculation time with this approach becomes impractical with a large number of

units.

2.1.4 Recursive Algorithm

Because the entire COPT needs to be recalculated every time there is a change in the

system with the binomial distribution method, [20] introduces a recursive algorithm

that allows individual units to be added or removed relatively easily. There is also

a modified version of the algorithm for multi-state units. Multi-state units are units

that have an availability rate calculated in more detail than just the on and off

states. Only the two-state, on or off, algorithm will be demonstrated in this thesis.

The removal and multi-state algorithms follow in a similar fashion and will not be

discussed in detail.

Equation (2.4) is the base equation for the cumulative probability of each state

and it is repeated for the addition of each turbine.

P (X) = (1 − FOR)P ′(X) + (FOR)P ′(X − C) (2.4)
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where:

P (X) = cumulative probability of the capacity outage

state of X after the unit is added

and

P ′(X) = cumulative probability of the capacity outage

state of X before the unit is added (the previous P (X))
(2.5)

with:

X = capacity outage state in MW

C = capacity in MW of the unit being added

FOR = forced outage rate of unit being added

The problem is initialized with P ′(X) = 1.0 for X ≤ 0 and P ′(X) = 0 otherwise.

This setup works well for certain block sizes, as in the example listed in [20] where

the capacity of each unit is divisible by 25 MW, but in practice several more steps

need to be added to the formulation. Equation (2.5) then becomes

P ′(Xk+1) =







































1.0 Xk+1 ≤ 0

P (Xk) Xk+1 = Xk

0 Xk+1 > Xk
max

P (Xk
min) Xk+1 < Xk

min

(2.6)

Example 2.1 demonstrates the use of the recursive algorithm, using the four

generator example system with the additional formulation, Equation (2.6).
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Example 2.1 (Recursive Algorithm). Step 1 add the 75 MW unit

P (0) = (1 − 0.02)P ′(0) + (0.02)P ′(0 − 75)

P (0) = (1 − 0.02)(1.0) + (0.02)(1.0) = 1.0

P (75) = (1 − 0.02)P ′(75) + (0.02)P ′(75 − 75)

P (75) = (1 − 0.02)(0) + (0.02)(1.0) = 0.02

Step 2 add the 50 MW unit

P (0) = (1 − 0.05)(1.0) + (0.05)(1.0) = 1.0

P (50) = (1 − 0.05)P ′(50) + (0.05)P ′(50 − 50)

P (50) = (1 − 0.05)(0.02) + (0.05)(1.0) = 0.0690

P (75) = (1 − 0.05)(0.02) + (0.05)(0.02) = 0.0200

P (125) = (1 − 0.05)P ′(125) + (0.05)P ′(125 − 50)

P (125) = (1 − 0.05)(0) + (0.05)(0.02) = 0.0010

Step 3 and step 4, adding the two 20 MW units, follow in the same way until you get

table 2.2.

Both the binomial distribution method and [20]’s recursive algorithm are used

in the development of this thesis. In addition to making the addition and removal

of units more efficient the recursive algorithm can also calculate the COPT more

efficiently. The algorithm is more efficient as it allows the MW outage states with

less than a given probability to be ignored. Once these states have been determined

and ignored they are no longer used by the algorithm for any further calculations,

therefore leaving fewer states for the algorithm to calculate. As the number of units

grow so do the number of states which can be ignored. The binomial distribution

method can also ignore these states but it does not improve the calculation speed as

the probability needs to be calculated before it can be determined to be below the

probability threshold. The recursive algorithm is slower in generating COPTs for a

14



small system. It takes a larger system for the efficiency of the algorithm to offset the

additional overhead.

2.1.5 Convolution Algorithm

The process of calculating all of the probabilities in Table 2.1 using the binomial

distribution method is known as convolution. The convolution between two functions

can be defined as

f3(x) = f1(x) ∗ f2(x) (2.7)

f3(x) =

∫

∞

−∞

f1(y)f2(x − y)dy

=

∫

∞

−∞

f1(x − y)f2(y)dy

(2.8)

An easier solution for the convolution of two functions is to use a fourier transform.

The fourier transform, transforms the two functions from the time domain into the

frequency domain. In the frequency domain, convolution becomes point-by-point

multiplication. Then by using the inverse fourier transform on the solution, it is

transformed back into the time domain. [21]

The probability of a generator’s availability can be represented as a discrete

function. By making the time interval, an interval of power in MW, say 1 MW apart,

the probability function of a two-state unit with the capacity of P MW becomes

f(x) = FORδ(x) + (1 − FOR)δ(x− P ) (2.9)

Notice that the function is composed of impulses. The fourier transform of an

impulse is a constant. The function can then just be represented as a polynomial.
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f(x) = FORx0 + (1 − FOR)xP (2.10)

Then equation (2.8) becomes

f3(x) =FOR1FOR2x0 + (1 − FOR1)FOR2xP1
+

FOR1(1 − FOR2)xP2
+ (1 − FOR1)(1 − FOR2)xP1+P2

(2.11)

This significantly speeds up the derivation of the COPT. Since the algorithm

depends on the number of generators, n, not the number of states, 2n. Example 2.2

demonstrates the use of the convolution algorithm using the four generator system.

Example 2.2 (Convolution Algorithm).

f1(x) = 0.02x0 + 0.98x75

f2(x) = 0.05x0 + 0.95x50

f3(x) = 0.08x0 + 0.92x20

f4(x) = 0.08x0 + 0.92x20

fCOPT (x) = f1(x) ∗ f2(x) ∗ f3(x) ∗ f4(x)

fCOPT (x) =(0.02x0 + 0.98x75) × (0.05x0 + 0.95x50)×

(0.08x0 + 0.92x20) × (0.08x0 + 0.92x20)

fCOPT (x) =0.0001x20 + 0.0008x40 + 0.0001x50 + 0.0028x70+

0.0003x75 + 0.0616x90 + 0.0072x95 + 0.0415x115+

0.0060x125 + 0.1370x145 + 0.7880x165
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2.1.6 Loss of Load Indices

The next step in determining the reliability of the system is calculating the loss of

load indices. The two most commonly used forms are the loss of load probability

(LOLP) and the loss of load expectation (LOLE). NERC [22] defines the LOLP as:

the building block of probabilistic analyses. LOLP is typically defined as the

probability of firm load demand not being met in any given time period. In

some areas, the determination is whether firm load demand plus operating

reserves, or a portion thereof, can be met in a given time period. When the

probabilities of events are summed over time, the result is an expectation.

and the LOLE as:

the sum of LOLP values over time. For example, if a system was always

short of capacity, in every hour in a year, with no chance of having enough

capacity, the LOLE would be 8760 Loss of Load Hours per year or 365 Loss

of Load Days per year, or 260 Loss of Load Weekdays per year.

The NERC standard BAL-502-RFC-02 [23] requires the LOLE for a US power

system to be equal to 0.1 days/year, which is known as the one day in 10 years

criterion.

A mathematical definition of the LOLE is given by [20]

LOLE =

n
∑

i

Pi(Ci − Li) days/period (2.12)

where:

Ci = available capacity on day i

Li = forecasted peak load on day i

Pi(Ci − Li) = probability of loss of

load on day i. This value is obtained

directly from the COPT

17



The LOLE can also be calculated using the individual probabilities from the

COPT [20].

LOLE =
n
∑

k

pktk (2.13)

where:

pk = individual probabilities associated

with the capacity outage state

tk = the time units where the load is

greater than the capacity outage state

The LOLE is easy to calculate for any load level. All that is needed is the COPT

with either the cumulative probabilities or individual probabilities and a peak load

curve (PLC) for the system.

Example 2.3 (Loss of Load Expectation - LOLE). Using the four generators listed in

Table 2.1 the LOLE can be determined from Table 2.2 and a given PLC. The peak load

curve will be represented in a linear form for ease of calculation and demonstration.

The equation for the peak load curve is:

PLC = PL − 0.65 · PL · x

with:

x = [0, 100]

PL = 120 MW (peak load)

and a graph of the PLC can be seen in Figure 2.1. Using equation (2.13) the

LOLE is:
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LOLE = P (115) × (0.0641) + P (95) × (0.3205) + P (90) × (0.3846)

+ P (75) × (0.5769) + P (70) × (0.6410) + P (50) × (0.8974)

= 0.0308

This is in a given time period per year.

2.1.7 Effective Load Carrying Capacity

Several approaches in the reviewed literature use effective load carrying capacity

(ELCC) to evaluate the capacity credit of wind and its effect on the over all reliability

of its respective system. ELCC is also explored as a possible method in representing

the amount of energy the forecasted wind can apply to the system.

ELCC is a graphical method used to approximate the effective capacity of a

unit to the system to which it is added. ELCC is defined as “the distance in load

megawatts between the annual risk functions before and after a unit addition” [7]

and as, “the increase in system load-carrying capability at a given risk level due to

the unit addition” [20].

This method remains applicable with wind generators and their stochastic and

volatile nature. The main issue in determining the ELCC, is the heavy dependence

on the system configuration. As the system changes, so does the ELCC for each unit.

A study shows how drastically the ELCC can change for a wind generator in slightly

different power system configurations [24].
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Figure 2.1: Example 2.3 - Peak Load Curve
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2.2 Power System Operations

2.2.1 Economic Dispatch

Economic dispatch (ED) is a small part of UC, the focus of this thesis. The objective

of ED is to minimize the cost of generation for a given set of generators, load, and

any other system constraint. ED can be solved using a linear program (LP). The

objective of a LP is the cost function and the constraints consist of the load, generator

constraints and system constraints. The following equations show a basic setup for

ED.

Objective:

minimize

n
∑

i

Ai + BiPi (2.14)

where:
n
∑

i

Pi = Load (2.15)

Pi ≥ Mini ∀i (2.16)

Pi ≤ Maxi ∀i (2.17)

2.2.2 Unit Commitment

ED assumes that all of the generator units are connected to the system and will be

used at least at their minimum to fulfill the load requirement. UC, however; assumes

that all of the units are available, but not connected to the system and all the possible

generator combinations need to be considered. UC minimizes the operating cost by

determining which subset of the units will minimize the cost, while still meeting the

demand of the load forecast and all of the other constraints. ED is used in UC as

each of the generator subsets require an ED solution [25].

Full UC requires determining the on/off schedules of thermal units over a given

load forecast, maintaining the required spinning reserve and minimizing the cost. The
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solution of a number of both discrete and continuous variables are needed for UC. This

makes UC one of the most complex optimization problems for power system economics

and operations. Without a large number of assumptions and approximations UC

becomes non-linear, with its variables reaching a high dimensionality [25] [11].

UC is traditionally calculated 24 hours ahead of time, in one hour divisions. The

optimum running configuration is determined for each hour. In addition to the load

and system constraints, different running constraints can be added to the system.

Most of the extra constraints are related to length of time involved with running the

generators and the amount of time needed to startup, shut down, run and stay down

time of the generators between cycles. Most of these constrains will not be discussed

in further detail in this thesis as they are out of the defined scope. During the 24 hour

period, units will be turned on and off, this is called committing and decommitting

respectively. The most difficult part of UC is in choosing what units to commit or

decommit. Sometimes the previous hour is the main influence on the cost causing a

different subset to be chosen than what would normally, for the next hour. Take the

five subsets: A, B, C, D and E for example. If subset A is the optimal choice for a

given hour independent of the previous hour, then B may be the optimal subset for

that same hour if D was the optimal subset for the previous hour with a dependence

on the previous hour. The same change can happen when looking an hour ahead. If

the given hour’s subset was originally A it could change to C when the next hour is

taken into account and its optimal subset is E.

There are many different methods for solving UC [25]. These methods include: the

priority list method, dynamic programming, and lagrangean relaxation (LR). Today,

mixed integer programming (MIP) has become the state-of-the-art approach and will

be used as the solution method here. All of these methods use a set of optimization

techniques with their own advantages and disadvantages.
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2.3 Optimization

A solid foundation of optimization techniques are needed to fully understand

traditional UC methods and the MIP method being introduced in this thesis. The

two main methods that are discussed here are LP and MIP.

2.3.1 Linear Programming

In order to use linear programming (LP) to optimize a function, the objective and

constraints must be linear. A linear function is a function that contains terms, each

of which are composed of only a single continuous variable raised to (and only to)

the power of 1. No functions such as cos(x), log(x), or exp(x) may be involved

[26]. A LP consists of an objective function, to either minimize or maximize, and

a set of constraints that the solution must fit within. The objective is defined as a

mathematical function which represents a desire to either maximize profit or minimize

cost. A constraint is defined as a mathematical equality or inequality that represents

some sort of restriction on the system [26]. Since the problem setup is straight

forward for UC, the setup of a LP will not be discussed. The main focus will be in

the solution of a LP and some of its variations. A similar method is used to solve

quadratic programs, but it will not be discussed in detail.

In order for a solution to be optimal it first must be feasible. A feasible solution is

any solution that “satisfies all of the constraints of the LP” [26]. Every solution must

fall in the feasible region. A non-negativity constraint is assumed for most variables

in a LP because it is impossible to have a negative amount of something real. An

infeasible solution is then any solution that does not satisfy one, more than one or

all of the LP’s constraints. The optimal solution is a feasible solution that maximizes

or minimizes the objective function. The feasible area and optimal solution can be

found fairly easily for two variable and some three variable linear programs. The

following example can be solved graphically as seen in Figure 2.2.
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Example 2.4 (Linear Programming). Objective:

max: f = 20x1 + 40x2

where:

x1 + x2 ≤ 100

8x1 + 5x2 ≥ 370

x1 ≥ 10

with:

x1 and x2 ≥ 0

The feasible region is labeled and marked in grey. In the example there are four

extreme points. An extreme point is a point that is in the feasible region and at the

intersection of two or more constraints. The optimum solution is always on an extreme

point. The only exception to this is when the objective is normal (perpendicular) to

one of the boundaries. Then the optimal solution may lie on any intermediate point of

that boundary. In Example 2.4 the optimal solution is point (10,90). The solution can

also be checked mathematically using the simplex method. Since the simplex method

is an iterative method, it can be very time consuming and complex to compute by

hand. Matlab’s linprog function will therefor be used to solve the LP’s in this thesis.

The linprog function uses a modified version of the simplex method. More information

on the simplex method can be found in [26].

2.3.2 Mixed Integer Programming

There are times when some or all of the variables need to be restricted to integer

values. In manufacturing partial products cannot be produced. It wouldn’t make any

sense to manufacture 0.27th of a chair or 0.64th of a car. These products need to be

produced in integer values. Restricting some variables to integer variables in a LP
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Figure 2.2: Example 2.4 - Graphical Solution of Linear Program
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is called mixed integer programming (MIP). A MIP is solved using LP iteratively as

the algorithm searches through the feasible points. The branch and bound method

is used here to solve all MIPs. The branch and bound method searches through the

feasible points starting with the optimal continuous solution. The branch and bound

method consists of three steps: branching, bounding and fathoming. Branching

consists of adding new constraints to MIP to create a new sub-problems and bounding

is then calculating the optimal solution for the new sub-problems. The fathoming

step determines if the solution is optimal, non-optimal, or infeasible. The method

continuously solves LP’s for new versions of the MIP as it narrows down the integer

solution. Example 2.5 is an example MIP problem shown graphically in Figure 2.3

and Figure 2.4 shows a graphical representation of the branch and bound method.

Example 2.5 (Mixed Integer Programming). Objective:

max: f = −2x1 − 5x2

where:

20x1 + 35x2 ≤ 107

x2 ≤ 1.52

with:

x1 and x2 ≥ 0 and integers

The first step in solving the MIP is finding the continuous optimal solution.

The optimal point, (x∗

1, x
∗

2), is (2.69, 1.52) with an optimum, f ∗, of -12.98. Since

neither x1 or x2 are integers, the integer constraint has not been met for this problem.

The integer solution will be less than the continuous solution because the continuous

solution is already best optimal solution. The first step is to branch. The algorithm

branches first on x1. The continuous optimum for x1 is 1.87. This is not an integer
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so two new constraints are formed: x1 ≤ 2 and x1 ≥ 3. Adding the constraint x1 ≤ 2

to the original MIP creates the first sub-problem and branch 1 in Figure 2.4.

Objective:

max: f = −x1 − 3x2

where:

20x1 + 35x2 ≤ 107

x2 ≤ 1.52

x1 ≤ 2

with:

x1 and x2 ≥ 0 and integers

The new problem is bounded and the optimal point is (2, 1.52) with an optimum

of -11.6. The integer constraint is still not met since x2 = 1.52. Now that a integer

solution for x1 was found x2 will be addressed. Branch 2 is created by adding the

constraint x2 ≤ 1 to the current sub-MIP. The MIP is solved and the optimal point

is (2, 1) and an optimum of -9. This is the only optimal solution that meets all the

constraints so far and is marked as the current optimal solution. This may not be the

optimal solution for the MIP since there are still several branches that have yet to be

bounded and fathomed. To make sure the global optimal solution is found the branch

and bound method must be continued. Branch 3 is an extension from branch 1. The

constraint x2 ≥ 2 is added to the sub-MIP from branch 1. This creates an infeasible

solution. Now that all possible optimal solutions have been searched from branch 1,

branch 4 is created by adding the constraint x1 ≥ 3 that was formed with the first

branch. The constraint is added to the original MIP to form branch 4. The optimal

point is (3, 1.34) with an optimum of -12.71. Even though the solution does not meet

the integer constraint the optimum is still smaller than the current optimal integer

variable solution. This indicates that a better integer variable solution may still exist.
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The method is continued through branch 6, 7, 8, 9 and 10. In branch 6 the optimal

point is (3, 1) with an optimum solution of -11. This solution is less than branch

2 and becomes the new integer variable optimum solution. Branch 8 has an optimal

point of (5.35, 0) with an optimum of solution of -10.7. This point does not meet the

integer constraint. No branch comes off of branch 8 because the optimum is greater

than the current optimal integer variable solution. Branch 9 and 10 are infeasible

solutions. This makes the optimal MIP solution branch 6. The optimal point is (3,

1) with an optimum of -11.

A special form of MIP is binary programming. Binary programming is the same

as MIP except the specified variables are bounded to 0 and 1.
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Figure 2.3: Example 2.5 - Graphical Solution of Mixed Integer Program
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Figure 2.4: Example 2.5 - Branch and Bound Method Diagram

30



Chapter 3

Concept and Approach

Research for this thesis starts by looking at the capacity credit of wind turbines. The

mechanical model for wind turbines is well known and defined but the power output

model is not. Wind is stochastic in nature and it’s the fuel for wind turbines. The

capacity of wind depends on the connected system. The topology of the power system

has a drastic effect on the wind generator’s measured capacity [24]. Current research

uses ELCC to approximate the capacity that the wind turbines provide for the system

[6] [8] [27]. The issue with this method is that the derived capacity depends on the

wind forecast and the current status of the power system. Wind is stochastic and the

units supplying the load in a system change with UC, therefore the wind’s capacity

credit becomes stochastic.

In UC, the generator model is important. As stated before the models of thermal

units and the mechanical models of wind turbines are well known, but not their power

output. Instead of trying to define the capacity of the wind turbines separately, it is

better to incorporate the modeling into the UC. This allows the optimal capacity to

be found while determining the operating points of all the generators.

Traditional UC is optimized around the generation cost and it also uses part of the

N - 1 security criterion for a reserve constraint. The N - 1 criterion is used in respect

to the units committed. There must be enough reserve in the system to handle an
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outage of the single largest unit. Wind units cannot be modeled the same. Wind

is very volatile in nature and has a very low to zero running cost. Wind would be

scheduled to its fullest extent if a traditional version of UC is applied. This can cause

the system to become very unreliable. Wind forecast error can be very high and

the turbines rarely perform at their maximum output. In order to keep the system’s

reliability at a comparable level a new objective or set of constraints need to be added

to UC. Here a set of additional constraints are added to keep the new UC method

simple.

One approach to incorporating wind into UC is to add a system reliability

constraint much like the NERC system constraint, that the LOLE must be less than

or equal to 0.1%, one day every ten years. This requires the COPT to be derived for

very possible state that is examined and then calculate its LOLE from the forecasted

load. In order to derive the COPT of the system, a FOR is derived for the wind

turbines. This leads back to the original problem of defining the capacity credit of the

wind turbines. At first, the FOR are estimated to validate the new constraints. The

genetic algorithm (GA) is originally chosen as the optimization tool for its simplicity

in adding and removing constraints, as long as there is an appropriate cost associated

with them. Figure 3.1 is a block diagram of UC using a GA.

There are several issues with using a GA. First off, a GA is generally not very

reliable. It does not result in the same solution with every run of the algorithm.

By controlling the initial population of the GA, the consistency of the result rises

to a more acceptable rate. Another issue with this method is the solution time, the

time it takes to derive a solution. Even though several if-loops are used to cut out

computation time from infeasible states, it still takes an extraordinary amount of

time to solve the UC for a single hour. As the load increases so does the amount of

generation needed to meet the load, the number of generators needed increases and

therefore the number of possible states to increases exponentially. This exponential

growth is directly proportional to the GA derivation time. The slow down is related to

calculating the COPT. Every time the genetic algorithm produces a new population,

32



Figure 3.1: Original Code - Flow Chart
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the COPT needs to be recalculated. This requires 2n states for every possible

feasible solution that is produced. As the number of generators increases so does

the calculation time.

A majority of the states can be ignored due to a low probability of occurring

and have little to no effect on the out come of the COPT and the resulting LOLE.

Still, it is difficult to just ignore these states. If the state is ignored based on its

probability, the probability still needs to be calculated. This does not speed up the

derivation. One approach is to ignore any state with x number of generators ”off”.

x can be controlled so that the number of generators that need to be ”off” decreases

as the number of generators present increases. This allows the accuracy of the the

reliability calculations to remain uniform without regard to the number of generators

being optimized.

The third major problem using the LOLE constraint is its use of a set generation

amount per block of wind energy. Each set amount of generation represents a given

MW level of wind energy. The FOR is designed to be based off of the wind forecast.

This does not allow for the amount of wind and its reliability to be be committed

optimally. The idea of modeling wind as a multi-state unit is demonstrated by [14].

The forecasted wind energy is broken into several states based off of the availability

rate determined by the wind forecast. This allows the amount of wind to be committed

on both the forecasted generation and its reliability on meeting the given forecast.

Figure 3.2 shows the updated flowchart for the UC.

This is an improvement over the original formulation, but not a significant one. It

still uses a GA as its optimization tool and creating the COPT in each iteration

remains time consuming. The recursive algorithm defined by [20] shows to be

more efficient in calculating the COPT than the binomial distribution method. The

algorithm given is missing a few key steps. Even with the corrections made in Section

2.1.4 and neglecting all states with a probability less than a set amount, in most

cases this probability limit is set to 10−8, the recursive algorithm is still very slow
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Figure 3.2: Updated Code - Flow Chart
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and cumbersome as the number of generators grow because the number of possible

states continuous to grow exponentially with the number of generators.

Even with all of the improvements made, the reliability constraint UC approach is

not efficient enough for operations use. This leads into using a simpler optimization

tool, MIP. Other simplifications were made to increase the efficiency as well. A major

change comes in the derivation of the COPT. The convolution method is found to be

accurate and very time efficient in calculating the COPT for a given system, greatly

speeding up the reliability calculation.
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Chapter 4

Implementation

Traditional UC deals primarily with thermal generation units. Here, wind turbines

will be added to the generation system. The Institute of Electrical and Electronics

Engineers (IEEE) Reliability Test System (RTS) [28] [29] will be used for the

base power system. First, the problem will be setup using the base system and

UC performed without any wind turbines. The cost, reliability and wind energy

penetration will be saved for comparison. Next, the wind turbines will be broken

into large blocks of generation and added to the system. When the wind turbines are

added to the system, the objective and several constraints need to be modified due

to wind’s stochastic nature and real-world reserve constraints.

In UC, the cost function is the operational cost, of the thermal units and the

wind turbines as they are added, at scheduled generation amounts. The constraints

represent the physical limitations of the system and other requirements that may be

needed to solve UC. An example constraint is the system’s load must be equal to the

system’s generation. Another constraint is a reliability constraint. The power system

as a whole, not just the units committed, is required to meet the NERC standard

BAL-502-RFC-02 that the LOLE must be equal to or less than 1 day in 10 years,

10% for an entire year [23]. Several different methods were derived to meet this new

constraint in the development of this new method of UC.
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One approach is to add a LOLE constraint to UC. In this approach the COPT is

derived for every possible state of the power system and then the LOLE is calculated,

if the state meets all of the constraints. A GA is used to solve for this optimal state.

The GA is chosen because it is very easy to add and remove constraints, unlike LR.

The limitation of this method is the time and memory needed to derive the COPT.

When determining the security of a system using probability methods, an unit

availability rate (UAR) or FOR needs to derived for the wind turbines as they are

added to the system. Instead of determining a UAR for each individual wind turbine,

it is easier to place the forecasted wind energy into blocks and give availability rates

to the different amounts of forecasted generation. This method takes the correlation

between the wind turbines and the wind forecast into account when determining the

availability rates. One method demonstrates a way of breaking the blocks of wind

energy into different generation levels broken up by their availability rate [14]. Each

block of generation is represented as a multi-state unit, compared to the typical on-

off states of thermal units. These blocks are broken into several set availability rates

with the generation amounts changing dependent on the wind forecast.

With the availability rates of the multi-state blocks of wind energy determined,

the next step becomes finding a way to represent or determine a reserve equal

to the thermal units’ loss of largest unit reserve constraint, N-1 constraint. A

reserve requirement can be formulated based on the chosen wind energy state and its

respective availability rate [14]. This reserve requirement is called expected energy

not served (EENS). The EENS of the system is the sum of the EENS for all of the

wind turbines. EENS will be reserved for a later calculation in the thesis, Section 4.8,

so the reserve method derived here will be renamed wind energy not served (WENS),

Section 4.5. The total WENS for the system is the sum of the WENS of each wind

turbine, while the N-1 inspired reserve constraint for the thermal units is determined

from the single largest unit committed.
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With the wind forecast represented in a similar fashion to thermal units, the

optimization technique is revisited. Since the wind power is represented as multi-

state units it is difficult to generate a LR solution. However, starting with the base

LP a MIP is derived with modifications to force the objective and all of the constraints

linear. The MIP can then be used with relative ease as the optimization technique

for UC.

4.1 Cost Minimization Problem

In the cost minimum formulation of UC the main constraints consist of the load, the

generator constraints, and the reserve constraint. The load constraint (4.2) guarantees

that the total generation will meet the peak load level. The generator constraints

(4.3) (4.4) ensure that when the generator is turned on, Ui = 1, it will be at least

generating its minimum and not above its maximum. A unit’s committed generation

and reserve cannot exceed the maximum rated generation. The reserve constrains

(4.5) (4.6) enforce the N-1 reserve constraint, again this translates to the reserve

needing to be equal to or greater than the single largest unit.

Objective:

minimize: Cost =

n
∑

i

(Ai + BiPi +
1

2
CiP

2

i + DiRi +
1

2
EiR

2

i )Ui (4.1)

where:

Load =
n
∑

i

Pi (4.2)

Pi ≥ P min
i ∀i (4.3)

Pi + Ri ≤ P max
i ∀i (4.4)
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Reserve = Max(P max
i ) (4.5)

Reserve =
n
∑

i

Ri (4.6)

with:

n = number of generators

Ui = binary on and off representation

Pi = committed generation

Ri = committed reserve

Ai = constant cost

Bi = generator linear cost

Ci = generator quadratic cost

Di = reserve linear cost

Ei = reserve quadratic cost
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4.2 Mixed Integer Programming Formulaation

Traditionally, UC is solved using LR. Recent years MIP has become the state-of-the-

art formulation for UC. LR is complicated, it is difficult to add new constraints

and more importantly it cannot guarantee an optimum solution. The method

proposed here solves the optimization problem directly with a MIP. The objective

and constraints are modified into a linear form so they can be solved with a LP. The

minimization cost problem (4.1) then becomes the following:

Objective:

min: Cost =
n
∑

i

AiUi + BiPi + DiRi (4.7)

and the constraints follow suit:

where:

Load =

n
∑

i

Pi (4.8)

Pi ≥ P min
i Ui ∀i (4.9)

Pi + Ri ≤ P max
i Ui ∀i (4.10)

Reserve = Max(P max
i Ui) (4.11)

Reserve =
n
∑

i

Ri (4.12)
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4.3 Thermal Units

The IEEE RTS [28] and [29] is the base system for the testing of the proposed unit

commitment method. Table 4.1 gives the generators’ size, the number of them in the

system, their type and their FOR. Table 4.2 gives the fuel cost per MBtu for each

type of unit. The fuel costs are off of a 1979 base, but it is used here because the

ratio between the fuel costs is the same in present day. The heat constant cost, linear

cost and quadratic costs for operating the generators are listed in Table 4.3 and are

derived from equation (4.13).

HR · P = CC + LC · P + QC · P 2 (4.13)

with:

HR = heat rate (
MBtu

MW
)

P = generation amount (MW )

CC = constant heat cost (MBtu)

LC = linear heat cost (
MBtu

MW
)

QC = quadratic heat cost (
MBtu

MW 2
)

The cost per MW is the fuel cost times the heat cost and the reserve costs for

the units are a percentage of the linear cost. Since a balance between the amount of

reserve required for the wind energy and its cost is needed, the reserve costs need to

be adjusted until an equilibrium is found.
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Table 4.1: Thermal Generator Data

Unit Size (MW) # of Generators Unit Type Forced Outage Rate

12 5 # 6 Oil 0.02
20 4 #2 Oil 0.10
50 6 Hydro 0.01
76 4 Coal 0.02
100 3 #6 Oil 0.04
155 4 Coal 0.04
197 3 # 6 Oil 0.05
350 1 Coal 0.06
400 2 Nuclear 0.12

Table 4.2: Fuel Cost (1979 base)

Fuel Type Cost

# 6 Oil $ 2.30/MBtu
# 2 Oil $ 3.00/MBtu

coal $ 1.20/MBtu
nuclear $ 0.60/MBtu

Table 4.3: Thermal Generator Cost

Size (MW) Constant (MBtu) Linear (MBtu/MW) Quadratic (MBtu/MW2)

12 10.80 11.10 0.00
20 0.00 17.00 0.25
50 NA NA NA
76 68.40 11.10 0.00
100 122.22 7.89 0.0178
155 170.26 7.77 0.0107
197 189.35 7.66 0.0099
350 320.67 7.46 0.0004
400 350.00 9.03 0.0005
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4.4 Wind Energy

The wind data is actual recorded power output in 10 minute intervals, in MW over the

course of six years, from January 1, 2004 to December 31, 2009 [30]. Each year is used

to represent an individual wind farm or block of energy. With six years of recorded

power output, there are six wind farms represented by the data. The ten minute data

is then averaged into hourly amounts. This hourly average then represents the wind

power forecast for each hour throughout one year. The maximum output of wind

energy is approximately 2000 MW or 70% of the peak load, but it is very unlikely

that all of the wind units will ever be at their maximum output at the same time and

that all of the energy be scheduled for use by UC.

One of the most difficult issues in adding wind turbines to UC is determining the

amount of wind that can be relied on at each time step. With the addition of wind

turbines the objective function of the cost minimization problem (4.14) becomes:

minimize: Cost =

n
∑

i

(AiUi + BiPi + DiRi) +

wg
∑

k

(

ns
∑

j

(FkUjk) + GkWk

)

(4.14)

The load constraint (4.2) becomes:

Load =

n
∑

i

Pi +

wg
∑

k

Wk (4.15)

The following wind energy constraints are added to help determine their scheduled

states.

Wk =
ns
∑

j

GAjkUjk ∀k (4.16)

ns
∑

j

Ujk ≤ 1 ∀k (4.17)
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with:

n = number of thermal generators

wg = number of wind turbines

Ui = are binary for on/off representation of thermal units

Ujk = are binary for on/off representation of wind turbines multiple states

Pi = generation amount of thermal unit

Wk = generation amount of wind turbines

Ai = constant cost of thermal units

Bi = linear cost of thermal units

Di = reserve linear cost of thermal units

Fk = constant cost of wind turbines

Gk = linear cost of wind turbines

GAjk = generation amount for each respective turbine state

Equation (4.15) ensures that the sum of the generation of the thermal units and

the wind turbines meets the load requirement of the system. Equation (4.16) sets

the amount of wind energy for each block of wind. While (4.17) provides that only

one of the possible states of forecasted wind energy is chosen, so there is not an over

scheduling of wind.
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4.5 Wind Energy Not Served

Traditional UC uses a N-1 reserve constraint. This makes sure that if the largest

unit in the system goes down then no load will be lost. Wind turbines are stochastic

and their output is forecasted with a probabilistic error. With the addition of the

wind turbines an additional security constraint is needed. The new approach uses

the same basic structure of traditional UC. Here, the reserve constraint includes an

estimation of the expected WENS [14] for the forecasted generation of the wind

units along with the traditional reserve constraint for the thermal units. The wind

generation forecasted is separated into five different levels of output, each with their

own percent availability. The five availability levels used are: 100%, 80%, 60%, 40%

and 20%. These levels represent the percent guaranteed that the wind energy will be

its respective forecast of higher. Table 4.4 shows an example generation forecast for

three wind turbines.

Equation (4.18) is the constraint added to the unit commitment problem to find

the addition reserve needed when adding the wind turbines into the system.

WENS =

wg
∑

k

ns
∑

j

[(1 − UAjk) · GAjk]Ujk (4.18)

Equation (4.11) then becomes (4.19)

Reserve = Max(P max
i Ui) + β · WENS (4.19)
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Table 4.4: Three Wind Turbine Generation Forecast

Wind Turbine 100% Availability 80% Availability 60% Availability 40% Availability 20% Availability

Turbine 1 0 MW 17 MW 34 MW 52 MW 86 MW
Turbine 2 0 MW 59 MW 117 MW 176 MW 294 MW
Turbine 3 0 MW 35 MW 70 MW 106 MW 176 MW
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with:

wg = number of wind turbines

ns = number of unit availability states

UAjk = unit availability for each specific level of generation

β = scaling factor for final system reliability

GAjk = forecasted power in respect to state k

Ujk = binary representation of the chosen state for the wind turbine k

β plays an important role as the scaling factor in (4.19). It allows the scheduled

amount of wind to be tuned for either a lower system operating cost or a lower

generation system reliability. β can be set anywhere between zero and one. β = 0

represents the case where no extra reserve is added to the system for the scheduled

wind and β = 1 represents the case where the complete WENS is added to the required

amount of reserve. In this configuration β is dependent on the system constraints and

defined operating costs. Section 4.8 discusses how the different factors of β are tested

and Section 4.9 goes into more detail on the effects of β and the penetration of wind

energy on the system and its effects on the operating cost and generating reliability.

48



4.6 Load Information

The load data is obtained from [29]. Using the the IEEE RTS makes it easier to

compare the results and show the impact of the proposed UC. The annual peak load

is set at 2850 MW. Tables 4.6 and 4.5 list the load as a percentage of the annual and

weekly peak load respectively.

Table 4.5: Daily Peak Load (% of Weekly Peak)

Day Peak Load

Monday 93
Tuesday 100

Wednesday 98
Thursday 96

Friday 94
Saturday 77
Sunday 75
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Table 4.6: Weekly Peak Load (% of Annual Peak)

Week Peak Load Week Peak Load

1 86.2 27 75.7
2 90.0 28 81.6
3 87.8 29 80.1
4 83.4 30 88.0
5 88.0 31 72.2
6 84.1 32 77.6
7 83.2 33 80.0
8 80.6 34 72.9
9 74.0 35 72.6
10 73.7 36 70.5
11 71.5 37 78.0
12 72.7 38 69.5
13 70.4 39 72.4
14 75.0 40 72.4
15 72.1 41 74.3
16 80.0 42 74.4
17 75.4 43 80.0
18 83.7 44 88.1
19 87.0 45 88.5
20 88.0 46 90.9
21 85.6 47 94.0
22 81.1 48 89.0
23 90.0 49 94.2
24 88.7 50 97.0
25 89.6 51 100.0
26 86.1 52 95.2
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4.7 Final MIP UC Setup

The final UC setup is:

Objective:

min: Cost =

n
∑

i

(AiUi + BiPi + DiRi) +

wg
∑

k

(

ns
∑

j

(FkUjk) + GkWk

)

(4.20)

where:

Load =

n
∑

i

Pi +

wg
∑

k

Wk (4.21)

Pi ≥ P min
i Ui ∀i (4.22)

Pi + Ri ≤ P max
i Ui ∀i (4.23)

WENS =

nw
∑

k

ns
∑

j

[(1 − UAjk) · WGjk]Ujk (4.24)

Reserve = Max(P max
i Ui) + β · WENS (4.25)

Reserve =
n
∑

i

Ri (4.26)
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with:

n = number of thermal generators

wg = number of wind turbines

ns = number of unit availability states

Ui = are binary for on/off representation of thermal units

Ujk = are binary for on/off representation of wind turbines multiple states

Pi = generation amount of thermal unit

Wk = generation amount of wind turbines

Ai = constant cost of thermal units

Bi = linear cost of thermal units

Di = reserve linear cost of thermal units

Fk = constant cost of wind turbines

Gk = linear cost of wind turbines

UAjk = unit availability for each specific level of generation

β = scaling factor to dial in final system reliability

WGjk = forecasted power in respect to state k
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4.8 Evaluation

To test the proposed method, two different systems are setup. The first system is

just the basic IEEE RTS [28] and [29] with the base 32 thermal units. The second

system uses the IEEE RTS as its base and adds 6 blocks of wind energy. Each block

is one of the 6 years of recorded wind output discussed in section 4.4. This gives the

system a total of 38 units to commit/schedule.

The first test system is run over a year long projected forecast, with each 24-hour

period averaged into a single period. UC is run once for each day in a 52 week period

using the peak load data from the IEEE RTS. Again, this test system is run without

any wind and will be used as the base case.

The second test system is run over the same projected time period with the same

load data, but the forecasted wind energy is included. The forecasted wind output

is averaged from its 10 minute intervals into a single output for every time period,

24 hours. The actual wind data used as the forecasted data corresponds to the same

day as the forecasted load. UC is then run 11 times, each time increasing β by 10%,

starting with β = 0% till β = 100%.

For both sets of test systems the average operating cost; required reserve;

scheduled wind; percentage of load met by wind; and system reliability, EENS, are

recorded and listed in Table 4.7.

The EENS is found in two steps. The units’ probabilities are first convolved,

Section 2.1.5, to form a COPT. The wind is expressed slightly different than the

thermal units in this formulation. The wind is represented as a multi-state unit and

therefore has more than just the two polynomials as in (2.10). Equation (4.27) gives

an example of the probability function for turbine 1 in Table 4.4.

f1(x) = 0.10x17 + 0.20x34 + 0.30x52 + 0.40x86 (4.27)

After the COPT is derived the EENS can be calculated. The EENS is defined as
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EENS = CumProb · PeakLoad (4.28)

where

CumProb = The cumulative probability of the first MW

outage to be below the PeakLoad

PeakLoad = The average peak load for the given day

provided by the IEEE RTS (MW)
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4.9 Results

Table 4.7 shows that the EENS of the base system is 218.58 MW, with a reserve of

400 MW. This corresponds to adding 67.64 MW of reserve when introducing 508.8

MW of wind energy on average to the system with β = 0.2. This level of β gives

approximately the same level of reliability of the base system but with 24% of the

load met by wind on average. This gives wind a capacity of 25% of its total maximum

output.

Notice as β increases the reliability of the system increases exponentially along

with the cost as the amount of wind scheduled decreases exponentially. Figures 4.1,

4.2, and 4.3 show the exponential growth of all three measurements with respect to

β.
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Table 4.7: Results

Beta Test System Cost ($/MW) Req. Reserve EENS Avg. Load Scheduled Wind Wind Penetration

NA Base Case 15.25 400 MW 218.58 2110 MW NA NA
0.0 Wind Energy 10.82 400.0 MW 682.45 2110 MW 749.39 MW 24%
0.1 Wind Energy 12.28 458.29 MW 541.27 2110 MW 734.2 MW 34.8%
0.2 Wind Energy 13.52 467.64 MW 225.27 2110 MW 508.8 MW 24.1%
0.3 Wind Energy 14.03 440.35 MW 69.69 2110 MW 311.8 MW 14.8%
0.4 Wind Energy 14.29 435.85 MW 48.86 2110 MW 248.7 MW 11.8%
0.5 Wind Energy 14.46 428.77 MW 35.82 2110 MW 195.7 MW 9.3%
0.6 Wind Energy 14.57 423.41 MW 27.67 2110 MW 164.6 MW 7.8%
0.7 Wind Energy 14.64 422.38 MW 24.49 2110 MW 152.7 MW 7.2%
0.8 Wind Energy 14.71 424.16 MW 22.97 2110 MW 149.0 MW 24%
0.9 Wind Energy 14.78 426.38 MW 22.24 2110 MW 146.1 MW 24%
1.0 Wind Energy 14.85 428.34 MW 21.51 2110 MW 141.6 MW 24%
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Figure 4.1: Beta Versus System Reliability
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Figure 4.2: Beta Versus Operational Cost
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Figure 4.3: Beta Versus the amount of Scheduled Wind
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Chapter 5

Conclusions

A majority of the proposed method’s limitations come from the defined scope. One

of the main limitations is the lack of inter-hour constraints. It is assumed that the

amount of wind energy scheduled will not effect the base load, therefore there will

be no effect on the base load generators, and that the spinning reserve will react fast

enough to the volatile nature of wind. The second major limitation in this method is

the modeling of the forecasted wind data. The forecast is currently taken directly from

actual historical data. It is then given a pessimistic linear based distribution. The

maximum amount of schedulable wind is the forecasted amount. This never allows the

UC to assume that the actual wind output can be greater than the forecasted amount.

The last major limitation is from the lack of transmission constraints, mainly line

constraints. This could allow an unlimited amount of power to flow down restricted

lines. Line constraints are left out because it is difficult to run a power flow inside

of UC, especially when UC is solved in a linear fashion, as with the proposed MIP

method.

Even with a majority of the scope remaining the same, several improvements

can be made in future work on this method. One step would be to integrate β,

the reserve scaling factor, in UC. β could be optimized around a given amount of

wind penetration, system reliability or generation cost; depending on the needs of the
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operator. This would allow a single call of UC instead of several to dial in the reserve

scaling factor.

Another major step would be to use the actual wind forecast and then compare

the results to the measured wind output. Analyzing the several sets of the data will

give a more accurate distribution of wind’s forecast error. This can also help rid the

pessimistic view of the wind forecast. It may become necessary to include inter-hour

constraints as the distribution becomes more accurate, if the volatile nature of wind

is found to have a faster effect on the power system than the current reserve can meet.

The addition of inter-hour or line constraints can make the system very hard to

model linearly. It will be useful to model the system in a quadratic form. It may be

possible to form a MIP from a quadratic program (QP). A QP is similar to LP but

allows the objective and constraints to contain quadratic terms in addition to linear

ones.

Throughout the development and design of the approach of the proposed method

several insights were made in determining the COPT for the committed generation

system. The COPT is mainly used for power system reliability analysis and its

derivation time is of low importance, but it becomes more important as system

reliability calculations will be needed in power systems operations which require

calculations to complete in small windows.

In conclusion, the proposed UC method is simple and it allows the scheduled

amount of wind energy to be adjusted for operation, cost, or reliability. The results

show that approximately 24% of the load can be met in the given test system, while

keeping a constant reliability before and after wind is introduced. This amount of

wind will alone meet many of the RPS in the U.S.
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